메뉴 건너뛰기




Volumn 1780, Issue 11, 2008, Pages 1217-1235

Redox control and oxidative stress in yeast cells

Author keywords

Catalase; Glutaredoxin; Peroxidase; Superoxide dismutase; Thioredoxin; Yap1

Indexed keywords

AMINO ACID; CATALASE; CYSTEINE; GLUTAREDOXIN; GLUTATHIONE PEROXIDASE; GLUTATHIONE PEROXIDASE 3; PEROXIDASE; PROTEIN YBP1; REACTIVE OXYGEN METABOLITE; SUPEROXIDE DISMUTASE; THIOREDOXIN; TRANSCRIPTION FACTOR YAP1; UNCLASSIFIED DRUG;

EID: 49349100455     PISSN: 03044165     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bbagen.2007.12.004     Document Type: Review
Times cited : (365)

References (255)
  • 1
    • 0035458366 scopus 로고    scopus 로고
    • The art and design of genetic screens: yeast
    • Forsburg S.L. The art and design of genetic screens: yeast. Nature Rev. Genet. 2 (2001) 659-668
    • (2001) Nature Rev. Genet. , vol.2 , pp. 659-668
    • Forsburg, S.L.1
  • 2
    • 4344592252 scopus 로고    scopus 로고
    • The uses of genome-wide mutant collections
    • Scherens B., and Goffeau A. The uses of genome-wide mutant collections. Genome Biol. 5 (2004) 229
    • (2004) Genome Biol. , vol.5 , pp. 229
    • Scherens, B.1    Goffeau, A.2
  • 3
    • 0030041567 scopus 로고    scopus 로고
    • The molecular defences against reactive oxygen species in yeast
    • Moradas-Ferreira P., Costa V., Piper P., and Mager W. The molecular defences against reactive oxygen species in yeast. Mol. Microbiol. 19 (1996) 651-658
    • (1996) Mol. Microbiol. , vol.19 , pp. 651-658
    • Moradas-Ferreira, P.1    Costa, V.2    Piper, P.3    Mager, W.4
  • 4
    • 0032439653 scopus 로고    scopus 로고
    • Oxidative stress responses of yeast Saccharomyces cerevisiae
    • Jamieson D.J. Oxidative stress responses of yeast Saccharomyces cerevisiae. Yeast 14 (1998) 1511-1527
    • (1998) Yeast , vol.14 , pp. 1511-1527
    • Jamieson, D.J.1
  • 5
    • 0035131144 scopus 로고    scopus 로고
    • Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
    • Grant C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39 (2001) 533-541
    • (2001) Mol. Microbiol. , vol.39 , pp. 533-541
    • Grant, C.M.1
  • 9
    • 0032488513 scopus 로고    scopus 로고
    • Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?
    • Cotgreave I.A., and Gerdes R.G. Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?. Biochem. Biophys. Res. Commun. 242 (1998) 1-9
    • (1998) Biochem. Biophys. Res. Commun. , vol.242 , pp. 1-9
    • Cotgreave, I.A.1    Gerdes, R.G.2
  • 10
    • 27944504099 scopus 로고    scopus 로고
    • Oxidoreduction of protein thiols in redox regulation
    • Ghezzi P. Oxidoreduction of protein thiols in redox regulation. Biochem. Soc. Trans. 33 (2005) 1378-1381
    • (2005) Biochem. Soc. Trans. , vol.33 , pp. 1378-1381
    • Ghezzi, P.1
  • 11
    • 31044455445 scopus 로고    scopus 로고
    • Redox modifications of protein thiols: emerging roles in cell signalling
    • Biswas S., Chida A.S., and Rahman I. Redox modifications of protein thiols: emerging roles in cell signalling. Biochem. Pharmacol. 71 (2006) 551-564
    • (2006) Biochem. Pharmacol. , vol.71 , pp. 551-564
    • Biswas, S.1    Chida, A.S.2    Rahman, I.3
  • 12
    • 33750604604 scopus 로고    scopus 로고
    • Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways
    • Jacob C., Knight I., and Winyard P.G. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol. Chem. 387 (2006) 1385-1397
    • (2006) Biol. Chem. , vol.387 , pp. 1385-1397
    • Jacob, C.1    Knight, I.2    Winyard, P.G.3
  • 13
    • 14044257843 scopus 로고    scopus 로고
    • Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation
    • Shelton M.D., Chock P.B., and Mieyal J.J. Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid. Redox Signal. 7 (2005) 348-366
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 348-366
    • Shelton, M.D.1    Chock, P.B.2    Mieyal, J.J.3
  • 14
    • 0024393963 scopus 로고
