메뉴 건너뛰기




Volumn 9900 LNCS, Issue , 2016, Pages 662-670

Characterization of lung nodule malignancy using hybrid shape and appearance features

Author keywords

Conformal mapping; Deep convolutional neural network; Nodule characterization; Random forest; Spherical harmonics

Indexed keywords

BIOLOGICAL ORGANS; COMPUTERIZED TOMOGRAPHY; CONFORMAL MAPPING; CONVOLUTION; CONVOLUTIONAL NEURAL NETWORKS; DECISION TREES; DEEP NEURAL NETWORKS; DIAGNOSIS; DISEASES; HARMONIC ANALYSIS; MEDICAL COMPUTING; RANDOM FORESTS;

EID: 84996503636     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46720-7_77     Document Type: Conference Paper
Times cited : (60)

References (15)
  • 3
    • 68549104171 scopus 로고    scopus 로고
    • Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors
    • Venkatraman,V.,Sael,L.,Kihara,D.: Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors. Cell Biochem. Biophys. 54(1–3),23–32 (2009)
    • (2009) Cell Biochem. Biophys , vol.54 , Issue.1-3 , pp. 23-32
    • Venkatraman, V.1    Sael, L.2    Kihara, D.3
  • 4
    • 33744791809 scopus 로고    scopus 로고
    • Surface alignment of 3D spherical harmonic models: Application to cardiac MRI analysis
    • Duncan,J.S.,Gerig,G. (eds.),Springer,Heidelberg
    • Huang,H.,Shen,L.,Zhang,R.,Makedon,F.S.,Hettleman,B.,Pearlman,J.D.: Surface alignment of 3D spherical harmonic models: application to cardiac MRI analysis. In: Duncan,J.S.,Gerig,G. (eds.) MICCAI 2005. LNCS,vol. 3749,pp. 67–74. Springer,Heidelberg (2005)
    • (2005) MICCAI 2005. LNCS , vol.3749 , pp. 67-74
    • Huang, H.1    Shen, L.2    Zhang, R.3    Makedon, F.S.4    Hettleman, B.5    Pearlman, J.D.6
  • 5
    • 4043104044 scopus 로고    scopus 로고
    • Genus zero surface conformal mapping and its application to brain surface mapping
    • Gu,X.,Wang,Y.,Chan,T.F.,Thompson,P.M.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23,949–958 (2004)
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 949-958
    • Gu, X.1    Wang, Y.2    Chan, T.F.3    Thompson, P.M.4
  • 6
    • 79959620316 scopus 로고    scopus 로고
    • 3D shape analysis for early diagnosis of malignant lung nodules
    • Székely,G.,Hahn,H.K. (eds.),Springer,Heidelberg
    • El-Baz,A.,Nitzken,M.,Khalifa,F.,Elnakib,A.,Gimel’farb,G.,Falk,R.,El-Ghar,M.A.: 3D shape analysis for early diagnosis of malignant lung nodules. In: Székely,G.,Hahn,H.K. (eds.) IPMI 2011. LNCS,vol. 6801,pp. 772–783. Springer,Heidelberg (2011)
    • (2011) IPMI 2011. LNCS , vol.6801 , pp. 772-783
    • El-Baz, A.1    Nitzken, M.2    Khalifa, F.3    Elnakib, A.4    Gimel’Farb, G.5    Falk, R.6    El-Ghar, M.A.7
  • 7
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Pereira,F.,Burges,C.J.C.,Bottou,L.,Weinberger,K.Q. (eds.),Curran Associates Inc.,Red Hook
    • Krizhevsky,A.,Sutskever,I.,Hinton,G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira,F.,Burges,C.J.C.,Bottou,L.,Weinberger,K.Q. (eds.) Advances in Neural Information Processing Systems 25,pp. 1097–1105. Curran Associates Inc.,Red Hook (2012)
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 9
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures,dataset characteristics and transfer learning
    • Shin,H.C.,Roth,H.R.,Gao,M.,Lu,L.,Xu,Z.,Nogues,I.,Yao,J.,Mollura,D.,Summers,R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures,dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 99,1 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.99 , pp. 1
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6    Yao, J.7    Mollura, D.8    Summers, R.M.9
  • 12
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    • Ciompi,F.,de Hoop,B.,van Riel,S.J.,Chung,K.,Scholten,E.T.,Oudkerk,M.,de Jong,P.A.,Prokop,M.,van Ginneken,B.: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26(1),195–202 (2015)
    • (2015) Med. Image Anal , vol.26 , Issue.1 , pp. 195-202
    • Ciompi, F.1    de Hoop, B.2    van Riel, S.J.3    Chung, K.4    Scholten, E.T.5    Oudkerk, M.6    de Jong, P.A.7    Prokop, M.8    van Ginneken, B.9
  • 13
    • 79551672468 scopus 로고    scopus 로고
    • The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans
    • Armato,S.G.,McLennan,G.,Bidaut,L.,et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2),915–931 (2011)
    • (2011) Med. Phys , vol.38 , Issue.2 , pp. 915-931
    • Armato, S.G.1    McLennan, G.2    Bidaut, L.3
  • 14
    • 79960635985 scopus 로고    scopus 로고
    • Detection of masses in mammogram images using CNN,geostatistic functions and SVM
    • Sampaio,W.B.,Diniz,E.M.,Silva,A.C.,de Paiva,A.C.,Gattass,M.: Detection of masses in mammogram images using CNN,geostatistic functions and SVM. Comput. Biol. Med. 41(8),653–664 (2011)
    • (2011) Comput. Biol. Med , vol.41 , Issue.8 , pp. 653-664
    • Sampaio, W.B.1    Diniz, E.M.2    Silva, A.C.3    de Paiva, A.C.4    Gattass, M.5
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman,L.: Random forests. Mach. Learn. 45(1),5–32 (2001)
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.