메뉴 건너뛰기




Volumn 24, Issue 9, 2005, Pages 1138-1150

Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network

Author keywords

Artificial neural network; Computer aided diagnosis (CAD); Likelihood of malignancy; Low dose CT; Lung nodule

Indexed keywords

BIOLOGICAL ORGANS; COMPUTER AIDED DIAGNOSIS; DATABASE SYSTEMS; DOSIMETRY; IMAGE PROCESSING; NEURAL NETWORKS; TUMORS;

EID: 25144514408     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMI.2005.852048     Document Type: Article
Times cited : (227)

References (74)
  • 2
    • 0035185824 scopus 로고    scopus 로고
    • CT screening for lung cancer: Coping with nihilistic recommendations
    • Dec.
    • O. S. Miettinen and C. I. Henschke, "CT screening for lung cancer: Coping with nihilistic recommendations," Radiol., vol. 221, no. 3, pp. 592-596, Dec. 2001.
    • (2001) Radiol. , vol.221 , Issue.3 , pp. 592-596
    • Miettinen, O.S.1    Henschke, C.I.2
  • 3
    • 0029805812 scopus 로고    scopus 로고
    • Peripheral lung cancer: Screening and detection with low-dose spiral CT versus radiography
    • Dec.
    • M. Kaneko, K. Eguchi, H. Ohmatsu, R. Kakinuma, T. Naruke, K. Suemasu, and N. Moriyama, "Peripheral lung cancer: Screening and detection with low-dose spiral CT versus radiography," Radiol., vol. 201, no. 3, pp. 798-802, Dec. 1996.
    • (1996) Radiol. , vol.201 , Issue.3 , pp. 798-802
    • Kaneko, M.1    Eguchi, K.2    Ohmatsu, H.3    Kakinuma, R.4    Naruke, T.5    Suemasu, K.6    Moriyama, N.7
  • 6
    • 0035396169 scopus 로고    scopus 로고
    • Early lung cancer action project: Initial finding on repeat screening
    • July
    • C. I. Henschke et al., "Early lung cancer action project: Initial finding on repeat screening," Cancer, vol. 92, no. 1, pp. 153-159, July 2001.
    • (2001) Cancer , vol.92 , Issue.1 , pp. 153-159
    • Henschke, C.I.1
  • 9
    • 0036828463 scopus 로고    scopus 로고
    • Randomized controlled trial with low-dose spiral CT for lung cancer screening: Feasibility study and preliminary results
    • Nov.
    • K. Garg, R. L. Keith, T. Byers, K. Kelly, A. L. Kerzner, D. A. Lynch, and Y. E. Miller, "Randomized controlled trial with low-dose spiral CT for lung cancer screening: Feasibility study and preliminary results," Radiol., vol. 225, no. 2, pp. 506-510, Nov. 2002.
    • (2002) Radiol. , vol.225 , Issue.2 , pp. 506-510
    • Garg, K.1    Keith, R.L.2    Byers, T.3    Kelly, K.4    Kerzner, A.L.5    Lynch, D.A.6    Miller, Y.E.7
  • 12
    • 0036308385 scopus 로고    scopus 로고
    • Lung cancer screening using low-dose spiral CT
    • July
    • T. Nawa, T. Nakagawa, S. Kusano, Y. Kawasaki, Y. Sugawara, and H. Nakata, "Lung cancer screening using low-dose spiral CT," Chest, vol. 122, no. 1, pp. 15-20, July 2002.
    • (2002) Chest , vol.122 , Issue.1 , pp. 15-20
    • Nawa, T.1    Nakagawa, T.2    Kusano, S.3    Kawasaki, Y.4    Sugawara, Y.5    Nakata, H.6
  • 13
    • 0036892529 scopus 로고    scopus 로고
    • Lung cancer missed at low-dose helical CT screening in a general population: Comparison of clinical, histopathologic, and imaging findings
    • Dec.
    • F. Li, S. Sone, H. Abe, H. MacMahon, S. G. Armato, and K. Doi, "Lung cancer missed at low-dose helical CT screening in a general population: Comparison of clinical, histopathologic, and imaging findings," Radiol., vol. 225, no. 3, pp. 673-683, Dec. 2002.
    • (2002) Radiol. , vol.225 , Issue.3 , pp. 673-683
    • Li, F.1    Sone, S.2    Abe, H.3    MacMahon, H.4    Armato, S.G.5    Doi, K.6
  • 15
    • 0036826125 scopus 로고    scopus 로고
    • Neural filter with selection of input features and its application to image quality improvement of medical image sequences
    • Oct.
