메뉴 건너뛰기




Volumn 27, Issue 15, 2017, Pages 1130-1161

The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures?

Author keywords

compartmentalization; concentration; function; glutathione; kinetics; rate constant

Indexed keywords

CARRIER PROTEIN; ENZYME; GLUTATHIONE; GLUTATHIONE DISULFIDE; IRON SULFUR PROTEIN; IRON;

EID: 85031720644     PISSN: 15230864     EISSN: 15577716     Source Type: Journal    
DOI: 10.1089/ars.2017.7123     Document Type: Review
Times cited : (121)

References (302)
  • 1
    • 0019948316 scopus 로고
    • The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver
    • Akerboom TP, Bilzer M, and Sies H. The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J Biol Chem 257: 4248-4252, 1982.
    • (1982) J Biol Chem , vol.257 , pp. 4248-4252
    • Akerboom, T.P.1    Bilzer, M.2    Sies, H.3
  • 2
    • 14944354773 scopus 로고    scopus 로고
    • Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts
    • Akoachere M, Iozef R, Rahlfs S, Deponte M, Mannervik B, Creighton DJ, Schirmer H, and Becker K. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol Chem 386: 41-52, 2005.
    • (2005) Biol Chem , vol.386 , pp. 41-52
    • Akoachere, M.1    Iozef, R.2    Rahlfs, S.3    Deponte, M.4    Mannervik, B.5    Creighton, D.J.6    Schirmer, H.7    Becker, K.8
  • 3
    • 84864609214 scopus 로고    scopus 로고
    • The reaction mechanisms of heme catalases: An atomistic view by ab initio molecular dynamics
    • Alfonso-Prieto M, Vidossich P, and Rovira C. The reaction mechanisms of heme catalases: An atomistic view by ab initio molecular dynamics. Arch Biochem Biophys 525: 121-130, 2012.
    • (2012) Arch Biochem Biophys , vol.525 , pp. 121-130
    • Alfonso-Prieto, M.1    Vidossich, P.2    Rovira, C.3
  • 4
    • 84867730651 scopus 로고    scopus 로고
    • Protein-thiol oxidation and cell death: Regulatory role of glutaredoxins
    • Allen EM and Mieyal JJ. Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 17: 1748-1763, 2012.
    • (2012) Antioxid Redox Signal , vol.17 , pp. 1748-1763
    • Allen, E.M.1    Mieyal, J.J.2
  • 6
    • 0025147459 scopus 로고
    • Nature's chemicals and synthetic chemicals: Comparative toxicology
    • Ames BN, Profet M, and Gold LS. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci U S A 87: 7782-7786, 1990.
    • (1990) Proc Natl Acad Sci U S A , vol.87 , pp. 7782-7786
    • Ames, B.N.1    Profet, M.2    Gold, L.S.3
  • 7
    • 33845294782 scopus 로고    scopus 로고
    • Peroxisomal membrane permeability and solute transfer
    • Antonenkov VD and Hiltunen JK. Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763: 1697-1706, 2006.
    • (2006) Biochim Biophys Acta , vol.1763 , pp. 1697-1706
    • Antonenkov, V.D.1    Hiltunen, J.K.2
  • 8
    • 41549159471 scopus 로고    scopus 로고
    • The human PDI family: Versatility packed into a single fold
    • Appenzeller-Herzog C and Ellgaard L. The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783: 535-548, 2008.
    • (2008) Biochim Biophys Acta , vol.1783 , pp. 535-548
    • Appenzeller-Herzog, C.1    Ellgaard, L.2
  • 10
    • 0030695902 scopus 로고    scopus 로고
    • Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria
    • Aslund F, Berndt KD, and Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 272: 30780-30786, 1997.
    • (1997) J Biol Chem , vol.272 , pp. 30780-30786
    • Aslund, F.1    Berndt, K.D.2    Holmgren, A.3
  • 11
    • 0028061437 scopus 로고
    • Two additional glutaredoxins exist in Escherichia coli: Glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant
    • Aslund F, Ehn B, Miranda-Vizuete A, Pueyo C, and Holmgren A. Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc Natl Acad Sci U S A 91: 9813-9817, 1994.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 9813-9817
    • Aslund, F.1    Ehn, B.2    Miranda-Vizuete, A.3    Pueyo, C.4    Holmgren, A.5
  • 12
    • 0031574219 scopus 로고    scopus 로고
    • The malaria parasite supplies glutathione to its host cell-investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum
    • Atamna H and Ginsburg H. The malaria parasite supplies glutathione to its host cell-investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem 250: 670-679, 1997.
    • (1997) Eur J Biochem , vol.250 , pp. 670-679
    • Atamna, H.1    Ginsburg, H.2
  • 14
    • 0035823498 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases
    • Avery AM and Avery SV. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276: 33730-33735, 2001.
    • (2001) J Biol Chem , vol.276 , pp. 33730-33735
    • Avery, A.M.1    Avery, S.V.2
  • 16
    • 9644287905 scopus 로고    scopus 로고
    • The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms
    • Bai M, Zhou JM, and Perrett S. The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms. J Biol Chem 279: 50025-50030, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 50025-50030
    • Bai, M.1    Zhou, J.M.2    Perrett, S.3
  • 19
    • 84870003252 scopus 로고    scopus 로고
    • Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites
    • Barrand MA, Winterberg M, Ng F, Nguyen M, Kirk K, and Hladky SB. Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites. Biochem J 448: 389-400, 2012.
    • (2012) Biochem J , vol.448 , pp. 389-400
    • Barrand, M.A.1    Winterberg, M.2    Ng, F.3    Nguyen, M.4    Kirk, K.5    Hladky, S.B.6
  • 20
    • 33750380347 scopus 로고    scopus 로고
    • A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism
    • Barreto L, Garcera A, Jansson K, Sunnerhagen P, and Herrero E. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot Cell 5: 1748-1759, 2006.
    • (2006) Eukaryot Cell , vol.5 , pp. 1748-1759
    • Barreto, L.1    Garcera, A.2    Jansson, K.3    Sunnerhagen, P.4    Herrero, E.5
  • 21
    • 33846794822 scopus 로고    scopus 로고
    • The NOX family of ROSgenerating NADPH oxidases: Physiology and pathophysiology
    • Bedard K and Krause KH. The NOX family of ROSgenerating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87: 245-313, 2007.
    • (2007) Physiol Rev , vol.87 , pp. 245-313
    • Bedard, K.1    Krause, K.H.2
  • 22
    • 85017121222 scopus 로고    scopus 로고
    • Glutaredoxin catalysis requires two distinct glutathione interaction sites
    • Begas P, Liedgens L, Moseler A, Meyer AJ, and Deponte M. Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nat Commun 8: 14835, 2017.
    • (2017) Nat Commun , vol.8 , pp. 14835
    • Begas, P.1    Liedgens, L.2    Moseler, A.3    Meyer, A.J.4    Deponte, M.5
  • 23
    • 84935855557 scopus 로고    scopus 로고
    • Systematic reevaluation of the bis(2-hydroxyethyl)disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins
    • Begas P, Staudacher V, and Deponte M. Systematic reevaluation of the bis(2-hydroxyethyl)disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins. Chem Sci 6: 3788-3796, 2015.
    • (2015) Chem Sci , vol.6 , pp. 3788-3796
    • Begas, P.1    Staudacher, V.2    Deponte, M.3
  • 24
    • 70349466515 scopus 로고    scopus 로고
    • Protein denitrosylation: Enzymatic mechanisms and cellular functions
    • Benhar M, Forrester MT, and Stamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10: 721-732, 2009.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 721-732
    • Benhar, M.1    Forrester, M.T.2    Stamler, J.S.3
  • 25
    • 0024043518 scopus 로고
    • The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: Cloning, sequencing, and biological activity
    • Bermingham-McDonogh O, Gralla EB, and Valentine JS. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A 85: 4789-4793, 1988.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 4789-4793
    • Bermingham-McDonogh, O.1    Gralla, E.B.2    Valentine, J.S.3
  • 26
    • 77149120128 scopus 로고    scopus 로고
    • Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione
    • Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM, and Riemer J. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol Cell 37: 516-528, 2010.
    • (2010) Mol Cell , vol.37 , pp. 516-528
    • Bien, M.1    Longen, S.2    Wagener, N.3    Chwalla, I.4    Herrmann, J.M.5    Riemer, J.6
  • 28
    • 0004139177 scopus 로고    scopus 로고
    • Weinheim, Deutschland: Wiley-VCH
    • Bisswanger H. Enzymkinetik. Weinheim, Deutschland: Wiley-VCH, 2000.
    • (2000) Enzymkinetik
    • Bisswanger, H.1
  • 29
    • 0030761248 scopus 로고    scopus 로고
    • Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins
    • Bito A, Haider M, Hadler I, and Breitenbach M. Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J Biol Chem 272: 21509-21519, 1997.
    • (1997) J Biol Chem , vol.272 , pp. 21509-21519
    • Bito, A.1    Haider, M.2    Hadler, I.3    Breitenbach, M.4
  • 30
    • 84875743799 scopus 로고    scopus 로고
    • Glutathione transferases, regulators of cellular metabolism and physiology
    • Board PG and Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830: 3267-3288, 2013.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 3267-3288
    • Board, P.G.1    Menon, D.2
  • 32
    • 0034607697 scopus 로고    scopus 로고
    • Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae
    • Bourbouloux A, Shahi P, Chakladar A, Delrot S, and Bachhawat AK. Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275: 13259-13265, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 13259-13265
    • Bourbouloux, A.1    Shahi, P.2    Chakladar, A.3    Delrot, S.4    Bachhawat, A.K.5
  • 34
    • 79954504166 scopus 로고    scopus 로고
    • Basic principles and emerging concepts in the redox control of transcription factors
    • Brigelius-Flohe R and Flohe L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15: 2335-2381, 2011.
    • (2011) Antioxid Redox Signal , vol.15 , pp. 2335-2381
    • Brigelius-Flohe, R.1    Flohe, L.2
  • 36
  • 37
    • 77954145727 scopus 로고    scopus 로고
    • Purification and characterisation of rat kidney glutathione reductase
    • Can B, Kulaksiz Erkmen G, Dalmizrak O, Ogus IH, and Ozer N. Purification and characterisation of rat kidney glutathione reductase. Protein J 29: 250-256, 2010.
    • (2010) Protein J , vol.29 , pp. 250-256
    • Can, B.1    Kulaksiz Erkmen, G.2    Dalmizrak, O.3    Ogus, I.H.4    Ozer, N.5
  • 38
    • 84890124303 scopus 로고    scopus 로고
    • Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite
    • Carballal S, Bartesaghi S, and Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 1840: 768-780, 2014.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 768-780
    • Carballal, S.1    Bartesaghi, S.2    Radi, R.3
  • 40
    • 0028090219 scopus 로고
    • Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide
    • Castro L, Rodriguez M, and Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269: 29409-29415, 1994.
