메뉴 건너뛰기




Volumn 23, Issue , 2017, Pages 188-195

Inflammasome and autophagy regulation: A two-way street

Author keywords

Autophagy; Billiar; Caspase 1; Damage associated molecular patterns DAMsP; Fan; Immune pathway; Inflammasome; Inflammation; PAMPs; Pathogen associated molecular patterns; Scott; Sun

Indexed keywords

ADAPTOR PROTEIN; INFLAMMASOME; INTERLEUKIN 18; INTERLEUKIN 1BETA; INTERLEUKIN 1BETA CONVERTING ENZYME; NUCLEOTIDE BINDING OLIGOMERIZATION DOMAIN LIKE RECEPTOR; PATHOGEN ASSOCIATED MOLECULAR PATTERN;

EID: 85032445436     PISSN: 10761551     EISSN: 15283658     Source Type: Journal    
DOI: 10.2119/molmed.2017.00077     Document Type: Article
Times cited : (163)

References (64)
  • 1
    • 84928050252 scopus 로고    scopus 로고
    • Mechanisms of inflammasome activation: Recent advances and novel insights
    • Vanaja SK, Rathinam VA, Fitzgerald KA. (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell. Biol. 25:308–15.
    • (2015) Trends Cell. Biol , vol.25 , pp. 308-315
    • Vanaja, S.K.1    Rathinam, V.A.2    Fitzgerald, K.A.3
  • 2
    • 84976516826 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of assembly, regulation and signalling
    • Broz P, Dixit VM. (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407–20.
    • (2016) Nat. Rev. Immunol , vol.16 , pp. 407-420
    • Broz, P.1    Dixit, V.M.2
  • 3
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of action, role in disease, and therapeutics
    • Guo H, Callaway JB, Ting JP. (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21:677–87.
    • (2015) Nat. Med , vol.21 , pp. 677-687
    • Guo, H.1    Callaway, J.B.2    Ting, J.P.3
  • 4
    • 77950994646 scopus 로고    scopus 로고
    • Autophagy: Cellular and molecular mechanisms
    • Glick D, Barth S, Macleod KF. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221:3–12.
    • (2010) J. Pathol , vol.221 , pp. 3-12
    • Glick, D.1    Barth, S.2    Macleod, K.F.3
  • 5
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. (2013) Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:722–37.
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 6
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. (2011) Autophagy in immunity and inflammation. Nature. 469:323–35.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 7
    • 84989843371 scopus 로고    scopus 로고
    • Crosstalk between autophagy and inflammatory signalling pathways: Balancing defence and homeostasis
    • Cadwell K. (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat. Rev. Immunol. 16:661–75.
    • (2016) Nat. Rev. Immunol , vol.16 , pp. 661-675
    • Cadwell, K.1
  • 8
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • Schroder K, Tschopp J. (2010) The inflammasomes. Cell. 140:821–32.
    • (2010) Cell , vol.140 , pp. 821-832
    • Schroder, K.1    Tschopp, J.2
  • 9
    • 84878237993 scopus 로고    scopus 로고
    • Activation and regulation of the inflammasomes
    • Latz E, Xiao TS, Stutz A. (2013) Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13:397–411.
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 397-411
    • Latz, E.1    Xiao, T.S.2    Stutz, A.3
  • 10
    • 79953046719 scopus 로고    scopus 로고
    • The inflammasome NLRs in immunity, inflammation, and associated diseases
    • Davis BK, Wen H, Ting JP. (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29:707–35.
    • (2011) Annu. Rev. Immunol , vol.29 , pp. 707-735
    • Davis, B.K.1    Wen, H.2    Ting, J.P.3
  • 11
    • 84927774890 scopus 로고    scopus 로고
    • The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus
    • Zhao Y, Shao F. (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol. Rev. 265:85–102.
    • (2015) Immunol. Rev , vol.265 , pp. 85-102
    • Zhao, Y.1    Shao, F.2
  • 12
    • 84958971929 scopus 로고    scopus 로고
    • NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux
    • He Y, Zeng MY, Yang DH, Metro B, Nunez G. (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 530:354–7.
    • (2016) Nature , vol.530 , pp. 354-357
    • He, Y.1    Zeng, M.Y.2    Yang, D.H.3    Metro, B.4    Nunez, G.5
  • 13
    • 85007226842 scopus 로고    scopus 로고
    • Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice
    • Sun Q, et al. (2017) Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology. 65:253–68.
    • (2017) Hepatology , vol.65 , pp. 253-268
    • Sun, Q.1
  • 14
    • 84938072487 scopus 로고    scopus 로고
    • Autophagy at the crossroads of catabolism and anabolism