    • _, "Neural filter with selection of input features and its application to image quality improvement of medical image sequences," IEICE Trans. Inform. Syst., vol. E85-D, no. 10, pp. 1710-1718, Oct. 2002.
    • (2002) IEICE Trans. Inform. Syst. , vol.E85-D , Issue.10 , pp. 1710-1718
  • 16
    • 23044525425 scopus 로고    scopus 로고
    • Neural edge detector - A good mimic of conventional one yet robuster against noise
    • Berlin, Germany: Springer-Verlag, Jun.
    • K. Suzuki, I. Horiba, and N. Sugie, "Neural edge detector - A good mimic of conventional one yet robuster against noise," in Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, Jun. 2001, vol. 2085, pp. 303-310.
    • (2001) Lecture Notes in Computer Science , vol.2085 , pp. 303-310
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 17
    • 0348011365 scopus 로고    scopus 로고
    • Neural edge enhancer for supervised edge enhancement from noisy images
    • Dec.
    • _, "Neural edge enhancer for supervised edge enhancement from noisy images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1582-1596, Dec. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.12 , pp. 1582-1596
  • 18
    • 1642411032 scopus 로고    scopus 로고
    • Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector
    • Mar.
    • K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, "Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector," IEEE Trans. Med. Imag., vol. 23, no. 3, pp. 330-339, Mar. 2004.
    • (2004) IEEE Trans. Med. Imag. , vol.23 , Issue.3 , pp. 330-339
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3    Nanki, M.4
  • 19
    • 0034510479 scopus 로고    scopus 로고
    • Training under achievement quotient criterion
    • Piscataway, NJ: IEEE Press
    • K. Suzuki, I. Horiba, and N. Sugie, "Training under achievement quotient criterion," in Neural Networks for Signal Processing X. Piscataway, NJ: IEEE Press, 2000, pp. 537-546.
    • (2000) Neural Networks for Signal Processing X , pp. 537-546
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 20
    • 0035784067 scopus 로고    scopus 로고
    • Simple unit-pruning with gain-changing training
    • Piscataway, NJ: IEEE Press
    • _, "Simple unit-pruning with gain-changing training," in Neural Networks for Signal Processing XI. Piscataway, NJ: IEEE Press, 2001, pp. 153-162.
    • (2001) Neural Networks for Signal Processing XI , pp. 153-162
  • 21
    • 0031631570 scopus 로고    scopus 로고
    • Designing the optimal structure of a neural filter
    • Piscataway, NJ: IEEE Press
    • _, "Designing the optimal structure of a neural filter," in Neural Networks for Signal Processing VIII. Piscataway, NJ: IEEE Press, 1998, pp. 323-332.
    • (1998) Neural Networks for Signal Processing VIII , pp. 323-332
  • 22
    • 0035251045 scopus 로고    scopus 로고
    • A simple neural network pruning algorithm with application to filter synthesis
    • Feb.
    • _, "A simple neural network pruning algorithm with application to filter synthesis," Neural Process. Lett., vol. 13, no. 1, pp. 43-53, Feb. 2001.
    • (2001) Neural Process. Lett. , vol.13 , Issue.1 , pp. 43-53
  • 23
    • 19044380982 scopus 로고    scopus 로고
    • Determining the receptive field of a neural filter
    • Dec.
    • K. Suzuki, "Determining the receptive field of a neural filter," J. Neural Eng., vol. 1, no. 4, pp. 228-237, Dec. 2004.
    • (2004) J. Neural Eng. , vol.1 , Issue.4 , pp. 228-237
    • Suzuki, K.1
  • 24
    • 0036647658 scopus 로고    scopus 로고
    • Efficient approximation of neural filters for removing quantum noise from images
    • Jul.
    • K. Suzuki, I. Horiba, and N. Sugie, "Efficient approximation of neural filters for removing quantum noise from images," IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1787-1799, Jul. 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.7 , pp. 1787-1799
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 25
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • Jul.
    • K. Suzuki, S. G. Armato, F. Li, S. Sone, and K. Doi, "Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT," Med. Phys., vol. 30, no. 7, pp. 1602-1617, Jul. 2003.
    • (2003) Med. Phys. , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 26
    • 0041419441 scopus 로고    scopus 로고
    • Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT
    • San Diego, CA, May
    • _, "Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT," in Proc. SPIE (Medical Imaging), vol. 5032, San Diego, CA, May 2003, pp. 1355-1366.