    • Thioredoxin and glutaredoxin systems
    • Holmgren A. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 254 (1989) 13963-13966
    • (1989) J. Biol. Chem. , vol.254 , pp. 13963-13966
    • Holmgren, A.1
  • 15
    • 0348230942 scopus 로고    scopus 로고
    • Glutaredoxins: glutathione-dependent redox enzymes with functions as far beyond a simple thioredoxin backup system
    • Fernandes A.P., and Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions as far beyond a simple thioredoxin backup system. Antioxid. Redox Signal 6 (2004) 63-74
    • (2004) Antioxid. Redox Signal , vol.6 , pp. 63-74
    • Fernandes, A.P.1    Holmgren, A.2
  • 16
    • 0346158357 scopus 로고    scopus 로고
    • Cell respiration and formation of reactive oxygen species: facts and artefacts
    • Nohl H., Kozlov A.V., Gille L., and Staniek K. Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem. Soc. Trans. 31 (2003) 1308-1311
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 1308-1311
    • Nohl, H.1    Kozlov, A.V.2    Gille, L.3    Staniek, K.4
  • 17
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2003) 335-344
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 18
    • 2942572700 scopus 로고    scopus 로고
    • Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?
    • Halliwell B., and Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br. J. Pharmacol. 142 (2004) 231-255
    • (2004) Br. J. Pharmacol. , vol.142 , pp. 231-255
    • Halliwell, B.1    Whiteman, M.2
  • 19
    • 0030969868 scopus 로고    scopus 로고
    • Superoxide production by the mitochondrial respiratory chain
    • Turrens J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17 (1997) 3-8
    • (1997) Biosci. Rep. , vol.17 , pp. 3-8
    • Turrens, J.F.1
  • 20
    • 0034306267 scopus 로고    scopus 로고
    • Mitochondria, oxygen free radicals, disease and ageing
    • Raha S., and Robinson B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25 (2000) 502-508
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 502-508
    • Raha, S.1    Robinson, B.H.2
  • 21
    • 0033369476 scopus 로고    scopus 로고
    • Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity and relation to aging and longevity
    • Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity and relation to aging and longevity. Bioenerg. Biomembr. 31 (1999) 347-366
    • (1999) Bioenerg. Biomembr. , vol.31 , pp. 347-366
    • Barja, G.1
  • 23
    • 0026089901 scopus 로고
    • Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
    • Marres C.A.M., De Vries S., and Grivell L.A. Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur. J. Biochem. 195 (1991) 857-862
    • (1991) Eur. J. Biochem. , vol.195 , pp. 857-862
    • Marres, C.A.M.1    De Vries, S.2    Grivell, L.A.3
  • 24
    • 0015866720 scopus 로고
    • Mechanism of electron transport and energy conservation in the site I region of the respiratory chain
    • Ohnishi T. Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta 301 (1973) 105-128
    • (1973) Biochim. Biophys. Acta , vol.301 , pp. 105-128
    • Ohnishi, T.1
  • 26
    • 0035200326 scopus 로고    scopus 로고
    • Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae
    • Davidson J.F., and Schiestl R.H. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol. Cell. Biol. 21 (2001) 8483-8489
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 8483-8489
    • Davidson, J.F.1    Schiestl, R.H.2
  • 27
    • 0023561970 scopus 로고
    • The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism
    • De Vries S., and Marres C.A.M. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895 (1987) 205-239
    • (1987) Biochim. Biophys. Acta , vol.895 , pp. 205-239
    • De Vries, S.1    Marres, C.A.M.2
  • 28
    • 2642671097 scopus 로고    scopus 로고
    • The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae
    • Larsson C., Pahlman I.L., Ansell R., Rigoulet M., Adler L., and Gustafsson L. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14 (1998) 347-357
    • (1998) Yeast , vol.14 , pp. 347-357
    • Larsson, C.1    Pahlman, I.L.2    Ansell, R.3    Rigoulet, M.4    Adler, L.5    Gustafsson, L.6
  • 29
    • 0037441390 scopus 로고    scopus 로고
    • External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide
    • Fang J., and Beattie D.S. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34 (2003) 478-488
    • (2003) Free Radic. Biol. Med. , vol.34 , pp. 478-488
    • Fang, J.1    Beattie, D.S.2
  • 30
    • 0017154414 scopus 로고
    • Role of ubiquinone in the mitochondrial generation of hydrogen peroxide
    • Boveris A., Cadenas E., and Stoppani A.O. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156 (1976) 435-444
    • (1976) Biochem. J. , vol.156 , pp. 435-444
    • Boveris, A.1    Cadenas, E.2    Stoppani, A.O.3
  • 31
    • 0034467677 scopus 로고    scopus 로고
    • Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria
    • Herrero A., and Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32 (2000) 609-615
    • (2000) J. Bioenerg. Biomembr. , vol.32 , pp. 609-615
    • Herrero, A.1    Barja, G.2
  • 32
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • Lambert A.J., and Brand M.D. Inhibitors of the quinone binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279 (2004) 39414-39420
    • (2004) J. Biol. Chem. , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 33
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport
    • Liu Y., Fiskum G., and Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport. J. Neurochem. 80 (2002) 780-787
    • (2002) J. Neurochem. , vol.80 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 34
    • 0037229425 scopus 로고    scopus 로고
    • Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation
    • Sherer T.B., Kim J.H., Betarbet R., and Greenamyre J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179 (2003) 9-16
    • (2003) Exp. Neurol. , vol.179 , pp. 9-16
    • Sherer, T.B.1    Kim, J.H.2    Betarbet, R.3    Greenamyre, J.T.4
  • 35
    • 0034282468 scopus 로고    scopus 로고
    • Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae
    • Cabiscol E., Piulats E., Echave P., Herrero E., and Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 27393-27398
    • (2000) J. Biol. Chem. , vol.275 , pp. 27393-27398
    • Cabiscol, E.1    Piulats, E.2    Echave, P.3    Herrero, E.4    Ros, J.5
  • 36
  • 38
    • 0035797151 scopus 로고    scopus 로고
    • Mitochondria as subcellular targets for clinically useful anthracyclines
    • Jung K., and Reszka B. Mitochondria as subcellular targets for clinically useful anthracyclines. Adv. Drug Deliv. Rev. 49 (2001) 87-105
    • (2001) Adv. Drug Deliv. Rev. , vol.49 , pp. 87-105
    • Jung, K.1    Reszka, B.2
  • 39
    • 0038160860 scopus 로고    scopus 로고
    • 2 generation in Saccharomyces cerevisiae respiratory pet mutants: effect of cytochrome c
    • 2 generation in Saccharomyces cerevisiae respiratory pet mutants: effect of cytochrome c. Free Radic. Biol. Med. 35 (2003) 179-188
    • (2003) Free Radic. Biol. Med. , vol.35 , pp. 179-188
    • Barros, M.1    Netto, L.E.S.2    Kowaltowski, A.J.3
  • 40
    • 0346850862 scopus 로고    scopus 로고
    • The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide
    • Guo J., and Lemire B.D. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J. Biol. Chem. 278 (2003) 47629-47635
    • (2003) J. Biol. Chem. , vol.278 , pp. 47629-47635
    • Guo, J.1    Lemire, B.D.2
  • 41
    • 0030003064 scopus 로고    scopus 로고
    • Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
    • Schmitt A.P., and McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 5777-5782
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 5777-5782
    • Schmitt, A.P.1    McEntee, K.2
  • 43