    • (1994) J Biol Chem , vol.269 , pp. 29409-29415
    • Castro, L.1    Rodriguez, M.2    Radi, R.3
  • 41
    • 0041589207 scopus 로고    scopus 로고
    • Nuclear thiol peroxidase as a functional alkylhydroperoxide reductase necessary for stationary phase growth of Saccharomyces cerevisiae
    • Cha MK, Choi YS, Hong SK, Kim WC, No KT, and Kim IH. Nuclear thiol peroxidase as a functional alkylhydroperoxide reductase necessary for stationary phase growth of Saccharomyces cerevisiae. J Biol Chem 278: 24636-24643, 2003.
    • (2003) J Biol Chem , vol.278 , pp. 24636-24643
    • Cha, M.K.1    Choi, Y.S.2    Hong, S.K.3    Kim, W.C.4    No, K.T.5    Kim, I.H.6
  • 42
    • 0027323871 scopus 로고
    • Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae
    • Chae HZ, Kim IH, Kim K, and Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268: 16815-16821, 1993.
    • (1993) J Biol Chem , vol.268 , pp. 16815-16821
    • Chae, H.Z.1    Kim, I.H.2    Kim, K.3    Rhee, S.G.4
  • 43
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • Chance B, Sies H, and Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527-605, 1979.
    • (1979) Physiol Rev , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 44
    • 0024227428 scopus 로고
    • Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes
    • Chang LY, Slot JW, Geuze HJ, and Crapo JD. Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J Cell Biol 107: 2169-2179, 1988.
    • (1988) J Cell Biol , vol.107 , pp. 2169-2179
    • Chang, L.Y.1    Slot, J.W.2    Geuze, H.J.3    Crapo, J.D.4
  • 45
    • 84880251695 scopus 로고    scopus 로고
    • Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease
    • Chapple SJ, Cheng X, and Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 1: 319-331, 2013.
    • (2013) Redox Biol , vol.1 , pp. 319-331
    • Chapple, S.J.1    Cheng, X.2    Mann, G.E.3
  • 46
    • 84906322941 scopus 로고    scopus 로고
    • Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
    • Cho CS, Yoon HJ, Kim JY, Woo HA, and Rhee SG. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci U S A 111: 12043-12048, 2014.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 12043-12048
    • Cho, C.S.1    Yoon, H.J.2    Kim, J.Y.3    Woo, H.A.4    Rhee, S.G.5
  • 47
    • 0032491515 scopus 로고    scopus 로고
    • A novel membranebound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae
    • Choi JH, Lou W, and Vancura A. A novel membranebound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273: 29915-29922, 1998.
    • (1998) J Biol Chem , vol.273 , pp. 29915-29922
    • Choi, J.H.1    Lou, W.2    Vancura, A.3
  • 49
    • 77955492720 scopus 로고    scopus 로고
    • Identification of S-nitrosated mitochondrial proteins by Snitrosothiol difference in gel electrophoresis (SNODIGE): Implications for the regulation of mitochondrial function by reversible S-nitrosation
    • Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RA, and Murphy MP. Identification of S-nitrosated mitochondrial proteins by Snitrosothiol difference in gel electrophoresis (SNODIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430: 49-59, 2010.
    • (2010) Biochem J , vol.430 , pp. 49-59
    • Chouchani, E.T.1    Hurd, T.R.2    Nadtochiy, S.M.3    Brookes, P.S.4    Fearnley, I.M.5    Lilley, K.S.6    Smith, R.A.7    Murphy, M.P.8
  • 50
    • 0021849710 scopus 로고
    • Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the cta1 mutation
    • Cohen G, Fessl F, Traczyk A, Rytka J, and Ruis H. Isolation of the catalase A gene of Saccharomyces cerevisiae by complementation of the cta1 mutation. Mol Gen Genet 200: 74-79, 1985.
    • (1985) Mol Gen Genet , vol.200 , pp. 74-79
    • Cohen, G.1    Fessl, F.2    Traczyk, A.3    Rytka, J.4    Ruis, H.5
  • 51
    • 33947241783 scopus 로고    scopus 로고
    • The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta)
    • Coleman JD, Prabhu KS, Thompson JT, Reddy PS, Peters JM, Peterson BR, Reddy CC, and Vanden Heuvel JP. The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med 42: 1155-1164, 2007.
    • (2007) Free Radic Biol Med , vol.42 , pp. 1155-1164
    • Coleman, J.D.1    Prabhu, K.S.2    Thompson, J.T.3    Reddy, P.S.4    Peters, J.M.5    Peterson, B.R.6    Reddy, C.C.7    Vanden Heuvel, J.P.8
  • 52
    • 0038266122 scopus 로고    scopus 로고
    • Role of yeast glutaredoxins as glutathione S-transferases
    • Collinson EJ and Grant CM. Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278: 22492-22497, 2003.
    • (2003) J Biol Chem , vol.278 , pp. 22492-22497
    • Collinson, E.J.1    Grant, C.M.2
  • 54
    • 84955475683 scopus 로고    scopus 로고
    • Measurement and meaning of cellular thiol: Disufhide redox status
    • Comini MA. Measurement and meaning of cellular thiol: disufhide redox status. Free Radic Res 50: 246-271, 2016.
    • (2016) Free Radic Res , vol.50 , pp. 246-271
    • Comini, M.A.1
  • 55
    • 3142543755 scopus 로고    scopus 로고
    • The human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II
    • Cordell PA, Futers TS, Grant PJ, and Pease RJ. The human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II. J Biol Chem 279: 28653-28661, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 28653-28661
    • Cordell, P.A.1    Futers, T.S.2    Grant, P.J.3    Pease, R.J.4
  • 57
    • 0001594119 scopus 로고
    • Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms
    • Dalziel K. Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms. Acta Chem Scand 11: 1706-1723, 1957.
    • (1957) Acta Chem Scand , vol.11 , pp. 1706-1723
    • Dalziel, K.1
  • 59
    • 0037110454 scopus 로고    scopus 로고
    • A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation
    • Delaunay A, Pflieger D, Barrault MB, Vinh J, and Toledano MB. A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111: 471-481, 2002.
    • (2002) Cell , vol.111 , pp. 471-481
    • Delaunay, A.1    Pflieger, D.2    Barrault, M.B.3    Vinh, J.4    Toledano, M.B.5
  • 60
    • 84875737737 scopus 로고    scopus 로고
    • Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes
    • Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830: 3217-3266, 2013.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 3217-3266
    • Deponte, M.1
  • 61
    • 84896971206 scopus 로고    scopus 로고
    • Glyoxalase diversity in parasitic protists
    • Deponte M. Glyoxalase diversity in parasitic protists. Biochem Soc Trans 42: 473-478, 2014.
    • (2014) Biochem Soc Trans , vol.42 , pp. 473-478
    • Deponte, M.1
  • 62
    • 13444274373 scopus 로고    scopus 로고
    • Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx
    • Deponte M and Becker K. Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol Biochem Parasitol 140: 87-96, 2005.
    • (2005) Mol Biochem Parasitol , vol.140 , pp. 87-96
    • Deponte, M.1    Becker, K.2
  • 63
    • 14944367451 scopus 로고    scopus 로고
    • Plasmodium falciparum glutaredoxin-like proteins
    • Deponte M, Becker K, and Rahlfs S. Plasmodium falciparum glutaredoxin-like proteins. Biol Chem 386: 33-40, 2005.
    • (2005) Biol Chem , vol.386 , pp. 33-40
    • Deponte, M.1    Becker, K.2    Rahlfs, S.3
  • 64
    • 70449652177 scopus 로고    scopus 로고
    • Disulphide bond formation in the intermembrane space of mitochondria
    • Deponte M and Hell K. Disulphide bond formation in the intermembrane space of mitochondria. J Biochem 146: 599-608, 2009.
    • (2009) J Biochem , vol.146 , pp. 599-608
    • Deponte, M.1    Hell, K.2
  • 65
    • 84927922859 scopus 로고    scopus 로고
    • Enzymatic control of cysteinyl thiol switches in proteins
    • Deponte M and Lillig CH. Enzymatic control of cysteinyl thiol switches in proteins. Biol Chem 396: 401-413, 2015.
    • (2015) Biol Chem , vol.396 , pp. 401-413
    • Deponte, M.1    Lillig, C.H.2
  • 66
    • 38749134528 scopus 로고    scopus 로고
    • Peroxiredoxin systems of protozoal parasites
    • Deponte M, Rahlfs S, and Becker K. Peroxiredoxin systems of protozoal parasites. Subcell Biochem 44: 219-229, 2007.
    • (2007) Subcell Biochem , vol.44 , pp. 219-229
    • Deponte, M.1    Rahlfs, S.2    Becker, K.3
  • 67
    • 35348993113 scopus 로고    scopus 로고
    • Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase i
    • Deponte M, Sturm N, Mittler S, Harner M, Mack H, and Becker K. Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. J Biol Chem 282: 28419-28430, 2007.
    • (2007) J Biol Chem , vol.282 , pp. 28419-28430
    • Deponte, M.1    Sturm, N.2    Mittler, S.3    Harner, M.4    Mack, H.5    Becker, K.6
  • 68
    • 34548571932 scopus 로고    scopus 로고
    • Unbiased identification of cysteine S-nitrosylation sites on proteins
    • Derakhshan B, Wille PC, and Gross SS. Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat Protoc 2: 1685-1691, 2007.
    • (2007) Nat Protoc , vol.2 , pp. 1685-1691
    • Derakhshan, B.1    Wille, P.C.2    Gross, S.S.3
  • 69
    • 84877808218 scopus 로고    scopus 로고
    • Plasmodium falciparum antioxidant protein as a model enzyme for a special class of glutaredoxin/ glutathione-dependent peroxiredoxins
    • Djuika CF, Fiedler S, Schnolzer M, Sanchez C, Lanzer M, and Deponte M. Plasmodium falciparum antioxidant protein as a model enzyme for a special class of glutaredoxin/ glutathione-dependent peroxiredoxins. Biochim Biophys Acta 1830: 4073-4090, 2013.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 4073-4090
    • Djuika, C.F.1    Fiedler, S.2    Schnolzer, M.3    Sanchez, C.4    Lanzer, M.5    Deponte, M.6
  • 71
    • 78049288138 scopus 로고    scopus 로고
    • Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation
    • Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, and Ischiropoulos H. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci U S A 107: 16958-16963, 2010.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 16958-16963
    • Doulias, P.T.1    Greene, J.L.2    Greco, T.M.3    Tenopoulou, M.4    Seeholzer, S.H.5    Dunbrack, R.L.6    Ischiropoulos, H.7
  • 72
    • 0034076851 scopus 로고    scopus 로고
    • A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae
    • Draculic T, Dawes IW, and Grant CM. A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol Microbiol 36: 1167-1174, 2000.
