메뉴 건너뛰기




Volumn 10138, Issue , 2017, Pages

Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images

Author keywords

3D Convolutional neural network (3D CNN),Deep learning,Data augmentation; Breast cancer classification; Dynamic contrast enhancement magnetic resonance imaging (DCE MRI)

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP LEARNING; FEATURE EXTRACTION; HEALTH CARE; IMAGE SEGMENTATION; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING; NETWORK ARCHITECTURE; NEURAL NETWORKS; NOISE ABATEMENT; TUMORS;

EID: 85020428820     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.2254716     Document Type: Conference Paper
Times cited : (20)

References (11)
  • 2
    • 65349175232 scopus 로고    scopus 로고
    • Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer
    • Turnbull L W, "Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer, "NMR in Biomedicine. Papers 22 (1), 28-39 (2009).
    • (2009) NMR in Biomedicine. Papers , vol.22 , Issue.1 , pp. 28-39
    • Turnbull, L.W.1
  • 3
    • 77956482390 scopus 로고    scopus 로고
    • Computerized detection of breast tissue asymmetry depicted on bilateral mammograms: A preliminary study of breast risk stratification
    • Wang X, Lederman D, Tan J, et al. "Computerized Detection of Breast Tissue Asymmetry Depicted on Bilateral Mammograms: A Preliminary Study of Breast Risk Stratification, " Academic Radiology. Papers 17 (10), 1234-1241 (2010).
    • (2010) Academic Radiology. Papers , vol.17 , Issue.10 , pp. 1234-1241
    • Wang, X.1    Lederman, D.2    Tan, J.3
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G E, Salakhutdinov R R. "Reducing the Dimensionality of Data with Neural Networks, "Science. Papers 313 (5786), 504-507 (2006).
    • (2006) Science. Papers , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 7
    • 84906347546 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • Sermanet, Pierre, et al, "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, " Eprint Arxiv. Papers 12 (1), 1312-1320 (2013).
    • (2013) Eprint Arxiv. Papers , vol.12 , Issue.1 , pp. 1312-1320
    • Sermanet, P.1
  • 8
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick R, Donahue J, Darrell T, et al. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, " Proc. Computer Science 2014, 580-587 (2014).
    • (2014) Proc. Computer Science , vol.2014 , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3
  • 9
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang W, Li R, Deng H, et al, "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, "Neuroimage. Papers 108, 214-224 (2015).
    • (2015) Neuroimage. Papers , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3
  • 11
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks
    • Dou, Qi, et al, "Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks, " IEEE transactions on medical imaging. paper 35 (5), 1182-1195 (2016).
    • (2016) IEEE Transactions on Medical Imaging. Paper , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.