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • Lin M.T., and Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 (2006) 787-795
    • (2006) Nature , vol.443 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 44
    • 0030038103 scopus 로고    scopus 로고
    • Oxidative stress, caloric restriction, and aging
    • Sohal R.S., and Weindruch R. Oxidative stress, caloric restriction, and aging. Science 273 (1996) 59-63
    • (1996) Science , vol.273 , pp. 59-63
    • Sohal, R.S.1    Weindruch, R.2
  • 46
    • 3843151554 scopus 로고    scopus 로고
    • Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction
    • Reverter-Branchat G., Cabiscol E., Tamarit J., and Ros J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J. Biol. Chem. 279 (2004) 31983-31989
    • (2004) J. Biol. Chem. , vol.279 , pp. 31983-31989
    • Reverter-Branchat, G.1    Cabiscol, E.2    Tamarit, J.3    Ros, J.4
  • 48
    • 27644530546 scopus 로고    scopus 로고
    • Protein translocation machineries: how organelles bring in matrix proteins
    • Gunkel K., Veenhuis M., and van der Klei I.J. Protein translocation machineries: how organelles bring in matrix proteins. FEMS Yeast Res. 5 (2005) 1037-1045
    • (2005) FEMS Yeast Res. , vol.5 , pp. 1037-1045
    • Gunkel, K.1    Veenhuis, M.2    van der Klei, I.J.3
  • 49
    • 0027369594 scopus 로고
    • A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids
    • Filipits M., Simon M.M., Rapatz W., Hamilton B., and Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene 132 (1993) 49-55
    • (1993) Gene , vol.132 , pp. 49-55
    • Filipits, M.1    Simon, M.M.2    Rapatz, W.3    Hamilton, B.4    Ruis, H.5
  • 51
    • 0019787519 scopus 로고
    • Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis
    • Ames B.N., Cathcart R., Schwiers E., and Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. U. S. A. 78 (1981) 6858-6862
    • (1981) Proc. Natl. Acad. Sci. U. S. A. , vol.78 , pp. 6858-6862
    • Ames, B.N.1    Cathcart, R.2    Schwiers, E.3    Hochstein, P.4
  • 52
    • 0346100345 scopus 로고    scopus 로고
    • Free radical-mediated oxidation of free amino acids and amino acid residues in proteins
    • Stadtman E.R., and Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25 (2003) 207-218
    • (2003) Amino Acids , vol.25 , pp. 207-218
    • Stadtman, E.R.1    Levine, R.L.2
  • 53
    • 14044272119 scopus 로고    scopus 로고
    • S-glutathionylation: from redox regulation of protein functions to human diseases
    • Giustarini D., Rossi R., Milzani A., Colombo R., and Dalle-Donne I. S-glutathionylation: from redox regulation of protein functions to human diseases. J. Cell. Mol. Med. 8 (2004) 201-212
    • (2004) J. Cell. Mol. Med. , vol.8 , pp. 201-212
    • Giustarini, D.1    Rossi, R.2    Milzani, A.3    Colombo, R.4    Dalle-Donne, I.5
  • 54
    • 33750989372 scopus 로고    scopus 로고
    • Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity
    • Lewinska A., and Bartosz G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep. 11 (2006) 231-239
    • (2006) Redox Rep. , vol.11 , pp. 231-239
    • Lewinska, A.1    Bartosz, G.2
  • 55
    • 33845292901 scopus 로고    scopus 로고
    • Peroxisomes and oxidative stress
    • Schrader M., and Fahimi H.D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 1763 (2006) 1755-1766
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 1755-1766
    • Schrader, M.1    Fahimi, H.D.2
  • 57
    • 33645560710 scopus 로고    scopus 로고
    • Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signalling in eukaryotes
    • Castello P.R., David P.S., McClure T., Crook Z., and Poyton R.O. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signalling in eukaryotes. Cell Metab. 3 (2006) 277-287
    • (2006) Cell Metab. , vol.3 , pp. 277-287
    • Castello, P.R.1    David, P.S.2    McClure, T.3    Crook, Z.4    Poyton, R.O.5
  • 58
    • 33746366221 scopus 로고    scopus 로고
    • The existence and significance of a mitochondrial nitrite reductase