    • (2000) Mol Microbiol , vol.36 , pp. 1167-1174
    • Draculic, T.1    Dawes, I.W.2    Grant, C.M.3
  • 73
    • 64349107040 scopus 로고    scopus 로고
    • Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: The catalytic redox mechanism redux
    • Eckers E, Bien M, Stroobant V, Herrmann JM, and Deponte M. Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: The catalytic redox mechanism redux. Biochemistry 48: 1410-1423, 2009.
    • (2009) Biochemistry , vol.48 , pp. 1410-1423
    • Eckers, E.1    Bien, M.2    Stroobant, V.3    Herrmann, J.M.4    Deponte, M.5
  • 74
    • 0033574042 scopus 로고    scopus 로고
    • The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments
    • Edskes HK, Gray VT, and Wickner RB. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci U S A 96: 1498-1503, 1999.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 1498-1503
    • Edskes, H.K.1    Gray, V.T.2    Wickner, R.B.3
  • 75
    • 0033826764 scopus 로고    scopus 로고
    • Iron regulatory proteins and the molecular control of mammalian iron metabolism
    • Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20: 627-662, 2000.
    • (2000) Annu Rev Nutr , vol.20 , pp. 627-662
    • Eisenstein, R.S.1
  • 77
    • 57749093461 scopus 로고    scopus 로고
    • Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability
    • Elgan TH and Berndt KD. Quantifying Escherichia coli glutaredoxin-3 substrate specificity using ligand-induced stability. J Biol Chem 283: 32839-32847, 2008.
    • (2008) J Biol Chem , vol.283 , pp. 32839-32847
    • Elgan, T.H.1    Berndt, K.D.2
  • 78
    • 77957024844 scopus 로고    scopus 로고
    • Structural basis for the disulfide relay system in the mitochondrial intermembrane space
    • Endo T, Yamano K, and Kawano S. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal 13: 1359-1373, 2010.
    • (2010) Antioxid Redox Signal , vol.13 , pp. 1359-1373
    • Endo, T.1    Yamano, K.2    Kawano, S.3
  • 80
    • 33845667283 scopus 로고    scopus 로고
    • Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductasedependent peroxidase activities in vitro and in lens epithelial cells
    • Fernando MR, Lechner JM, Lofgren S, Gladyshev VN, and Lou MF. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductasedependent peroxidase activities in vitro and in lens epithelial cells. FASEB J 20: 2645-2647, 2006.
    • (2006) FASEB J , vol.20 , pp. 2645-2647
    • Fernando, M.R.1    Lechner, J.M.2    Lofgren, S.3    Gladyshev, V.N.4    Lou, M.F.5
  • 81
    • 64749101531 scopus 로고    scopus 로고
    • Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals
    • Ferrer-Sueta G and Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4: 161-177, 2009.
    • (2009) ACS Chem Biol , vol.4 , pp. 161-177
    • Ferrer-Sueta, G.1    Radi, R.2
  • 82
    • 0015982070 scopus 로고
    • Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis
    • Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, and Calabrese L. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J 139: 49-60, 1974.
    • (1974) Biochem J , vol.139 , pp. 49-60
    • Fielden, E.M.1    Roberts, P.B.2    Bray, R.C.3    Lowe, D.J.4    Mautner, G.N.5    Rotilio, G.6    Calabrese, L.7
  • 83
    • 16844368306 scopus 로고    scopus 로고
    • The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress
    • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, and Dietz KJ. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280: 12168-12180, 2005.
    • (2005) J Biol Chem , vol.280 , pp. 12168-12180
    • Finkemeier, I.1    Goodman, M.2    Lamkemeyer, P.3    Kandlbinder, A.4    Sweetlove, L.J.5    Dietz, K.J.6
  • 85
    • 84897003850 scopus 로고    scopus 로고
    • Reactive metabolites as a cause of late diabetic complications
    • Fleming T and Nawroth PP. Reactive metabolites as a cause of late diabetic complications. Biochem Soc Trans 42: 439-442, 2014.
    • (2014) Biochem Soc Trans , vol.42 , pp. 439-442
    • Fleming, T.1    Nawroth, P.P.2
  • 86
    • 0027491617 scopus 로고
    • The inactivation of Fe-S cluster containing hydro-lyases by superoxide
    • Flint DH, Tuminello JF, and Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268: 22369-22376, 1993.
    • (1993) J Biol Chem , vol.268 , pp. 22369-22376
    • Flint, D.H.1    Tuminello, J.F.2    Emptage, M.H.3
  • 87
    • 84875709337 scopus 로고    scopus 로고
    • The fairytale of the GSSG/GSH redox potential
    • Flohe L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta 1830: 3139-3142, 2013.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 3139-3142
    • Flohe, L.1
  • 88
    • 0015013417 scopus 로고
    • Glutathione peroxidase. II. Substrate specificity and inhibitory effects of substrate analogues
    • Flohe L, Gunzler W, Jung G, Schaich E, and Schneider F. [Glutathione peroxidase. II. Substrate specificity and inhibitory effects of substrate analogues]. Hoppe Seylers Z Physiol Chem 352: 159-169, 1971.
    • (1971) Hoppe Seylers Z Physiol Chem , vol.352 , pp. 159-169
    • Flohe, L.1    Gunzler, W.2    Jung, G.3    Schaich, E.4    Schneider, F.5
  • 91
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • Forman HJ, Maiorino M, and Ursini F. Signaling functions of reactive oxygen species. Biochemistry 49: 835-842, 2010.
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1    Maiorino, M.2    Ursini, F.3
  • 93
    • 0024308039 scopus 로고
    • Superoxide dismutases. An adaptation to a paramagnetic gas
    • Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264: 7761-7764, 1989.
    • (1989) J Biol Chem , vol.264 , pp. 7761-7764
    • Fridovich, I.1
  • 94
    • 84939653320 scopus 로고    scopus 로고
    • Emerging critical roles of Fe-S clusters in DNA replication and repair
    • Fuss JO, Tsai CL, Ishida JP, and Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochim Biophys Acta 1853: 1253-1271, 2015.
    • (2015) Biochim Biophys Acta , vol.1853 , pp. 1253-1271
    • Fuss, J.O.1    Tsai, C.L.2    Ishida, J.P.3    Tainer, J.A.4
  • 95
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly MM, and Mieyal JJ. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7: 381-391, 2007.
    • (2007) Curr Opin Pharmacol , vol.7 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 96
    • 51349142890 scopus 로고    scopus 로고
    • Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: Implications for intracellular roles
    • Gallogly MM, Starke DW, Leonberg AK, Ospina SM, and Mieyal JJ. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 47: 11144-11157, 2008.
    • (2008) Biochemistry , vol.47 , pp. 11144-11157
    • Gallogly, M.M.1    Starke, D.W.2    Leonberg, A.K.3    Ospina, S.M.4    Mieyal, J.J.5
  • 97
    • 64549106959 scopus 로고    scopus 로고
    • Mechanistic and kinetic details of catalysis of thiol-disulfide exchangeby glutaredoxins and potential mechanisms of regulation
    • Gallogly MM, Starke DW, and Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchangeby glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11: 1059-1081, 2009.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 1059-1081
    • Gallogly, M.M.1    Starke, D.W.2    Mieyal, J.J.3
  • 99
    • 84890288946 scopus 로고    scopus 로고
    • Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation
    • Gellert M, Venz S, Mitlohner J, Cott C, Hanschmann EM, and Lillig CH. Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation. J Biol Chem 288: 35117-35125, 2013.
    • (2013) J Biol Chem , vol.288 , pp. 35117-35125
    • Gellert, M.1    Venz, S.2    Mitlohner, J.3    Cott, C.4    Hanschmann, E.M.5    Lillig, C.H.6
  • 101
    • 0029065402 scopus 로고
    • Thiol/disulfide exchange equilibria and disulfide bond stability
    • Gilbert HF. Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251: 8-28, 1995.
    • (1995) Methods Enzymol , vol.251 , pp. 8-28
    • Gilbert, H.F.1
  • 102
    • 84883383166 scopus 로고    scopus 로고
    • Analysis of GSH and GSSG after derivatization with N-ethylmaleimide
    • Giustarini D, Dalle-Donne I, Milzani A, Fanti P, and Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc 8: 1660-1669, 2013.
    • (2013) Nat Protoc , vol.8 , pp. 1660-1669
    • Giustarini, D.1    Dalle-Donne, I.2    Milzani, A.3    Fanti, P.4    Rossi, R.5
  • 103
    • 78649629122 scopus 로고    scopus 로고
    • Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse
    • Godoy JR, Funke M, Ackermann W, Haunhorst P, Oesteritz S, Capani F, Elsasser HP, and Lillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta 1810: 2-92, 2011.
    • (2011) Biochim Biophys Acta , vol.1810 , pp. 2-92
    • Godoy, J.R.1    Funke, M.2    Ackermann, W.3    Haunhorst, P.4    Oesteritz, S.5    Capani, F.6    Elsasser, H.P.7    Lillig, C.H.8
  • 104
    • 0031938051 scopus 로고    scopus 로고
    • Balance between endogenous superoxide stress and antioxidant defenses
    • Gort AS and Imlay JA. Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180: 1402-1410, 1998.
    • (1998) J Bacteriol , vol.180 , pp. 1402-1410
    • Gort, A.S.1    Imlay, J.A.2
  • 105
    • 0035131144 scopus 로고    scopus 로고
    • Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
    • Grant CM. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39: 533-541, 2001.
    • (2001) Mol Microbiol , vol.39 , pp. 533-541
    • Grant, C.M.1
  • 106
    • 0030016469 scopus 로고    scopus 로고
    • Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation
    • Grant CM, Collinson LP, Roe JH, and Dawes IW. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21: 171-179, 1996.
    • (1996) Mol Microbiol , vol.21 , pp. 171-179
    • Grant, C.M.1    Collinson, L.P.2    Roe, J.H.3    Dawes, I.W.4
  • 107
    • 0032583570 scopus 로고    scopus 로고
    • Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
    • Grant CM, Perrone G, and Dawes IW. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253: 893-898, 1998.
    • (1998) Biochem Biophys Res Commun , vol.253 , pp. 893-898
    • Grant, C.M.1    Perrone, G.2    Dawes, I.W.3
  • 108
    • 0027238801 scopus 로고
    • Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase
    • Gravina SA and Mieyal JJ. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32: 3368-3376, 1993.
    • (1993) Biochemistry , vol.32 , pp. 3368-3376
    • Gravina, S.A.1    Mieyal, J.J.2
  • 109
    • 66349105304 scopus 로고    scopus 로고
    • Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo
    • Greetham D and Grant CM. Antioxidant activity of the yeast mitochondrial one-Cys peroxiredoxin is dependent on thioredoxin reductase and glutathione in vivo. Mol Cell Biol 29: 3229-3240, 2009.