    • Kaur J, Debnath J. (2015) Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16:461–72.
    • (2015) Nat. Rev. Mol. Cell Biol , vol.16 , pp. 461-472
    • Kaur, J.1    Debnath, J.2
  • 15
    • 84920504512 scopus 로고    scopus 로고
    • MTOR: A pharmacologic target for autophagy regulation
    • Kim YC, Guan KL. (2015) mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125:25–32.
    • (2015) J. Clin. Invest , vol.125 , pp. 25-32
    • Kim, Y.C.1    Guan, K.L.2
  • 16
    • 84954470384 scopus 로고    scopus 로고
    • Recent insights into cell death and autophagy
    • Fitzwalter BE, Thorburn A. (2015) Recent insights into cell death and autophagy. FEBS J. 282:4279–88.
    • (2015) FEBS J , vol.282 , pp. 4279-4288
    • Fitzwalter, B.E.1    Thorburn, A.2
  • 17
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 456:264–68.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1
  • 19
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R, Yazdi AS, Menu P, Tschopp J. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–5.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 20
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, et al. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222–30.
    • (2011) Nat. Immunol , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 21
    • 84862777872 scopus 로고    scopus 로고
    • Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
    • Shimada K, et al. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–14.
    • (2012) Immunity , vol.36 , pp. 401-414
    • Shimada, K.1
  • 22
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid–induced NL-RP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H, et al. (2011) Fatty acid–induced NL-RP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12:408–15.
    • (2011) Nat. Immunol , vol.12 , pp. 408-415
    • Wen, H.1
  • 23
    • 84876685141 scopus 로고    scopus 로고
    • Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection
    • Lupfer C, et al. (2013) Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14:480–8.
    • (2013) Nat. Immunol , vol.14 , pp. 480-488
    • Lupfer, C.1
  • 24
    • 84864022828 scopus 로고    scopus 로고
    • Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
    • Aon MA, et al. (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J. Gen. Physiol. 139:479–91.
    • (2012) J. Gen. Physiol , vol.139 , pp. 479-491
    • Aon, M.A.1
  • 26
    • 70350267057 scopus 로고    scopus 로고
    • Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells
    • Sengupta R, Billiar TR, Atkins JL, Kagan VE, Stoyanovsky DA. (2009) Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett. 583:3525–30.
    • (2009) FEBS Lett , vol.583 , pp. 3525-3530
    • Sengupta, R.1    Billiar, T.R.2    Atkins, J.L.3    Kagan, V.E.4    Stoyanovsky, D.A.5
  • 28
    • 0031576527 scopus 로고    scopus 로고
    • Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation
    • Li J, Billiar TR, Talanian RV, Kim YM. (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240:419–24.
    • (1997) Biochem. Biophys. Res. Commun , vol.240 , pp. 419-424
    • Li, J.1    Billiar, T.R.2    Talanian, R.V.3    Kim, Y.M.4
  • 29
    • 70350267057 scopus 로고    scopus 로고
    • Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells
    • Sengupta R, Billiar TR, Atkins JL, Kagan VE, Stoyanovsky DA. (2009) Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett. 583:3525–30.
    • (2009) FEBS Lett , vol.583 , pp. 3525-3530
    • Sengupta, R.1    Billiar, T.R.2    Atkins, J.L.3    Kagan, V.E.4    Stoyanovsky, D.A.5
  • 30
    • 75649096002 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein links oxidative stress to inflammasome activation
    • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11:136–40.
    • (2010) Nat. Immunol , vol.11 , pp. 136-140
    • Zhou, R.1    Tardivel, A.2    Thorens, B.3    Choi, I.4    Tschopp, J.5
  • 31
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction
    • Shi CS, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13:255–63.
    • Nat. Immunol , vol.13 , pp. 255-263
    • Shi, C.S.1
  • 32
    • 84997830946 scopus 로고    scopus 로고
    • TRIM11 Suppresses AIM2 Inflammasome by Degrading AIM2 via p62-Depen-dent Selective Autophagy
    • Liu T, et al. (2016) TRIM11 Suppresses AIM2 Inflammasome by Degrading AIM2 via p62-Depen-dent Selective Autophagy. Cell Rep. 16:1988–2002.
    • (2016) Cell Rep , vol.16 , pp. 1988-2002
    • Liu, T.1
  • 33