    • Nohl H., Staniek K., and Kozlov A.V. The existence and significance of a mitochondrial nitrite reductase. Redox Rep. 10 (2005) 281-286
    • (2005) Redox Rep. , vol.10 , pp. 281-286
    • Nohl, H.1    Staniek, K.2    Kozlov, A.V.3
  • 60
    • 0029053451 scopus 로고
    • Superoxide radical and superoxide dismutases
    • Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64 (1995) 97-112
    • (1995) Annu. Rev. Biochem. , vol.64 , pp. 97-112
    • Fridovich, I.1
  • 61
    • 33746932518 scopus 로고    scopus 로고
    • Activation of superoxide dismutases: putting the metal to the pedal
    • Culotta V.C., Yang M., and O'Halloran T.V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim. Biophys. Acta 1763 (2006) 747-758
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 747-758
    • Culotta, V.C.1    Yang, M.2    O'Halloran, T.V.3
  • 62
    • 0035851122 scopus 로고    scopus 로고
    • A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage
    • Sturtz L.A., Diekert K., Jensen L.T., Lill R., and Culotta V.C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276 (2001) 38084-38089
    • (2001) J. Biol. Chem. , vol.276 , pp. 38084-38089
    • Sturtz, L.A.1    Diekert, K.2    Jensen, L.T.3    Lill, R.4    Culotta, V.C.5
  • 63
    • 0041344579 scopus 로고    scopus 로고
    • Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria
    • Field L.S., Furukawa Y., O'Halloran T.V., and Culotta V.C. Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J. Biol. Chem. (2003) 28052-28059
    • (2003) J. Biol. Chem. , pp. 28052-28059
    • Field, L.S.1    Furukawa, Y.2    O'Halloran, T.V.3    Culotta, V.C.4
  • 64
    • 0035863011 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space
    • Han D., Williams E., and Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353 (2001) 411-416
    • (2001) Biochem. J. , vol.353 , pp. 411-416
    • Han, D.1    Williams, E.2    Cadenas, E.3
  • 65
    • 0039604509 scopus 로고
    • A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen
    • van Loon A.P., Pesold-Hurt B., and Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 3820-3824
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , pp. 3820-3824
    • van Loon, A.P.1    Pesold-Hurt, B.2    Schatz, G.3
  • 66
    • 0027426263 scopus 로고
    • 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia
    • 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. J. Biol. Chem. 268 (1993) 26699-26703
    • (1993) J. Biol. Chem. , vol.268 , pp. 26699-26703
    • Guidot, D.M.1    McCord, J.M.2    Wright, R.M.3    Repine, J.E.4
  • 67
    • 0030997844 scopus 로고    scopus 로고
    • Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase
    • Costa V., Amorim M.A., Reis E., Quintanilha A., and Moradas-Ferreira P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 (1997) 1649-1656
    • (1997) Microbiology , vol.143 , pp. 1649-1656
    • Costa, V.1    Amorim, M.A.2    Reis, E.3    Quintanilha, A.4    Moradas-Ferreira, P.5
  • 68
    • 0025938799 scopus 로고
    • Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates
    • Gralla E.B., and Valentine J.S. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J. Bacteriol. 173 (1991) 5918-5920
    • (1991) J. Bacteriol. , vol.173 , pp. 5918-5920
    • Gralla, E.B.1    Valentine, J.S.2
  • 70
    • 15844429977 scopus 로고    scopus 로고
    • Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic species in vivo
    • Longo V.D., Gralla E.B., and Valentine J.S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic species in vivo. J. Biol. Chem. 271 (1996) 12275-12280
    • (1996) J. Biol. Chem. , vol.271 , pp. 12275-12280
    • Longo, V.D.1    Gralla, E.B.2    Valentine, J.S.3
  • 71
    • 0029828902 scopus 로고    scopus 로고
    • The yeast Cu,Zn superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