    • (2009) Mol Cell Biol , vol.29 , pp. 3229-3240
    • Greetham, D.1    Grant, C.M.2
  • 111
    • 84890120403 scopus 로고    scopus 로고
    • Sulfenic acid chemistry, detection and cellular lifetime
    • Gupta V and Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 1840: 847-875, 2014.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 847-875
    • Gupta, V.1    Carroll, K.S.2
  • 113
    • 79958059617 scopus 로고    scopus 로고
    • Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins
    • Hall A, Nelson K, Poole LB, and Karplus PA. Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 15: 795-815, 2011.
    • (2011) Antioxid Redox Signal , vol.15 , pp. 795-815
    • Hall, A.1    Nelson, K.2    Poole, L.B.3    Karplus, P.A.4
  • 115
    • 84902270478 scopus 로고    scopus 로고
    • Disulfide bond formation in prokaryotes: History, diversity and design
    • Hatahet F, Boyd D, and Beckwith J. Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta 1844: 1402-1414, 2014.
    • (2014) Biochim Biophys Acta , vol.1844 , pp. 1402-1414
    • Hatahet, F.1    Boyd, D.2    Beckwith, J.3
  • 116
    • 0027960215 scopus 로고
    • Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not
    • Hausladen A and Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405-29408, 1994.
    • (1994) J Biol Chem , vol.269 , pp. 29405-29408
    • Hausladen, A.1    Fridovich, I.2
  • 118
    • 77954249308 scopus 로고    scopus 로고
    • Two to tango: Regulation of Mammalian iron metabolism
    • Hentze MW, Muckenthaler MU, Galy B, and Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell 142: 24-38, 2010.
    • (2010) Cell , vol.142 , pp. 24-38
    • Hentze, M.W.1    Muckenthaler, M.U.2    Galy, B.3    Camaschella, C.4
  • 119
  • 120
    • 84927917880 scopus 로고    scopus 로고
    • Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub
    • Hildebrandt T, Knuesting J, Berndt C, Morgan B, and Scheibe R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub Biol Chem 396: 523-537, 2015.
    • (2015) Biol Chem , vol.396 , pp. 523-537
    • Hildebrandt, T.1    Knuesting, J.2    Berndt, C.3    Morgan, B.4    Scheibe, R.5
  • 121
    • 31344463247 scopus 로고    scopus 로고
    • Plasmodium falciparum glutathione S-transferase-structural and mechanistic studies on ligand binding and enzyme inhibition
    • Hiller N, Fritz-Wolf K, Deponte M, Wende W, Zimmermann H, and Becker K. Plasmodium falciparum glutathione S-transferase-structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Sci 15: 281-289, 2006.
    • (2006) Protein Sci , vol.15 , pp. 281-289
    • Hiller, N.1    Fritz-Wolf, K.2    Deponte, M.3    Wende, W.4    Zimmermann, H.5    Becker, K.6
  • 122
    • 0035145779 scopus 로고    scopus 로고
    • The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress
    • Hirrlinger J, Konig J, Keppler D, Lindenau J, Schulz JB, and Dringen R. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 76: 627-636, 2001.
    • (2001) J Neurochem , vol.76 , pp. 627-636
    • Hirrlinger, J.1    Konig, J.2    Keppler, D.3    Lindenau, J.4    Schulz, J.B.5    Dringen, R.6
  • 124
    • 0026698060 scopus 로고
    • Oxidized redox state of glutathione in the endoplasmic reticulum
    • Hwang C, Sinskey AJ, and Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 1496-1502, 1992.
    • (1992) Science , vol.257 , pp. 1496-1502
    • Hwang, C.1    Sinskey, A.J.2    Lodish, H.F.3
  • 125
    • 50649117912 scopus 로고    scopus 로고
    • Cellular defenses against superoxide and hydrogen peroxide
    • Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755-776, 2008.
    • (2008) Annu Rev Biochem , vol.77 , pp. 755-776
    • Imlay, J.A.1
  • 126
    • 84879422944 scopus 로고    scopus 로고
    • The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium
    • Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11: 443-454, 2013.
    • (2013) Nat Rev Microbiol , vol.11 , pp. 443-454
    • Imlay, J.A.1
  • 127
    • 0025800392 scopus 로고
    • Assay of metabolic superoxide production in Escherichia coli
    • Imlay JA and Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266: 6957-6965, 1991.
    • (1991) J Biol Chem , vol.266 , pp. 6957-6965
    • Imlay, J.A.1    Fridovich, I.2
  • 128
    • 0029860016 scopus 로고    scopus 로고
    • Identification of the structural gene for glyoxalase i from Saccharomyces cerevisiae
    • Inoue Y and Kimura A. Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem 271: 25958-25965, 1996.
    • (1996) J Biol Chem , vol.271 , pp. 25958-25965
    • Inoue, Y.1    Kimura, A.2
  • 129
    • 79955965088 scopus 로고    scopus 로고
    • Glyoxalase system in yeasts: Structure, function, and physiology
    • Inoue Y, Maeta K, and Nomura W. Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22: 278-284, 2011.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 278-284
    • Inoue, Y.1    Maeta, K.2    Nomura, W.3
  • 130
    • 0033578750 scopus 로고    scopus 로고
    • Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
    • Inoue Y, Matsuda T, Sugiyama K, Izawa S, and Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274: 27002-27009, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 27002-27009
    • Inoue, Y.1    Matsuda, T.2    Sugiyama, K.3    Izawa, S.4    Kimura, A.5
  • 131
    • 77951241260 scopus 로고    scopus 로고
    • Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor
    • Iwai K, Naganuma A, and Kuge S. Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. J Biol Chem 285: 10597-10604, 2010.
    • (2010) J Biol Chem , vol.285 , pp. 10597-10604
    • Iwai, K.1    Naganuma, A.2    Kuge, S.3
  • 132
    • 48949106599 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway
    • Izquierdo A, Casas C, Muhlenhoff U, Lillig CH, and Herrero E. Saccharomyces cerevisiae Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell 7: 1415-1426, 2008.
    • (2008) Eukaryot Cell , vol.7 , pp. 1415-1426
    • Izquierdo, A.1    Casas, C.2    Muhlenhoff, U.3    Lillig, C.H.4    Herrero, E.5
  • 134
    • 0030923439 scopus 로고    scopus 로고
    • Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities
    • Jakobsson PJ, Mancini JA, Riendeau D, and Ford-Hutchinson AW. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J Biol Chem 272: 22934-22939, 1997.
    • (1997) J Biol Chem , vol.272 , pp. 22934-22939
    • Jakobsson, P.J.1    Mancini, J.A.2    Riendeau, D.3    Ford-Hutchinson, A.W.4
  • 135
    • 0033011878 scopus 로고    scopus 로고
    • Common structural features of MAPEG-a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism
    • Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, and Persson B. Common structural features of MAPEG-a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 8: 689-692, 1999.
    • (1999) Protein Sci , vol.8 , pp. 689-692
    • Jakobsson, P.J.1    Morgenstern, R.2    Mancini, J.3    Ford-Hutchinson, A.4    Persson, B.5
  • 137
    • 84866357593 scopus 로고    scopus 로고
    • Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells
    • Jarvis RM, Hughes SM, and Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med 53: 1522-1530, 2012.
    • (2012) Free Radic Biol Med , vol.53 , pp. 1522-1530
    • Jarvis, R.M.1    Hughes, S.M.2    Ledgerwood, E.C.3
  • 138
    • 0035980083 scopus 로고    scopus 로고
    • Human glutathione transferase A3-3, a highly efficient catalyst of doublebond isomerization in the biosynthetic pathway of steroid hormones
    • Johansson AS and Mannervik B. Human glutathione transferase A3-3, a highly efficient catalyst of doublebond isomerization in the biosynthetic pathway of steroid hormones. J Biol Chem 276: 33061-33065, 2001.
    • (2001) J Biol Chem , vol.276 , pp. 33061-33065
    • Johansson, A.S.1    Mannervik, B.2
  • 139
    • 1542320094 scopus 로고    scopus 로고
    • Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase
    • Johansson C, Lillig CH, and Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279: 7537-7543, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 7537-7543
    • Johansson, C.1    Lillig, C.H.2    Holmgren, A.3
  • 140
    • 27544508986 scopus 로고    scopus 로고
    • Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes
    • Johnson RM, Goyette G, Jr., Ravindranath Y, and Ho YS. Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic Biol Med 39: 1407-1417, 2005.
    • (2005) Free Radic Biol Med , vol.39 , pp. 1407-1417
    • Johnson, R.M.1    Goyette, G.2    Ravindranath, Y.3    Ho, Y.S.4
  • 142
    • 0037093679 scopus 로고    scopus 로고
    • Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: Re-evaluation of the rate constant
    • Jones CM, Lawrence A, Wardman P, and Burkitt MJ. Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radic Biol Med 32: 982-990, 2002.
    • (2002) Free Radic Biol Med , vol.32 , pp. 982-990
    • Jones, C.M.1    Lawrence, A.2    Wardman, P.3    Burkitt, M.J.4
  • 144
    • 0034673552 scopus 로고    scopus 로고
    • Structural organization of the human glutathione reductase gene: Determination of correct cDNA sequence and identification of a mitochondrial leader sequence
    • Kelner MJ and Montoya MA. Structural organization of the human glutathione reductase gene: determination of correct cDNA sequence and identification of a mitochondrial leader sequence. Biochem Biophys Res Commun 269: 366-368, 2000.
    • (2000) Biochem Biophys Res Commun , vol.269 , pp. 366-368
    • Kelner, M.J.1    Montoya, M.A.2
  • 145
    • 0030783602 scopus 로고    scopus 로고
    • Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite
    • Keyer K and Imlay JA. Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J Biol Chem 272: 27652-27659, 1997.
    • (1997) J Biol Chem , vol.272 , pp. 27652-27659
    • Keyer, K.1    Imlay, J.A.2
  • 146
    • 0347947885 scopus 로고
    • Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol
    • Kim IH, Kim K, and Rhee SG. Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci U S A 86: 6018-6022, 1989.
    • (1989) Proc Natl Acad Sci U S A , vol.86 , pp. 6018-6022
    • Kim, I.H.1    Kim, K.2    Rhee, S.G.3
  • 147
    • 32544449968 scopus 로고    scopus 로고
    • Inhibition of peroxynitrite-induced nitration of tyrosine by glutathione in the presence of carbon dioxide through both radical repair and peroxynitrate formation
    • Kirsch M, Lehnig M, Korth HG, Sustmann R, and de Groot H. Inhibition of peroxynitrite-induced nitration of tyrosine by glutathione in the presence of carbon dioxide through both radical repair and peroxynitrate formation. Chemistry 7: 3313-3320, 2001.
    • (2001) Chemistry , vol.7 , pp. 3313-3320
    • Kirsch, M.1    Lehnig, M.2    Korth, H.G.3    Sustmann, R.4    De Groot, H.5
  • 148
    • 84960453991 scopus 로고    scopus 로고
    • The nuclear pore complex as a flexible and dynamic gate
    • Knockenhauer KE and Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell 164: 1162-1171, 2016.