    • (2003) Proc. SPIE (Medical Imaging) , vol.5032 , pp. 1355-1366
  • 27
    • 2542474244 scopus 로고    scopus 로고
    • Computerized scheme for automated detection of lung nodules in low-dose CT images for lung cancer screening
    • Jun.
    • H. Arimura, S. Katsuragawa, K. Suzuki, F. Li, J. Shiraishi, S. Sone, and K. Doi, "Computerized scheme for automated detection of lung nodules in low-dose CT images for lung cancer screening," Acad. Radiol., vol. 11, no. 6, pp. 617-629, Jun. 2004.
    • (2004) Acad. Radiol. , vol.11 , Issue.6 , pp. 617-629
    • Arimura, H.1    Katsuragawa, S.2    Suzuki, K.3    Li, F.4    Shiraishi, J.5    Sone, S.6    Doi, K.7
  • 28
    • 25144510802 scopus 로고    scopus 로고
    • Characteristics of a massive training artificial neural network (MTANN) in the distinction between lung nodules and vessels in CT images
    • Chicago, IL, Jun.
    • K. Suzuki and K. Doi, "Characteristics of a massive training artificial neural network (MTANN) in the distinction between lung nodules and vessels in CT images," in Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 2004, pp. 923-928.
    • (2004) Computer Assisted Radiology and Surgery (CARS) , pp. 923-928
    • Suzuki, K.1    Doi, K.2
  • 29
    • 13944267171 scopus 로고    scopus 로고
    • False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network
    • Feb.
    • K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, "False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network," Acad. Radiol., vol. 12, no. 2, pp. 191-201, Feb. 2005.
    • (2005) Acad. Radiol. , vol.12 , Issue.2 , pp. 191-201
    • Suzuki, K.1    Shiraishi, J.2    Abe, H.3    MacMahon, H.4    Doi, K.5
  • 30
    • 0029338665 scopus 로고
    • Recognition of coronary arterial stenosis using neural network on DSA system
    • Aug.
    • K. Suzuki, I. Horiba, K. Ikegaya, and M. Nanki, "Recognition of coronary arterial stenosis using neural network on DSA system," Syst. Comput. Jpn., vol. 26, no. 8, pp. 66-74, Aug. 1995.
    • (1995) Syst. Comput. Jpn. , vol.26 , Issue.8 , pp. 66-74
    • Suzuki, K.1    Horiba, I.2    Ikegaya, K.3    Nanki, M.4
  • 31
    • 0022471098 scopus 로고
    • Learning representations of back-propagation errors
    • D.E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations of back-propagation errors," Nature, vol. 323, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Cambridge, MA: MIT Press
    • _, "Learning internal representations by error propagation," in Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986, vol. 1, pp. 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
  • 33
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Netw., vol. 2, pp. 183-192, 1989.
    • (1989) Neural Netw. , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 34
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 35
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • C. E. Metz, "ROC methodology in radiologic imaging," Invest. Radiol., vol. 21, pp. 720-733, 1986.
    • (1986) Invest. Radiol. , vol.21 , pp. 720-733
    • Metz, C.E.1
  • 36
    • 0032525017 scopus 로고    scopus 로고
    • Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data
    • May
    • C. E. Metz, B. A. Herman, and J. H. Shen, "Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data," Statist. Med., vol. 17, no. 9, pp. 1033-1053, May 1998.
    • (1998) Statist. Med. , vol.17 , Issue.9 , pp. 1033-1053
    • Metz, C.E.1    Herman, B.A.2    Shen, J.H.3
  • 37
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Sep.
    • J. A. Hanley and B. J. McNeil, "A method of comparing the areas under receiver operating characteristic curves derived from the same cases," Radiol., vol. 148, no. 3, pp. 839-843, Sep. 1983.
    • (1983) Radiol. , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 39
    • 0037251061 scopus 로고    scopus 로고
    • Sum versus vote fusion in multiple classifier systems
    • Jan.
    • J. Kittler and F. M. Alkoot, "Sum versus vote fusion in multiple classifier systems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 1, pp. 110-115, Jan. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.1 , pp. 110-115
    • Kittler, J.1    Alkoot, F.M.2
  • 41
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, pp. 55-63, 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 42
    • 0032890770 scopus 로고    scopus 로고
    • Improving breast cancer diagnosis with computer-aided diagnosis
    • Jan.