    • Slekar K.H., Kosman D.J., and Culotta V.C. The yeast Cu,Zn superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271 (1996) 28831-28836
    • (1996) J. Biol. Chem. , vol.271 , pp. 28831-28836
    • Slekar, K.H.1    Kosman, D.J.2    Culotta, V.C.3
  • 72
    • 3142732809 scopus 로고    scopus 로고
    • Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly gens and oxidative stress relevant to Cu,Zn superoxide dismutase
    • Jensen L.T., Sanchez R.J., Srinivasan C., Valentine J.S., and Culotta V.C. Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly gens and oxidative stress relevant to Cu,Zn superoxide dismutase. J. Biol. Chem. 279 (2004) 29938-29943
    • (2004) J. Biol. Chem. , vol.279 , pp. 29938-29943
    • Jensen, L.T.1    Sanchez, R.J.2    Srinivasan, C.3    Valentine, J.S.4    Culotta, V.C.5
  • 73
    • 3543029884 scopus 로고    scopus 로고
    • Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS
    • Furukawa Y., Torres A.S., and O'Halloran T.V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23 (2004) 2872-2881
    • (2004) EMBO J. , vol.23 , pp. 2872-2881
    • Furukawa, Y.1    Torres, A.S.2    O'Halloran, T.V.3
  • 74
    • 33646486372 scopus 로고    scopus 로고
    • Disulfide cross-linked protein represents a significant fraction of ALS-associated SOD1 aggregates in spinal cords of model mice
    • Furukawa Y., Fu R., Deng H.X., Siddique T., and O'Halloran T.V. Disulfide cross-linked protein represents a significant fraction of ALS-associated SOD1 aggregates in spinal cords of model mice. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 7148-7153
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 7148-7153
    • Furukawa, Y.1    Fu, R.2    Deng, H.X.3    Siddique, T.4    O'Halloran, T.V.5
  • 77
    • 0027369594 scopus 로고
    • A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids
    • Filipits M., Simon M.M., Rapatz W., Hamilton B., and Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene (1993) 49-55
    • (1993) Gene , pp. 49-55
    • Filipits, M.1    Simon, M.M.2    Rapatz, W.3    Hamilton, B.4    Ruis, H.5
  • 78
    • 0029844594 scopus 로고    scopus 로고
    • Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasemic Saccharomyces cerevisiae
    • Izawa S., Inoue Y., and Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasemic Saccharomyces cerevisiae. J. Biochem. 320 (1996) 61-67
    • (1996) J. Biochem. , vol.320 , pp. 61-67
    • Izawa, S.1    Inoue, Y.2    Kimura, A.3
  • 79
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE)
    • Martínez-Pastor M.T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., and Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15 (1996) 2227-2235
    • (1996) EMBO J. , vol.15 , pp. 2227-2235
    • Martínez-Pastor, M.T.1    Marchler, G.2    Schüller, C.3    Marchler-Bauer, A.4    Ruis, H.5    Estruch, F.6
  • 80
    • 33845298638 scopus 로고    scopus 로고
    • Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast
    • Izawa S., Ikeda K., Ohdate T., and Inoue Y. Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem. Biophys. Res. Commun. 352 (2007) 750-755
    • (2007) Biochem. Biophys. Res. Commun. , vol.352 , pp. 750-755
    • Izawa, S.1    Ikeda, K.2    Ohdate, T.3    Inoue, Y.4
  • 82
    • 0037633096 scopus 로고    scopus 로고
    • Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents
    • Nakagawa Y., Kanbe T., and Mizuguchi I. Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol. Immunol. 47 (2003) 395-403
    • (2003) Microbiol. Immunol. , vol.47 , pp. 395-403
    • Nakagawa, Y.1    Kanbe, T.2    Mizuguchi, I.3
  • 83
    • 0037847543 scopus 로고    scopus 로고
    • Stress-induced gene expression in Candida albicans: absence of a general stress response
    • Enjalbert B., Nantel A., and Whiteway M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14 (2003) 1460-1467
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1460-1467
    • Enjalbert, B.1    Nantel, A.2    Whiteway, M.3
  • 84