    • (2016) Cell , vol.164 , pp. 1162-1171
    • Knockenhauer, K.E.1    Schwartz, T.U.2
  • 149
    • 77956313447 scopus 로고    scopus 로고
    • Oxidative protein folding and the quiescin-sulfhydryl oxidase family of flavoproteins
    • Kodali VK and Thorpe C. Oxidative protein folding and the quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal 13: 1217-1230, 2010.
    • (2010) Antioxid Redox Signal , vol.13 , pp. 1217-1230
    • Kodali, V.K.1    Thorpe, C.2
  • 150
    • 84864119697 scopus 로고    scopus 로고
    • Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
    • Kojer K, Bien M, Gangel H, Morgan B, Dick TP, and Riemer J. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 31: 3169-3182, 2012.
    • (2012) EMBO J , vol.31 , pp. 3169-3182
    • Kojer, K.1    Bien, M.2    Gangel, H.3    Morgan, B.4    Dick, T.P.5    Riemer, J.6
  • 151
    • 84920982875 scopus 로고    scopus 로고
    • Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space
    • Kojer K, Peleh V, Calabrese G, Herrmann JM, and Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 26: 195-204, 2015.
    • (2015) Mol Biol Cell , vol.26 , pp. 195-204
    • Kojer, K.1    Peleh, V.2    Calabrese, G.3    Herrmann, J.M.4    Riemer, J.5
  • 152
    • 84895538371 scopus 로고    scopus 로고
    • Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
    • Kulak NA, Pichler G, Paron I, Nagaraj N, and Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11: 319-324, 2014.
    • (2014) Nat Methods , vol.11 , pp. 319-324
    • Kulak, N.A.1    Pichler, G.2    Paron, I.3    Nagaraj, N.4    Mann, M.5
  • 154
    • 33646716659 scopus 로고    scopus 로고
    • The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
    • Kussmaul L and Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103: 7607-7612, 2006.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 7607-7612
    • Kussmaul, L.1    Hirst, J.2
  • 155
    • 0029047078 scopus 로고
    • Endogenous intracellular glutathionyl radicals are generated in neuroblastoma cells under hydrogen peroxide oxidative stress
    • Kwak HS, Yim HS, Chock PB, and Yim MB. Endogenous intracellular glutathionyl radicals are generated in neuroblastoma cells under hydrogen peroxide oxidative stress. Proc Natl Acad Sci U S A 92: 4582-4586, 1995.
    • (1995) Proc Natl Acad Sci U S A , vol.92 , pp. 4582-4586
    • Kwak, H.S.1    Yim, H.S.2    Chock, P.B.3    Yim, M.B.4
  • 156
    • 33744543755 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae proteome of oxidized protein thiols: Contrasted functions for the thioredoxin and glutathione pathways
    • Le Moan N, Clement G, Le Maout S, Tacnet F, and Toledano MB. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281: 10420-10430, 2006.
    • (2006) J Biol Chem , vol.281 , pp. 10420-10430
    • Le Moan, N.1    Clement, G.2    Le Maout, S.3    Tacnet, F.4    Toledano, M.B.5
  • 157
    • 0033582416 scopus 로고    scopus 로고
    • A new antioxidant with alkyl hydroperoxide defense properties in yeast
    • Lee J, Spector D, Godon C, Labarre J, and Toledano MB. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274: 4537-4544, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 4537-4544
    • Lee, J.1    Spector, D.2    Godon, C.3    Labarre, J.4    Toledano, M.B.5
  • 158
    • 84896803955 scopus 로고    scopus 로고
    • Structural basis for heavy metal detoxification by an Atm1-type ABC exporter
    • Lee JY, Yang JG, Zhitnitsky D, Lewinson O, and Rees DC. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343: 1133-1136, 2014.
    • (2014) Science , vol.343 , pp. 1133-1136
    • Lee, J.Y.1    Yang, J.G.2    Zhitnitsky, D.3    Lewinson, O.4    Rees, D.C.5
  • 162
    • 0029983266 scopus 로고    scopus 로고
    • The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump
    • Li ZS, Szczypka M, Lu YP, Thiele DJ, and Rea PA. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271: 6509-6517, 1996.
    • (1996) J Biol Chem , vol.271 , pp. 6509-6517
    • Li, Z.S.1    Szczypka, M.2    Lu, Y.P.3    Thiele, D.J.4    Rea, P.A.5
  • 165
    • 0014590370 scopus 로고
    • Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase
    • Little C and O'Brien PJ. Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 10: 533-538, 1969.
    • (1969) Eur J Biochem , vol.10 , pp. 533-538
    • Little, C.1    O'Brien, P.J.2
  • 166
    • 0942268722 scopus 로고    scopus 로고
    • Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin
    • Lopreiato R, Facchin S, Sartori G, Arrigoni G, Casonato S, Ruzzene M, Pinna LA, and Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem J 377: 395-405, 2004.
    • (2004) Biochem J , vol.377 , pp. 395-405
    • Lopreiato, R.1    Facchin, S.2    Sartori, G.3    Arrigoni, G.4    Casonato, S.5    Ruzzene, M.6    Pinna, L.A.7    Carignani, G.8
  • 167
    • 84875744148 scopus 로고    scopus 로고
    • Glutathione synthesis
    • Lu SC. Glutathione synthesis. Biochim Biophys Acta 1830: 3143-3153, 2013.
    • (2013) Biochim Biophys Acta , vol.1830 , pp. 3143-3153
    • Lu, S.C.1
  • 168
    • 0031719952 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
    • Luikenhuis S, Perrone G, Dawes IW, and Grant CM. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9: 1081-1091, 1998.
    • (1998) Mol Biol Cell , vol.9 , pp. 1081-1091
    • Luikenhuis, S.1    Perrone, G.2    Dawes, I.W.3    Grant, C.M.4
  • 171
    • 0141706719 scopus 로고    scopus 로고
    • Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants
    • Maiorino M, Scapin M, Ursini F, Biasolo M, Bosello V, and Flohe L. Distinct promoters determine alternative transcription of gpx-4 into phospholipid-hydroperoxide glutathione peroxidase variants. J Biol Chem 278: 34286-34290, 2003.
    • (2003) J Biol Chem , vol.278 , pp. 34286-34290
    • Maiorino, M.1    Scapin, M.2    Ursini, F.3    Biasolo, M.4    Bosello, V.5    Flohe, L.6
  • 173
    • 80052420458 scopus 로고    scopus 로고
    • GSNOR-mediated de-nitrosylation in the plant defence response
    • Malik SI, Hussain A, Yun BW, Spoel SH, and Loake GJ. GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181: 540-544, 2011.
    • (2011) Plant Sci , vol.181 , pp. 540-544
    • Malik, S.I.1    Hussain, A.2    Yun, B.W.3    Spoel, S.H.4    Loake, G.J.5
  • 176
    • 49549119156 scopus 로고    scopus 로고
    • Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins
    • Martinez Molina D, Eshaghi S, and Nordlund P. Catalysis within the lipid bilayer-structure and mechanism of the MAPEG family of integral membrane proteins. Curr Opin Struct Biol 18: 442-449, 2008.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 442-449
    • Martinez Molina, D.1    Eshaghi, S.2    Nordlund, P.3
  • 177
    • 0034828640 scopus 로고    scopus 로고
    • In situ kinetic analysis of glyoxalase i and glyoxalase II in Saccharomyces cerevisiae
    • Martins AM, Mendes P, Cordeiro C, and Freire AP. In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur J Biochem 268: 3930-3936, 2001.
    • (2001) Eur J Biochem , vol.268 , pp. 3930-3936
    • Martins, A.M.1    Mendes, P.2    Cordeiro, C.3    Freire, A.P.4
  • 178
    • 0028108347 scopus 로고
    • Activation of molecular oxygen by flavins and flavoproteins
    • Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269: 22459-22462, 1994.
    • (1994) J Biol Chem , vol.269 , pp. 22459-22462
    • Massey, V.1
  • 179
    • 33646348711 scopus 로고    scopus 로고
    • To be or not to be an oxidase: Challenging the oxygen reactivity of flavoenzymes
    • Mattevi A. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31: 276-283, 2006.
    • (2006) Trends Biochem Sci , vol.31 , pp. 276-283
    • Mattevi, A.1
  • 180
    • 0034110932 scopus 로고    scopus 로고
    • Glutathione-dependent conversion of N-ethylmaleimide to the maleamic acid by Escherichia coli: An intracellular detoxification process
    • McLaggan D, Rufino H, Jaspars M, and Booth IR. Glutathione-dependent conversion of N-ethylmaleimide to the maleamic acid by Escherichia coli: An intracellular detoxification process. Appl Environ Microbiol 66: 1393-1399, 2000.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 1393-1399
    • McLaggan, D.1    Rufino, H.2    Jaspars, M.3    Booth, I.R.4
  • 181
    • 0027276397 scopus 로고
    • The assay of S-D-lactoylglutathione in biological systems
    • McLellan AC, Phillips SA, and Thornalley PJ. The assay of S-D-lactoylglutathione in biological systems. Anal Biochem 211: 37-43, 1993.
    • (1993) Anal Biochem , vol.211 , pp. 37-43
    • McLellan, A.C.1    Phillips, S.A.2    Thornalley, P.J.3
  • 183
    • 38849206923 scopus 로고    scopus 로고
    • Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into ironsulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins
    • Mesecke N, Mittler S, Eckers E, Herrmann JM, and Deponte M. Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into ironsulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47: 1452-1463, 2008.
    • (2008) Biochemistry , vol.47 , pp. 1452-1463
    • Mesecke, N.1    Mittler, S.2    Eckers, E.3    Herrmann, J.M.4    Deponte, M.5
  • 184
    • 48749085761 scopus 로고    scopus 로고
    • A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance
    • Mesecke N, Spang A, Deponte M, and Herrmann JM. A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell 19: 2673-2680, 2008.
    • (2008) Mol Biol Cell , vol.19 , pp. 2673-2680
    • Mesecke, N.1    Spang, A.2    Deponte, M.3    Herrmann, J.M.4
  • 185
    • 21244445718 scopus 로고    scopus 로고
    • A disulfide relay system in the intermembrane space of mitochondria that mediates protein import
    • Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, and Herrmann JM. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121: 1059-1069, 2005.