    • 80054848955 scopus 로고    scopus 로고
    • TRIM proteins and cancer
    • Hatakeyama S. (2011) TRIM proteins and cancer. Nat. Rev. Cancer. 11:792–804.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 792-804
    • Hatakeyama, S.1
  • 34
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • Kimura T, et al. (2015) TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210:973–89.
    • (2015) J. Cell Biol , vol.210 , pp. 973-989
    • Kimura, T.1
  • 35
    • 84939805655 scopus 로고    scopus 로고
    • Cell biology: Tagged tags engage disposal
    • Matsuda N, Tanaka K. (2015) Cell biology: Tagged tags engage disposal. Nature. 524:294–5.
    • (2015) Nature , vol.524 , pp. 294-295
    • Matsuda, N.1    Tanaka, K.2
  • 37
    • 84959420149 scopus 로고    scopus 로고
    • NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria
    • Zhong Z, et al. (2016) NF-kappaB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell. 164:896–910.
    • (2016) Cell , vol.164 , pp. 896-910
    • Zhong, Z.1
  • 38
    • 79953176280 scopus 로고    scopus 로고
    • Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation
    • Harris J, et al. (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286:9587–97.
    • (2011) J. Biol. Chem , vol.286 , pp. 9587-9597
    • Harris, J.1
  • 39
    • 84908053092 scopus 로고    scopus 로고
    • The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion
    • Wang LJ, et al. (2014) The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion. J. Biol. Chem. 289:29322–33.
    • (2014) J. Biol. Chem , vol.289 , pp. 29322-29333
    • Wang, L.J.1
  • 40
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
    • Dupont N, et al. (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 30:4701–11.
    • (2011) EMBO J , vol.30 , pp. 4701-4711
    • Dupont, N.1
  • 42
    • 79251588741 scopus 로고    scopus 로고
    • NLRP4 Negatively Regulates Autophagic Processes through an Association with Beclin1
    • Jounai N, et al. (2011) NLRP4 Negatively Regulates Autophagic Processes through an Association with Beclin1. J. Immunol. 186:1646–55.
    • (2011) J. Immunol , vol.186 , pp. 1646-1655
    • Jounai, N.1
  • 43
    • 84901252533 scopus 로고    scopus 로고
    • Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury
    • Zhang Y, et al. (2014) Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J. Immunol. 192:5296–304.
    • (2014) J. Immunol , vol.192 , pp. 5296-5304
    • Zhang, Y.1
  • 44
    • 34548434775 scopus 로고    scopus 로고
    • Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages
    • Suzuki T, et al. (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3:1082–91.
    • (2007) Plos Pathog , vol.3 , pp. 1082-1091
    • Suzuki, T.1
  • 45
    • 38049086105 scopus 로고    scopus 로고
    • A role for Nod-like receptors in autophagy induced by Shigella infection
    • Suzuki T, Nunez G. (2008) A role for Nod-like receptors in autophagy induced by Shigella infection. Autophagy. 4:73–5.
    • (2008) Autophagy , vol.4 , pp. 73-75
    • Suzuki, T.1    Nunez, G.2
  • 46
    • 84896691062 scopus 로고    scopus 로고
    • NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
    • Wlodarska M, et al. (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 156:1045–59.
    • (2014) Cell , vol.156 , pp. 1045-1059
    • Wlodarska, M.1
  • 47
    • 84957655186 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa Triggers Macrophage Autophagy to Escape Intracellular Killing by Activation of the NLRP3 Inflammasome
    • Deng Q, et al. (2015) Pseudomonas aeruginosa Triggers Macrophage Autophagy to Escape Intracellular Killing by Activation of the NLRP3 Inflammasome. Infect. Immun. 84:56–66.
    • (2015) Infect. Immun , vol.84 , pp. 56-66
    • Deng, Q.1
  • 48
    • 84956825823 scopus 로고    scopus 로고
    • AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity
    • Man SM, Karki R, Kanneganti TD. (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46:269–80.
    • (2016) Eur. J. Immunol , vol.46 , pp. 269-280
    • Man, S.M.1    Karki, R.2    Kanneganti, T.D.3
  • 50
    • 84994507182 scopus 로고    scopus 로고
    • The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury
    • Hu B, et al. (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science. 354:765–8.
    • (2016) Science , vol.354 , pp. 765-768
    • Hu, B.1
  • 51
    • 78651488777 scopus 로고    scopus 로고
    • RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
    • Bodemann BO, et al. (2011) RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 144:253–67.