    • Y. Jiang, R. M. Nishikawa, R. A. Schmidt, C. E. Metz, M. L. Giger, and K. Doi, "Improving breast cancer diagnosis with computer-aided diagnosis," Acad. Radiol., vol. 6, no. 1, pp. 22-33, Jan. 1999.
    • (1999) Acad. Radiol. , vol.6 , Issue.1 , pp. 22-33
    • Jiang, Y.1    Nishikawa, R.M.2    Schmidt, R.A.3    Metz, C.E.4    Giger, M.L.5    Doi, K.6
  • 43
    • 0041538999 scopus 로고    scopus 로고
    • Potential clinical usefulness of an intelligent computer-aided diagnostic scheme for distinction between benign and malignant pulmonary nodules in low-dose CT scans
    • Nov.
    • Q. Li, M. Aoyama, F. Li, S. Sone, H. MacMahon, and K. Doi, "Potential clinical usefulness of an intelligent computer-aided diagnostic scheme for distinction between benign and malignant pulmonary nodules in low-dose CT scans," Radiol., vol. 225(P), no. 2, pp. 534-535, Nov. 2002.
    • (2002) Radiol. , vol.225 , Issue.2 P , pp. 534-535
    • Li, Q.1    Aoyama, M.2    Li, F.3    Sone, S.4    MacMahon, H.5    Doi, K.6
  • 44
    • 0142089902 scopus 로고    scopus 로고
    • Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules
    • Oct.
    • Q. Li, F. Li, S. Katsuragawa, J. Shiraishi, H. MacMahon, S. Sone, and K. Doi, "Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules," Med. Phys., vol. 30, no. 10, pp. 2584-2593, Oct. 2003.
    • (2003) Med. Phys. , vol.30 , Issue.10 , pp. 2584-2593
    • Li, Q.1    Li, F.2    Katsuragawa, S.3    Shiraishi, J.4    MacMahon, H.5    Sone, S.6    Doi, K.7
  • 45
    • 0034009298 scopus 로고    scopus 로고
    • Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules by use of artificial neural networks
    • Mar.
    • K. Nakamura, H. Yoshida, R. Engelmann, H. MacMahon, S. Katsuragawa, T. Ishida, K. Ashizawa, and K. Doi, "Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules by use of artificial neural networks," Radiol., vol. 214, no. 3, pp. 823-830, Mar. 2000.
    • (2000) Radiol. , vol.214 , Issue.3 , pp. 823-830
    • Nakamura, K.1    Yoshida, H.2    Engelmann, R.3    MacMahon, H.4    Katsuragawa, S.5    Ishida, T.6    Ashizawa, K.7    Doi, K.8
  • 46
    • 0035999397 scopus 로고    scopus 로고
    • Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images
    • May
    • M. Aoyama, Q. Li, S. Katsuragawa, H. MacMahon, and K. Doi, "Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images," Med. Phys., vol. 29, no. 5, pp. 701-708, May 2002.
    • (2002) Med. Phys. , vol.29 , Issue.5 , pp. 701-708
    • Aoyama, M.1    Li, Q.2    Katsuragawa, S.3    MacMahon, H.4    Doi, K.5
  • 47
    • 0030062375 scopus 로고    scopus 로고
    • Malignant and benign clustered microcalcifications: Automated feature analysis and classification
    • Mar.
    • Y. Jiang, R. M. Nishikawa, D. E. Wolverton, C. E. Metz, M. L. Giger, R. A. Schmidt, C. J. Vyborny, and K. Doi, "Malignant and benign clustered microcalcifications: Automated feature analysis and classification," Radiol., vol. 198, no. 3, pp. 671-678, Mar. 1996.
    • (1996) Radiol. , vol.198 , Issue.3 , pp. 671-678
    • Jiang, Y.1    Nishikawa, R.M.2    Wolverton, D.E.3    Metz, C.E.4    Giger, M.L.5    Schmidt, R.A.6    Vyborny, C.J.7    Doi, K.8
  • 48
    • 0030996609 scopus 로고    scopus 로고
    • Computerized classification of malignant and benign microcalcifications on mammograms: Texture analysis using an artificial neural network
    • Mar.
    • H. P. Chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D. Adler, and M. M. Goodsitt, "Computerized classification of malignant and benign microcalcifications on mammograms: Texture analysis using an artificial neural network," Phys. Med. Biol., vol. 42, no. 3, pp. 549-567, Mar. 1997.