    • (2005) Cell , vol.121 , pp. 1059-1069
    • Mesecke, N.1    Terziyska, N.2    Kozany, C.3    Baumann, F.4    Neupert, W.5    Hell, K.6    Herrmann, J.M.7
  • 186
    • 0033538048 scopus 로고    scopus 로고
    • The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli
    • Messner KR and Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274: 10119-10128, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 10119-10128
    • Messner, K.R.1    Imlay, J.A.2
  • 187
  • 188
    • 10644242480 scopus 로고    scopus 로고
    • Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins
    • Molina MM, Belli G, de la Torre MA, Rodriguez-Manzaneque MT, and Herrero E. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J Biol Chem 279: 51923-51930, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 51923-51930
    • Molina, M.M.1    Belli, G.2    De La Torre, M.A.3    Rodriguez-Manzaneque, M.T.4    Herrero, E.5
  • 190
    • 0025996014 scopus 로고
    • Reconstitution of Ca(2+)-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein
    • Moore RB, Mankad MV, Shriver SK, Mankad VN, and Plishker GA. Reconstitution of Ca(2+)-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein. J Biol Chem 266: 18964-18968, 1991.
    • (1991) J Biol Chem , vol.266 , pp. 18964-18968
    • Moore, R.B.1    Mankad, M.V.2    Shriver, S.K.3    Mankad, V.N.4    Plishker, G.A.5
  • 191
    • 1942533492 scopus 로고    scopus 로고
    • Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization
    • Morel F, Rauch C, Petit E, Piton A, Theret N, Coles B, and Guillouzo A. Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 279: 16246-16253, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 16246-16253
    • Morel, F.1    Rauch, C.2    Petit, E.3    Piton, A.4    Theret, N.5    Coles, B.6    Guillouzo, A.7
  • 192
    • 84872687926 scopus 로고    scopus 로고
    • Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
    • Morgan B, Ezerina D, Amoako TN, Riemer J, Seedorf M, and Dick TP. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 9: 119-125, 2013.
    • (2013) Nat Chem Biol , vol.9 , pp. 119-125
    • Morgan, B.1    Ezerina, D.2    Amoako, T.N.3    Riemer, J.4    Seedorf, M.5    Dick, T.P.6
  • 195
    • 0029948308 scopus 로고    scopus 로고
    • A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth
    • Muller EG. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 7: 1805-1813, 1996.
    • (1996) Mol Biol Cell , vol.7 , pp. 1805-1813
    • Muller, E.G.1
  • 196
    • 84938367995 scopus 로고    scopus 로고
    • Role and Regulation of glutathione metabolism in Plasmodium falciparum
    • Muller S. Role and Regulation of glutathione metabolism in Plasmodium falciparum. Molecules 20: 10511-10534, 2015.
    • (2015) Molecules , vol.20 , pp. 10511-10534
    • Muller, S.1
  • 197
    • 0024810730 scopus 로고
    • Toxicity of thiols and disulphides: Involvement of free-radical species
    • Munday R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic Biol Med 7: 659-673, 1989.
    • (1989) Free Radic Biol Med , vol.7 , pp. 659-673
    • Munday, R.1
  • 198
    • 84875712387 scopus 로고    scopus 로고
    • Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidationmediated pathways
    • Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidationmediated pathways. Antioxid Redox Signal 18: 1623-1641, 2013.
    • (2013) Antioxid Redox Signal , vol.18 , pp. 1623-1641
    • Nagy, P.1
  • 199
    • 36148995826 scopus 로고    scopus 로고
    • Reactive sulfur species: Kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid
    • Nagy P and Ashby MT. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 129: 14082-14091, 2007.
    • (2007) J Am Chem Soc , vol.129 , pp. 14082-14091
    • Nagy, P.1    Ashby, M.T.2
  • 201
    • 84955507164 scopus 로고    scopus 로고
    • Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions
    • Netto LE, de Oliveira MA, Tairum CA, and da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res 50: 206-245, 2016.
    • (2016) Free Radic Res , vol.50 , pp. 206-245
    • Netto, L.E.1    De Oliveira, M.A.2    Tairum, C.A.3    Da Silva Neto, J.F.4
  • 202
    • 84864616693 scopus 로고    scopus 로고
    • Classical catalase: Ancient and modern
    • Nicholls P. Classical catalase: Ancient and modern. Arch Biochem Biophys 525: 95-101, 2012.
    • (2012) Arch Biochem Biophys , vol.525 , pp. 95-101
    • Nicholls, P.1
  • 205
    • 0017369176 scopus 로고
    • Prostaglandin endoperoxide e isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme
    • Ogino N, Miyamoto T, Yamamoto S, and Hayaishi O. Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme. J Biol Chem 252: 890-895, 1977.
    • (1977) J Biol Chem , vol.252 , pp. 890-895
    • Ogino, N.1    Miyamoto, T.2    Yamamoto, S.3    Hayaishi, O.4
  • 206
    • 0001644805 scopus 로고
    • Catalase activity at high concentration of hydrogen peroxide
    • Ogura Y. Catalase activity at high concentration of hydrogen peroxide. Arch Biochem Biophys 57: 288-300, 1955.
    • (1955) Arch Biochem Biophys , vol.57 , pp. 288-300
    • Ogura, Y.1
  • 207
    • 33845917628 scopus 로고    scopus 로고
    • Reactions of yeast thioredoxin peroxidases i and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics
    • Ogusucu R, Rettori D, Munhoz DC, Netto LE, and Augusto O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic Biol Med 42: 326-334, 2007.
    • (2007) Free Radic Biol Med , vol.42 , pp. 326-334
    • Ogusucu, R.1    Rettori, D.2    Munhoz, D.C.3    Netto, L.E.4    Augusto, O.5
  • 208
    • 84863983857 scopus 로고    scopus 로고
    • Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium
    • Ohdate T and Inoue Y. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochim Biophys Acta 1821: 1295-1305, 2012.
    • (2012) Biochim Biophys Acta , vol.1821 , pp. 1295-1305
    • Ohdate, T.1    Inoue, Y.2
  • 209
    • 84929328218 scopus 로고    scopus 로고
    • Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum
    • Okumura M, Kadokura H, and Inaba K. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radic Biol Med 83: 314-322, 2015.
    • (2015) Free Radic Biol Med , vol.83 , pp. 314-322
    • Okumura, M.1    Kadokura, H.2    Inaba, K.3
  • 210
    • 30044444489 scopus 로고    scopus 로고
    • ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities
    • Osawa H, Stacey G, and Gassmann W. ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 393: 267-275, 2006.
    • (2006) Biochem J , vol.393 , pp. 267-275
    • Osawa, H.1    Stacey, G.2    Gassmann, W.3
  • 211
    • 0015550886 scopus 로고
    • The role of H2O2 generation in perfused rat liver and the reaction of catalase compound i and hydrogen donors
    • Oshino N, Chance B, Sies H, and Bucher T. The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 154: 117-131, 1973.
    • (1973) Arch Biochem Biophys , vol.154 , pp. 117-131
    • Oshino, N.1    Chance, B.2    Sies, H.3    Bucher, T.4
  • 212
    • 3543095148 scopus 로고    scopus 로고
    • Monitoring disulfide bond formation in the eukaryotic cytosol
    • Ostergaard H, Tachibana C, and Winther JR. Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166: 337-345, 2004.
    • (2004) J Cell Biol , vol.166 , pp. 337-345
    • Ostergaard, H.1    Tachibana, C.2    Winther, J.R.3
  • 214
    • 84888133282 scopus 로고    scopus 로고
    • Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details
    • Outten CE and Albetel AN. Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr Opin Microbiol 16: 662-668, 2013.
    • (2013) Curr Opin Microbiol , vol.16 , pp. 662-668
    • Outten, C.E.1    Albetel, A.N.2
  • 215
    • 1542319976 scopus 로고    scopus 로고
    • Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
    • Outten CE and Culotta VC. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279: 7785-7791, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 7785-7791
    • Outten, C.E.1    Culotta, V.C.2
  • 216
    • 19544391785 scopus 로고    scopus 로고
    • Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae
    • Outten CE, Falk RL, and Culotta VC. Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388: 93-101, 2005.
    • (2005) Biochem J , vol.388 , pp. 93-101
    • Outten, C.E.1    Falk, R.L.2    Culotta, V.C.3
  • 217
    • 78650027203 scopus 로고    scopus 로고
    • The critical role of Slactoylglutathione formation during methylglyoxal detoxification in Escherichia coli
    • Ozyamak E, Black SS, Walker CA, Maclean MJ, Bartlett W, Miller S, and Booth IR. The critical role of Slactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol Microbiol 78: 1577-1590, 2010.
    • (2010) Mol Microbiol , vol.78 , pp. 1577-1590
    • Ozyamak, E.1    Black, S.S.2    Walker, C.A.3    Maclean, M.J.4    Bartlett, W.5    Miller, S.6    Booth, I.R.7
  • 218
    • 79953871561 scopus 로고    scopus 로고
    • Glutathionylation of peroxiredoxin i induces decamer to dimers dissociation with concomitant loss of chaperone activity
    • Park JW, Piszczek G, Rhee SG, and Chock PB. Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry 50: 3204-3210, 2011.
    • (2011) Biochemistry , vol.50 , pp. 3204-3210
    • Park, J.W.1    Piszczek, G.2    Rhee, S.G.3    Chock, P.B.4
  • 219
    • 0000056465 scopus 로고    scopus 로고
    • Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae
    • Park SG, Cha MK, Jeong W, and Kim IH. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275: 5723-5732, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 5723-5732
    • Park, S.G.1    Cha, M.K.2    Jeong, W.3    Kim, I.H.4
  • 220
    • 40849136587 scopus 로고    scopus 로고
    • Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin
    • Parsonage D, Karplus PA, and Poole LB. Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci U S A 105: 8209-8214, 2008.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 8209-8214
    • Parsonage, D.1    Karplus, P.A.2    Poole, L.B.3
  • 221
    • 0033525509 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae
    • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, and Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274: 6366-6373, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 6366-6373
    • Pedrajas, J.R.1    Kosmidou, E.2    Miranda-Vizuete, A.3    Gustafsson, J.A.4    Wright, A.P.5    Spyrou, G.6
  • 222
    • 0034717135 scopus 로고    scopus 로고
    • Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity
    • Pedrajas JR, Miranda-Vizuete A, Javanmardy N, Gustafsson JA, and Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem 275: 16296-16301, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 16296-16301
    • Pedrajas, J.R.1    Miranda-Vizuete, A.2    Javanmardy, N.3    Gustafsson, J.A.4    Spyrou, G.5
  • 223
    • 0037096975 scopus 로고    scopus 로고
    • Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments
    • Pedrajas JR, Porras P, Martinez-Galisteo E, Padilla CA, Miranda-Vizuete A, and Barcena JA. Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem J 364: 617-623, 2002.
    • (2002) Biochem J , vol.364 , pp. 617-623
    • Pedrajas, J.R.1    Porras, P.2    Martinez-Galisteo, E.3    Padilla, C.A.4    Miranda-Vizuete, A.5    Barcena, J.A.6
  • 224
    • 33750621913 scopus 로고    scopus 로고
    • Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione
    • Peltoniemi MJ, Karala AR, Jurvansuu JK, Kinnula VL, and Ruddock LW. Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. J Biol Chem 281: 33107-33114, 2006.