    • (2011) Cell , vol.144 , pp. 253-267
    • Bodemann, B.O.1
  • 52
    • 84930446416 scopus 로고    scopus 로고
    • The Recombinant BCG ΔureC::hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation
    • Saiga H, et al. (2015) The Recombinant BCG ΔureC::hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. J. Infect. Dis. 211:1831–41.
    • (2015) J. Infect. Dis , vol.211 , pp. 1831-1841
    • Saiga, H.1
  • 53
    • 84878405540 scopus 로고    scopus 로고
    • Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-reg-ulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress
    • Sun Q, et al. (2013) Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-reg-ulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress. J. Biol. Chem. 288:15947–58.
    • (2013) J. Biol. Chem , vol.288 , pp. 15947-15958
    • Sun, Q.1
  • 54
    • 84994099379 scopus 로고    scopus 로고
    • Caspase-1 as a multi-functional inflammatory mediator: Noncytokine maturation roles
    • Sun Q, Scott MJ. (2016) Caspase-1 as a multi-functional inflammatory mediator: noncytokine maturation roles. J. Leukoc. Biol. 100:961–7.
    • (2016) J. Leukoc. Biol , vol.100 , pp. 961-967
    • Sun, Q.1    Scott, M.J.2
  • 55
    • 84908544666 scopus 로고    scopus 로고
    • Inflammasome activation leads to caspase-1–dependent mitochondrial damage and block of mitophagy
    • Yu J, et al. (2014) Inflammasome activation leads to caspase-1–dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. USA. 111:15514–19.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 15514-15519
    • Yu, J.1
  • 56
    • 84893947749 scopus 로고    scopus 로고
    • Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and be-ta-interferon production during Pseudomonas aeruginosa infection
    • Jabir MS, et al. (2014) Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and be-ta-interferon production during Pseudomonas aeruginosa infection. Cell Host Microbe. 15:214–27.
    • (2014) Cell Host Microbe , vol.15 , pp. 214-227
    • Jabir, M.S.1
  • 57
    • 80455176839 scopus 로고    scopus 로고
    • Non-canonical inflammasome activation targets caspase-11
    • Kayagaki N, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–21.
    • (2011) Nature , vol.479 , pp. 117-121
    • Kayagaki, N.1
  • 58
    • 84906571225 scopus 로고    scopus 로고
    • Inflammatory caspases are innate immune receptors for intracellular LPS
    • Shi J, et al. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–92.
    • (2014) Nature , vol.514 , pp. 187-192
    • Shi, J.1
  • 59
    • 84982102736 scopus 로고    scopus 로고
    • GSDMD membrane pore formation constitutes the mechanism of pyro-ptotic cell death
    • Sborgi L, et al. (2016) GSDMD membrane pore formation constitutes the mechanism of pyro-ptotic cell death. EMBO J. 35:1766–78.
    • (2016) EMBO J , vol.35 , pp. 1766-1778
    • Sborgi, L.1
  • 60
    • 84949091051 scopus 로고    scopus 로고
    • Gasdermin D is an executor of pyroptosis and required for interleukin-1 beta secretion
    • He WT, et al. (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1 beta secretion. Cell Res. 25:1285–98.
    • (2015) Cell Res , vol.25 , pp. 1285-1298
    • He, W.T.1
  • 61
    • 84900564237 scopus 로고    scopus 로고
    • Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases
    • Meunier E, et al. (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature. 509:366–70.
    • (2014) Nature , vol.509 , pp. 366-370
    • Meunier, E.1
  • 62
    • 84907584408 scopus 로고    scopus 로고
    • Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection
    • Lupfer CR, et al. (2014) Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection. PLoS Pathog. 10:e1004410.
    • (2014) Plos Pathog , vol.10
    • Lupfer, C.R.1
  • 63
    • 84864292536 scopus 로고    scopus 로고
    • Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization
    • Akhter A, et al. (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity. 37:35–47.
    • (2012) Immunity , vol.37 , pp. 35-47
    • Akhter, A.1
  • 64
    • 84942858517 scopus 로고    scopus 로고
    • Dangerous Liaisons: Caspase-11 and Reactive Oxygen Species Crosstalk in Pathogen Elimination
    • Roberts JS, Yilmaz (2015) Dangerous Liaisons: Caspase-11 and Reactive Oxygen Species Crosstalk in Pathogen Elimination. Int. J. Mol. Sci. 16:23337–54.
    • (2015) Int. J. Mol. Sci , vol.16 , pp. 23337-23354
    • Robertsyilmaz, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.