    • (1997) Phys. Med. Biol. , vol.42 , Issue.3 , pp. 549-567
    • Chan, H.P.1    Sahiner, B.2    Petrick, N.3    Helvie, M.A.4    Lam, K.L.5    Adler, D.D.6    Goodsitt, M.M.7
  • 49
    • 0031875382 scopus 로고    scopus 로고
    • Automated computerized classification of malignant and benign mass lesions on digitized mammograms
    • Z. Huo, M. L. Giger, C. J. Vyborny, D. E. Wolverton, R. A. Schmidt, and K. Doi, "Automated computerized classification of malignant and benign mass lesions on digitized mammograms," Acad. Radiol., vol. 5, pp. 155-168, 1998.
    • (1998) Acad. Radiol. , vol.5 , pp. 155-168
    • Huo, Z.1    Giger, M.L.2    Vyborny, C.J.3    Wolverton, D.E.4    Schmidt, R.A.5    Doi, K.6
  • 50
    • 0033233285 scopus 로고    scopus 로고
    • Classification of malignant and benign masses based on hybrid ART2LDA approach
    • Dec.
    • L. Hadjiiski, B. Sahiner, H.-P. Chan, N. Petrick, and M. Helvie, "Classification of malignant and benign masses based on hybrid ART2LDA approach," IEEE Trans. Med. Imag., vol. 8, no. 12, pp. 1178-1187, Dec. 1999.
    • (1999) IEEE Trans. Med. Imag. , vol.8 , Issue.12 , pp. 1178-1187
    • Hadjiiski, L.1    Sahiner, B.2    Chan, H.-P.3    Petrick, N.4    Helvie, M.5
  • 51
    • 0035544613 scopus 로고    scopus 로고
    • Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization
    • Dec.
    • B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M. A. Helvie, and M. N. Gurcan, "Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization," IEEE Trans. Med. Imag., vol. 20, no. 12, pp. 1275-1284, Dec. 2001.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.12 , pp. 1275-1284
    • Sahiner, B.1    Petrick, N.2    Chan, H.P.3    Hadjiiski, L.M.4    Paramagul, C.5    Helvie, M.A.6    Gurcan, M.N.7
  • 52
    • 0036182280 scopus 로고    scopus 로고
    • Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: Evaluation with receiver operating characteristic analysis
    • Mar.
    • Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. Katsuragawa, and K. Doi, "Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: Evaluation with receiver operating characteristic analysis," AJR, vol. 178, pp. 657-663, Mar. 2002.
    • (2002) AJR , vol.178 , pp. 657-663
    • Matsuki, Y.1    Nakamura, K.2    Watanabe, H.3    Aoki, T.4    Nakata, H.5    Katsuragawa, S.6    Doi, K.7
  • 53
    • 0032981748 scopus 로고    scopus 로고
    • A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results
    • Jun.
    • M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, "A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results," Med. Phys., vol. 26, no. 6, pp. 880-888, Jun. 1999.
    • (1999) Med. Phys. , vol.26 , Issue.6 , pp. 880-888
    • McNitt-Gray, M.F.1    Hart, E.M.2    Wyckoff, N.3    Sayre, J.W.4    Goldin, J.G.5    Aberle, D.R.6
  • 54
    • 0037342845 scopus 로고    scopus 로고
    • Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images
    • Mar.
    • M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, "Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images," Med. Phys., vol. 30, no. 3, pp. 387-394, Mar. 2003.
    • (2003) Med. Phys. , vol.30 , Issue.3 , pp. 387-394
    • Aoyama, M.1    Li, Q.2    Katsuragawa, S.3    Li, F.4    Sone, S.5    Doi, K.6
  • 56
    • 20344365574 scopus 로고    scopus 로고
    • Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates
    • Sep.
    • A. Farag, A. El-Baz, G. G. Gimel'farb, R. Falk, and S. G. Hushek, "Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates," Med. Image Comput. Comput.-Assist. Intervention, pt. I, pp. 856-864, Sep. 2004.
    • (2004) Med. Image Comput. Comput.-assist. Intervention , Issue.1 PART , pp. 856-864
    • Farag, A.1    El-Baz, A.2    Gimel'farb, G.G.3    Falk, R.4    Hushek, S.G.5
  • 57
    • 0031962305 scopus 로고    scopus 로고
    • Statistical comparison of two ROC curve estimates obtained from partially-paired datasets
    • C. E. Metz, B. A. Herman, and C. A. Roe, "Statistical comparison of two ROC curve estimates obtained from partially-paired datasets," Med. Decision Making, vol. 18, pp. 110-121, 1998.