    • (2006) J Biol Chem , vol.281 , pp. 33107-33114
    • Peltoniemi, M.J.1    Karala, A.R.2    Jurvansuu, J.K.3    Kinnula, V.L.4    Ruddock, L.W.5
  • 227
    • 2942724221 scopus 로고    scopus 로고
    • Dual targeting of yeast catalase A to peroxisomes and mitochondria
    • Petrova VY, Drescher D, Kujumdzieva AV, and Schmitt MJ. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochem J 380: 393-400, 2004.
    • (2004) Biochem J , vol.380 , pp. 393-400
    • Petrova, V.Y.1    Drescher, D.2    Kujumdzieva, A.V.3    Schmitt, M.J.4
  • 228
    • 37349036175 scopus 로고    scopus 로고
    • CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathioneligated [2Fe-2S] cluster
    • Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, and Chauvat F. CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathioneligated [2Fe-2S] cluster. Biochemistry 46: 15018-15026, 2007.
    • (2007) Biochemistry , vol.46 , pp. 15018-15026
    • Picciocchi, A.1    Saguez, C.2    Boussac, A.3    Cassier-Chauvat, C.4    Chauvat, F.5
  • 229
    • 0017380842 scopus 로고
    • Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver
    • Prohaska JR and Ganther HE. Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver. Biochem Biophys Res Commun 76: 437-445, 1976.
    • (1976) Biochem Biophys Res Commun , vol.76 , pp. 437-445
    • Prohaska, J.R.1    Ganther, H.E.2
  • 230
    • 84920441264 scopus 로고    scopus 로고
    • Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin
    • Puigpinos J, Casas C, and Herrero E. Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in Saccharomyces cerevisiae cells lacking Grx6 glutaredoxin. Mol Biol Cell 26: 104-116, 2015.
    • (2015) Mol Biol Cell , vol.26 , pp. 104-116
    • Puigpinos, J.1    Casas, C.2    Herrero, E.3
  • 231
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • Pujol-Carrion N, Belli G, Herrero E, Nogues A, and de la Torre-Ruiz MA. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 119: 4554-4564, 2006.
    • (2006) J Cell Sci , vol.119 , pp. 4554-4564
    • Pujol-Carrion, N.1    Belli, G.2    Herrero, E.3    Nogues, A.4    De La Torre-Ruiz, M.A.5
  • 232
    • 79955945923 scopus 로고    scopus 로고
    • Glyoxalase in diabetes, obesity and related disorders
    • Rabbani N and Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22: 309-317, 2011.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 309-317
    • Rabbani, N.1    Thornalley, P.J.2
  • 233
    • 84904988908 scopus 로고    scopus 로고
    • Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples
    • Rabbani N and Thornalley PJ. Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc 9: 1969-1979, 2014.
    • (2014) Nat Protoc , vol.9 , pp. 1969-1979
    • Rabbani, N.1    Thornalley, P.J.2
  • 234
    • 0029012607 scopus 로고
    • Nuclear magnetic resonance study of the thioltransferase-catalyzed glutathione/ glutathione disulfide interchange reaction
    • Rabenstein DL, and Millis KK. Nuclear magnetic resonance study of the thioltransferase-catalyzed glutathione/ glutathione disulfide interchange reaction. Biochim Biophys Acta 1249: 29-36, 1995.
    • (1995) Biochim Biophys Acta , vol.1249 , pp. 29-36
    • Rabenstein, D.L.1    Millis, K.K.2
  • 235
    • 0346651484 scopus 로고    scopus 로고
    • Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism
    • Rahlfs S, Nickel C, Deponte M, Schirmer RH, and Becker K. Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep 8: 246-250, 2003.
    • (2003) Redox Rep , vol.8 , pp. 246-250
    • Rahlfs, S.1    Nickel, C.2    Deponte, M.3    Schirmer, R.H.4    Becker, K.5
  • 236
    • 80054771975 scopus 로고    scopus 로고
    • Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin
    • Reeves SA, Parsonage D, Nelson KJ, and Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 50: 8970-8981, 2011.
    • (2011) Biochemistry , vol.50 , pp. 8970-8981
    • Reeves, S.A.1    Parsonage, D.2    Nelson, K.J.3    Poole, L.B.4
  • 237
    • 84888301385 scopus 로고    scopus 로고
    • Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids
    • Reisz JA, Bechtold E, King SB, Poole LB, and Furdui CM. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 280: 6150-6161, 2013.
    • (2013) FEBS J , vol.280 , pp. 6150-6161
    • Reisz, J.A.1    Bechtold, E.2    King, S.B.3    Poole, L.B.4    Furdui, C.M.5
  • 238
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
    • Rhee SG, Chae HZ, and Kim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543-1552, 2005.
    • (2005) Free Radic Biol Med , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 239
    • 66749163678 scopus 로고    scopus 로고
    • Disulfide formation in the ER and mitochondria: Two solutions to a common process
    • Riemer J, Bulleid N, and Herrmann JM. Disulfide formation in the ER and mitochondria: Two solutions to a common process. Science 324: 1284-1287, 2009.
    • (2009) Science , vol.324 , pp. 1284-1287
    • Riemer, J.1    Bulleid, N.2    Herrmann, J.M.3
  • 240
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae
    • Rodriguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, and Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19: 8180-8190, 1999.
    • (1999) Mol Cell Biol , vol.19 , pp. 8180-8190
    • Rodriguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 241
    • 0036226063 scopus 로고    scopus 로고
    • Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
    • Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, and Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13: 1109-1121, 2002.
    • (2002) Mol Biol Cell , vol.13 , pp. 1109-1121
    • Rodriguez-Manzaneque, M.T.1    Tamarit, J.2    Belli, G.3    Ros, J.4    Herrero, E.5
  • 242
    • 0035202123 scopus 로고    scopus 로고
    • Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor
    • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, and Jacquot JP. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127: 1299-1309, 2001.
    • (2001) Plant Physiol , vol.127 , pp. 1299-1309
    • Rouhier, N.1    Gelhaye, E.2    Sautiere, P.E.3    Brun, A.4    Laurent, P.5    Tagu, D.6    Gerard, J.7    De Fay, E.8    Meyer, Y.9    Jacquot, J.P.10
  • 244
    • 1542344021 scopus 로고    scopus 로고
    • Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi
    • Sato M, Sato K, and Nakano A. Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi. Mol Biol Cell 15: 1417-1424, 2004.
    • (2004) Mol Biol Cell , vol.15 , pp. 1417-1424
    • Sato, M.1    Sato, K.2    Nakano, A.3
  • 245
    • 84906545328 scopus 로고    scopus 로고
    • A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly
    • Schaedler TA, Thornton JD, Kruse I, Schwarzlander M, Meyer AJ, van Veen HW, and Balk J. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J Biol Chem 289: 23264-23274, 2014.
    • (2014) J Biol Chem , vol.289 , pp. 23264-23274
    • Schaedler, T.A.1    Thornton, J.D.2    Kruse, I.3    Schwarzlander, M.4    Meyer, A.J.5    Van Veen, H.W.6    Balk, J.7
  • 246
    • 0028204459 scopus 로고
    • S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment
    • Schuppe-Koistinen I, Moldeus P, Bergman T, and Cotgreave IA. S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221: 1033-1037, 1994.
    • (1994) Eur J Biochem , vol.221 , pp. 1033-1037
    • Schuppe-Koistinen, I.1    Moldeus, P.2    Bergman, T.3    Cotgreave, I.A.4
  • 249
    • 0035212036 scopus 로고    scopus 로고
    • Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli
    • Seaver LC and Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183: 7182-7189, 2001.
    • (2001) J Bacteriol , vol.183 , pp. 7182-7189
    • Seaver, L.C.1    Imlay, J.A.2
  • 251
    • 0042261992 scopus 로고    scopus 로고
    • Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae
    • Shenton D and Grant CM. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374: 513-519, 2003.
    • (2003) Biochem J , vol.374 , pp. 513-519
    • Shenton, D.1    Grant, C.M.2
  • 252
    • 84897444272 scopus 로고    scopus 로고
    • Role of metabolic H2O2 generation: Redox signaling and oxidative stress
    • Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289: 8735-8741, 2014.
    • (2014) J Biol Chem , vol.289 , pp. 8735-8741
    • Sies, H.1
  • 253
    • 0012017460 scopus 로고
    • The steady state level of catalase compound i in isolated hemoglobin-free perfused rat liver
    • Sies H and Chance B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett 11: 172-176, 1970.
    • (1970) FEBS Lett , vol.11 , pp. 172-176
    • Sies, H.1    Chance, B.2
  • 254
    • 84876188019 scopus 로고    scopus 로고
    • Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time highdose treatments
    • SobottaMC, Barata AG, Schmidt U, Mueller S, Millonig G, and Dick TP. Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time highdose treatments. Free Radic Biol Med 60: 325-335, 2013.
    • (2013) Free Radic Biol Med , vol.60 , pp. 325-335
    • Sobotta, M.C.1    Barata, A.G.2    Schmidt, U.3    Mueller, S.4    Millonig, G.5    Dick, T.P.6
  • 257
    • 84878884100 scopus 로고    scopus 로고
    • The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis
    • Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol 1: 145-152, 2013.
    • (2013) Redox Biol , vol.1 , pp. 145-152
    • Spickett, C.M.1
  • 258
    • 0031000775 scopus 로고    scopus 로고
    • PH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis
    • Srinivasan U, Mieyal PA, and Mieyal JJ. pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis. Biochemistry 36: 3199-3206, 1997.
    • (1997) Biochemistry , vol.36 , pp. 3199-3206
    • Srinivasan, U.1    Mieyal, P.A.2    Mieyal, J.J.3
  • 259
    • 84896800834 scopus 로고    scopus 로고
    • Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1
    • Srinivasan V, Pierik AJ, and Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343: 1137-1140, 2014.
    • (2014) Science , vol.343 , pp. 1137-1140
    • Srinivasan, V.1    Pierik, A.J.2    Lill, R.3
  • 260
    • 58149141583 scopus 로고    scopus 로고
    • Medium-and shortchain dehydrogenase/reductase gene and protein families: Dual functions of alcohol dehydrogenase 3: Implications with focus on formaldehyde dehydrogenase and Snitrosoglutathione reductase activities
    • Staab CA, Hellgren M, and Hoog JO. Medium-and shortchain dehydrogenase/reductase gene and protein families: dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenase and Snitrosoglutathione reductase activities. Cell Mol Life Sci 65: 3950-3960, 2008.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 3950-3960
    • Staab, C.A.1    Hellgren, M.2    Hoog, J.O.3
  • 261
  • 262
    • 0029921680 scopus 로고    scopus 로고
    • A permease-oxidase complex involved in high-affinity iron uptake in yeast
    • Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, and Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271: 1552-1557, 1996.
