메뉴 건너뛰기




Volumn 10134, Issue , 2017, Pages

Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI

Author keywords

Breast malignancy; Computeraided diagnosis; Convolutional neural networks; Quantitative image analysis; Radiomics; Transfer learning

Indexed keywords

COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; DIAGNOSIS; IMAGE SEGMENTATION; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MAMMOGRAPHY; NEURAL NETWORKS; ROUTERS;

EID: 85020316343     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.2255582     Document Type: Conference Paper
Times cited : (13)

References (12)
  • 1
    • 0031657391 scopus 로고    scopus 로고
    • Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging
    • Gilhuijs, K. G., Giger, M. L. & Bick, U. Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med. Phys. 25, 1647-1654 (1998).
    • (1998) Med. Phys. , vol.25 , pp. 1647-1654
    • Gilhuijs, K.G.1    Giger, M.L.2    Bick, U.3
  • 2
    • 0037925187 scopus 로고    scopus 로고
    • Textural analysis of contrast-enhanced MR images of the breast
    • Gibbs, P. & Turnbull, L. W. Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 50, 92-98 (2003).
    • (2003) Magn. Reson. Med. , vol.50 , pp. 92-98
    • Gibbs, P.1    Turnbull, L.W.2
  • 3
    • 36348986747 scopus 로고    scopus 로고
    • Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images
    • Chen, W., Giger, M. L., Li, H., Bick, U. & Newstead, G. M. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. 58, 562-571 (2007).
    • (2007) Magn. Reson. Med. , vol.58 , pp. 562-571
    • Chen, W.1    Giger, M.L.2    Li, H.3    Bick, U.4    Newstead, G.M.5
  • 4
    • 33746617896 scopus 로고    scopus 로고
    • Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI
    • Chen, W., Giger, M. L., Bick, U. & Newstead, G. M. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med. Phys. 33, 2878-2887 (2006).
    • (2006) Med. Phys. , vol.33 , pp. 2878-2887
    • Chen, W.1    Giger, M.L.2    Bick, U.3    Newstead, G.M.4
  • 5
    • 77950142743 scopus 로고    scopus 로고
    • Cancerous breast lesions on dynamic contrast-enhanced MR images: Computerized characterization for image-based prognostic markers
    • Bhooshan, N. et al. Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers. Radiology 254, 680-690 (2010).
    • (2010) Radiology , vol.254 , pp. 680-690
    • Bhooshan, N.1
  • 6
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211-252 (2015).
    • (2015) Int. J. Comput. Vis. , vol.115 , pp. 211-252
    • Russakovsky, O.1
  • 9
    • 85000428361 scopus 로고    scopus 로고
    • Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
    • Huynh, B. Q., Li, H. & Giger, M. L. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging Bellingham Wash 3, 34501 (2016).
    • (2016) J. Med. Imaging Bellingham Wash , vol.3 , pp. 34501
    • Huynh, B.Q.1    Li, H.2    Giger, M.L.3
  • 11
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    • Ciompi, F. et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26, 195-202 (2015).
    • (2015) Med. Image Anal. , vol.26 , pp. 195-202
    • Ciompi, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.