    • (1998) Med. Decision Making , vol.18 , pp. 110-121
    • Metz, C.E.1    Herman, B.A.2    Roe, C.A.3
  • 60
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, "Increased rates of convergence through learning rate adaptation," Neural Netw., vol. 1, pp. 295-307, 1988.
    • (1988) Neural Netw. , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 61
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, "Accelerating the convergence of the back-propagation method," Biol. Cybern., vol. 59, pp. 257-263, 1988.
    • (1988) Biol. Cybern. , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3    Zink, W.T.4    Alkon, D.L.5
  • 62
    • 0001209372 scopus 로고
    • Accelerated backpropagation learning: Two optimization methods
    • R. Battiti, "Accelerated backpropagation learning: Two optimization methods," Complex Syst., vol. 3, pp. 331-342, 1989.
    • (1989) Complex Syst. , vol.3 , pp. 331-342
    • Battiti, R.1
  • 63
    • 0009772169 scopus 로고
    • Second order properties of error surfaces: Learning time and generalization
    • Cambridge, MA
    • Y. LeCun, I. Kanter, and S. A. Solla, "Second order properties of error surfaces: Learning time and generalization," in Advances in Neural Information Processing Systems, vol. 3. Cambridge, MA, 1991, pp. 918-924.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 918-924
    • LeCun, Y.1    Kanter, I.2    Solla, S.A.3
  • 64
    • 0001298583 scopus 로고
    • Automatic learning rate maximization by on-line estimation of the Hessian's eigenverctors
    • Cambridge, MA: MIT Press
    • Y. LeCun, P. Y. Simaard, and B. Pearlmutter, "Automatic learning rate maximization by on-line estimation of the Hessian's eigenverctors," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1993, vol. 5, pp. 156-163.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 156-163
    • LeCun, Y.1    Simaard, P.Y.2    Pearlmutter, B.3
  • 65
    • 0030104504 scopus 로고    scopus 로고
    • Global optimization for neural network training
    • Y. Shang and B. W. Wah, "Global optimization for neural network training," Computer, vol. 29, no. 3, pp. 45-54, 1996.
    • (1996) Computer , vol.29 , Issue.3 , pp. 45-54
    • Shang, Y.1    Wah, B.W.2
  • 66
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," in Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann, 1990, pp. 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 67
    • 0001699239 scopus 로고
    • Diffusion approximations for the constant learning rate backpropagation algorithm and resistance to local minima
    • W. Finnoff, "Diffusion approximations for the constant learning rate backpropagation algorithm and resistance to local minima," Neural Comput., vol. 6, no. 2, pp. 285-295, 1994.
    • (1994) Neural Comput. , vol.6 , Issue.2 , pp. 285-295
    • Finnoff, W.1
  • 68
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik, "Neural networks and principal component analysis: Learning from examples without local minima," Neural Netw., vol. 2, no. 1, pp. 53-58, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 70
    • 0033461791 scopus 로고    scopus 로고
    • Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
    • Dec.
    • H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, "Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers," Med. Phys., vol. 26, no. 12, pp. 2654-2668, Dec. 1999.
    • (1999) Med. Phys. , vol.26 , Issue.12 , pp. 2654-2668
    • Chan, H.P.1    Sahiner, B.2    Wagner, R.F.3    Petrick, N.4
  • 71
    • 0033863591 scopus 로고    scopus 로고
    • Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size
    • Jul.
    • B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski, "Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size," Med. Phys., vol. 27, no. 7, pp. 1509-1522, Jul. 2000.
    • (2000) Med. Phys. , vol.27 , Issue.7 , pp. 1509-1522
    • Sahiner, B.1    Chan, H.P.2    Petrick, N.3    Wagner, R.F.4    Hadjiiski, L.5
  • 73
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • S. B. Lo, H. P. Chan, J. S. Lin, H. Li, M. Freedman, and S. K. Mun, "Artificial convolution neural network for medical image pattern recognition," Neural Netw., vol. 8, no. 7/8, pp. 1201-1214, 1995.
    • (1995) Neural Netw. , vol.8 , Issue.7-8 , pp. 1201-1214
    • Lo, S.B.1    Chan, H.P.2    Lin, J.S.3    Li, H.4    Freedman, M.5    Mun, S.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.