    • (1996) Science , vol.271 , pp. 1552-1557
    • Stearman, R.1    Yuan, D.S.2    Yamaguchi-Iwai, Y.3    Klausner, R.D.4    Dancis, A.5
  • 263
    • 33646698671 scopus 로고    scopus 로고
    • Hydrogen peroxide: A signaling messenger
    • Stone JR and Yang S. Hydrogen peroxide: A signaling messenger. Antioxid Redox Signal 8: 243-270, 2006.
    • (2006) Antioxid Redox Signal , vol.8 , pp. 243-270
    • Stone, J.R.1    Yang, S.2
  • 265
    • 0035851122 scopus 로고    scopus 로고
    • A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage
    • Sturtz LA, Diekert K, Jensen LT, Lill R, and Culotta VC. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276: 38084-38089, 2001.
    • (2001) J Biol Chem , vol.276 , pp. 38084-38089
    • Sturtz, L.A.1    Diekert, K.2    Jensen, L.T.3    Lill, R.4    Culotta, V.C.5
  • 266
    • 33847087446 scopus 로고
    • Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione
    • Szajewski RP and Whitesides GM. Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 102: 2011-2026, 1980.
    • (1980) J Am Chem Soc , vol.102 , pp. 2011-2026
    • Szajewski, R.P.1    Whitesides, G.M.2
  • 267
    • 37249001753 scopus 로고    scopus 로고
    • A genetically encoded probe for cysteine sulfenic acid protein modification in vivo
    • Takanishi CL, Ma LH, and Wood MJ. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Biochemistry 46: 14725-14732, 2007.
    • (2007) Biochemistry , vol.46 , pp. 14725-14732
    • Takanishi, C.L.1    Ma, L.H.2    Wood, M.J.3
  • 268
    • 84898053454 scopus 로고    scopus 로고
    • Structure-guided activity enhancement and catalytic mechanism of yeast grx8
    • Tang Y, Zhang J, Yu J, Xu L, Wu J, Zhou CZ, and Shi Y. Structure-guided activity enhancement and catalytic mechanism of yeast grx8. Biochemistry 53: 2185-2196, 2014.
    • (2014) Biochemistry , vol.53 , pp. 2185-2196
    • Tang, Y.1    Zhang, J.2    Yu, J.3    Xu, L.4    Wu, J.5    Zhou, C.Z.6    Shi, Y.7
  • 269
    • 59449099000 scopus 로고    scopus 로고
    • Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria
    • Terziyska N, Grumbt B, Kozany C, and Hell K. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 284: 1353-1363, 2009.
    • (2009) J Biol Chem , vol.284 , pp. 1353-1363
    • Terziyska, N.1    Grumbt, B.2    Kozany, C.3    Hell, K.4
  • 270
    • 0025298551 scopus 로고
    • The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life
    • Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269: 1-11, 1990.
    • (1990) Biochem J , vol.269 , pp. 1-11
    • Thornalley, P.J.1
  • 271
    • 79955945922 scopus 로고    scopus 로고
    • Glyoxalase in tumourigenesis and multidrug resistance
    • Thornalley PJ and Rabbani N. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 22: 318-325, 2011.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 318-325
    • Thornalley, P.J.1    Rabbani, N.2
  • 272
    • 84875740128 scopus 로고    scopus 로고
    • Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast
    • Toledano MB, Delaunay-Moisan A, Outten CE, and Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal 18: 1699-1711, 2013.
    • (2013) Antioxid Redox Signal , vol.18 , pp. 1699-1711
    • Toledano, M.B.1    Delaunay-Moisan, A.2    Outten, C.E.3    Igbaria, A.4
  • 273
    • 72649102227 scopus 로고    scopus 로고
    • Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme
    • Toppo S, Flohe L, Ursini F, Vanin S, and Maiorino M. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790: 1486-1500, 2009.
    • (2009) Biochim Biophys Acta , vol.1790 , pp. 1486-1500
    • Toppo, S.1    Flohe, L.2    Ursini, F.3    Vanin, S.4    Maiorino, M.5
  • 274
    • 13844313006 scopus 로고    scopus 로고
    • Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae
    • Trotter EW and Grant CM. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot Cell 4: 392-400, 2005.
    • (2005) Eukaryot Cell , vol.4 , pp. 392-400
    • Trotter, E.W.1    Grant, C.M.2
  • 275
    • 35448954324 scopus 로고    scopus 로고
    • Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation
    • Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, Knoops B, and Radi R. Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 467: 95-106, 2007.
    • (2007) Arch Biochem Biophys , vol.467 , pp. 95-106
    • Trujillo, M.1    Clippe, A.2    Manta, B.3    Ferrer-Sueta, G.4    Smeets, A.5    Declercq, J.P.6    Knoops, B.7    Radi, R.8
  • 279
    • 79955956732 scopus 로고    scopus 로고
    • The glyoxalase system of malaria parasites-Implications for cell biology and general glyoxalase research
    • Urscher M, Alisch R, and Deponte M. The glyoxalase system of malaria parasites-Implications for cell biology and general glyoxalase research. Semin Cell Dev Biol 22: 262-270, 2011.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 262-270
    • Urscher, M.1    Alisch, R.2    Deponte, M.3
  • 280
    • 70349814275 scopus 로고    scopus 로고
    • Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/ Lys(260), and unmasking of acid-base catalysis
    • Urscher M and Deponte M. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/ Lys(260), and unmasking of acid-base catalysis. Biol Chem 390: 1171-1183, 2009.
    • (2009) Biol Chem , vol.390 , pp. 1171-1183
    • Urscher, M.1    Deponte, M.2
  • 281
    • 77950267914 scopus 로고    scopus 로고
    • Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases
    • Urscher M, Przyborski JM, Imoto M, and Deponte M. Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization and inhibition of Plasmodium falciparum glyoxalases. Mol Microbiol 76: 92-103, 2010.
    • (2010) Mol Microbiol , vol.76 , pp. 92-103
    • Urscher, M.1    Przyborski, J.M.2    Imoto, M.3    Deponte, M.4
  • 284
    • 12744268500 scopus 로고    scopus 로고
    • Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae
    • Wachter A, Wolf S, Steininger H, Bogs J, and Rausch T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41: 15-30, 2005.
    • (2005) Plant J , vol.41 , pp. 15-30
    • Wachter, A.1    Wolf, S.2    Steininger, H.3    Bogs, J.4    Rausch, T.5
  • 285
    • 3542993226 scopus 로고    scopus 로고
    • Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase
    • Wallace MA, Liou LL, Martins J, Clement MH, Bailey S, Longo VD, Valentine JS, andGralla EB. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279: 32055-32062, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 32055-32062
    • Wallace, M.A.1    Liou, L.L.2    Martins, J.3    Clement, M.H.4    Bailey, S.5    Longo, V.D.6    Valentine, J.S.7    Gralla, E.B.8
  • 286
    • 84929330695 scopus 로고    scopus 로고
    • Protein disulfideisomerase, a folding catalyst and a redox-regulated chaperone
    • Wang L, Wang X, and Wang CC. Protein disulfideisomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med 83: 305-313, 2015.
    • (2015) Free Radic Biol Med , vol.83 , pp. 305-313
    • Wang, L.1    Wang, X.2    Wang, C.C.3
  • 288
    • 84906054033 scopus 로고    scopus 로고
    • Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples
    • Wang Y, Armando AM, Quehenberger O, Yan C, and Dennis EA. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J Chromatogr A 1359: 60-69, 2014.
    • (2014) J Chromatogr A , vol.1359 , pp. 60-69
    • Wang, Y.1    Armando, A.M.2    Quehenberger, O.3    Yan, C.4    Dennis, E.A.5
  • 290
    • 56549120525 scopus 로고    scopus 로고
    • Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes
    • Wendler A, Irsch T, Rabbani N, Thornalley PJ, and Krauth-Siegel RL. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes. Mol Biochem Parasitol 163: 19-27, 2009.
    • (2009) Mol Biochem Parasitol , vol.163 , pp. 19-27
    • Wendler, A.1    Irsch, T.2    Rabbani, N.3    Thornalley, P.J.4    Krauth-Siegel, R.L.5
  • 291
    • 75149164344 scopus 로고    scopus 로고
    • Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue
    • Weydert CJ and Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5: 51-66, 2010.
    • (2010) Nat Protoc , vol.5 , pp. 51-66
    • Weydert, C.J.1    Cullen, J.J.2
  • 292
    • 0028308104 scopus 로고
    • [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae
    • Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264: 566-569, 1994.
    • (1994) Science , vol.264 , pp. 566-569
    • Wickner, R.B.1
  • 293
    • 84890114880 scopus 로고    scopus 로고
    • The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
    • Winterbourn CC. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840: 730-738, 2014.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 730-738
    • Winterbourn, C.C.1
  • 294
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • Winterbourn CC and Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45: 549-561, 2008.
    • (2008) Free Radic Biol Med , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 295
    • 0032865515 scopus 로고    scopus 로고
    • Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
    • Winterbourn CC and Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27: 322-328, 1999.
    • (1999) Free Radic Biol Med , vol.27 , pp. 322-328
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 296
    • 84890128084 scopus 로고    scopus 로고
    • Quantification of thiols and disulfides
    • Winther JR and Thorpe C. Quantification of thiols and disulfides. Biochim Biophys Acta 1840: 838-846, 2014.
    • (2014) Biochim Biophys Acta , vol.1840 , pp. 838-846
    • Winther, J.R.1    Thorpe, C.2
  • 297
    • 0030947344 scopus 로고    scopus 로고
    • Molecular evidence for an ancient duplication of the entire yeast genome
    • Wolfe KH and Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708-713, 1997.
    • (1997) Nature , vol.387 , pp. 708-713
    • Wolfe, K.H.1    Shields, D.C.2
  • 298
    • 2542504409 scopus 로고    scopus 로고
    • Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable
    • Wong CM, Siu KL, and Jin DY. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 279: 23207-23213, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 23207-23213
    • Wong, C.M.1    Siu, K.L.2    Jin, D.Y.3
  • 299
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood ZA, Poole LB, and Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650-653, 2003.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 301
    • 67649800278 scopus 로고    scopus 로고
    • Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase
    • Zahedi Avval F and Holmgren A. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase. J Biol Chem 284: 8233-8240, 2009.
    • (2009) J Biol Chem , vol.284 , pp. 8233-8240
    • Zahedi Avval, F.1    Holmgren, A.2
  • 302
    • 84885646670 scopus 로고    scopus 로고
    • Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: Spectroscopic characterization and functional implications
    • Zhang B, Bandyopadhyay S, Shakamuri P, Naik SG, Huynh BH, Couturier J, Rouhier N, and Johnson MK. Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications. J Am Chem Soc 135: 15153-15164, 2013.
    • (2013) J Am Chem Soc , vol.135 , pp. 15153-15164
    • Zhang, B.1    Bandyopadhyay, S.2    Shakamuri, P.3    Naik, S.G.4    Huynh, B.H.5    Couturier, J.6    Rouhier, N.7    Johnson, M.K.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.