    • 34248327805 scopus 로고    scopus 로고
    • Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans
    • Enjalbert B., MacCallum D.M., Odds F.C., and Brown A.J.P. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 75 (2007) 2143-2151
    • (2007) Infect. Immun. , vol.75 , pp. 2143-2151
    • Enjalbert, B.1    MacCallum, D.M.2    Odds, F.C.3    Brown, A.J.P.4
  • 85
    • 0036854503 scopus 로고    scopus 로고
    • Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence
    • Hwang C.S., Rhie G.E., Oh J.H., Huh W.K., Yim H.S., and Kang S.O. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148 (2002) 3705-3713
    • (2002) Microbiology , vol.148 , pp. 3705-3713
    • Hwang, C.S.1    Rhie, G.E.2    Oh, J.H.3    Huh, W.K.4    Yim, H.S.5    Kang, S.O.6
  • 86
  • 87
    • 0742288065 scopus 로고    scopus 로고
    • Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene
    • Martchenko M., Alarco A.M., Harcus D., and Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15 (2004) 456-467
    • (2004) Mol. Biol. Cell , vol.15 , pp. 456-467
    • Martchenko, M.1    Alarco, A.M.2    Harcus, D.3    Whiteway, M.4
  • 88
    • 0032583570 scopus 로고    scopus 로고
    • Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
    • Grant C.M., Perrone G., and Dawes I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998) 893-898
    • (1998) Biochem. Biophys. Res. Commun. , vol.253 , pp. 893-898
    • Grant, C.M.1    Perrone, G.2    Dawes, I.W.3
  • 89
    • 33750629812 scopus 로고    scopus 로고
    • Glutathione peroxidases and redox-regulated transcription factors
    • Brihelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 387 (2006) 1329-1335
    • (2006) Biol. Chem. , vol.387 , pp. 1329-1335
    • Brihelius-Flohe, R.1
  • 90
    • 0033578750 scopus 로고    scopus 로고
    • Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
    • Inoue Y., Matsuda T., Sugiyama K.I., Izawa S., and Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274 (1999) 27002-27009
    • (1999) J. Biol. Chem. , vol.274 , pp. 27002-27009
    • Inoue, Y.1    Matsuda, T.2    Sugiyama, K.I.3    Izawa, S.4    Kimura, A.5
  • 91
    • 0035823498 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases
    • Avery A.M., and Avery S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276 (2001) 33730-33735
    • (2001) J. Biol. Chem. , vol.276 , pp. 33730-33735
    • Avery, A.M.1    Avery, S.V.2
  • 92
    • 8744228201 scopus 로고    scopus 로고
    • Genetic dissection of the phospholipids hydroperoxidase activity of yeast Gpx3 reveals its functional importance
    • Avery A.M., Willetts S.A., and Avery S.V. Genetic dissection of the phospholipids hydroperoxidase activity of yeast Gpx3 reveals its functional importance. J. Biol. Chem. 279 (2004) 46652-46658
    • (2004) J. Biol. Chem. , vol.279 , pp. 46652-46658
    • Avery, A.M.1    Willetts, S.A.2    Avery, S.V.3
  • 93
    • 3142756539 scopus 로고    scopus 로고
    • Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminium resistance in Saccharomyces cerevisiae
    • Basu U., Southron J.L., Stephens J.L., and Taylor G.J. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminium resistance in Saccharomyces cerevisiae. Mol. Gen. Genomics 271 (2004) 627-637
    • (2004) Mol. Gen. Genomics , vol.271 , pp. 627-637
    • Basu, U.1    Southron, J.L.2    Stephens, J.L.3    Taylor, G.J.4
  • 96
    • 2342657879 scopus 로고    scopus 로고
    • D. Tsuzi, K. Maeta, Y. Takatsume, S. Igawa, Y. Inoue, Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7, FEBS Lett. 565 (2004) 148-154.
    • D. Tsuzi, K. Maeta, Y. Takatsume, S. Igawa, Y. Inoue, Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7, FEBS Lett. 565 (2004) 148-154.
  • 98
    • 29744463864 scopus 로고    scopus 로고
    • GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae
    • Tanaka T., Izawa S., and Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280 (2005) 42078-42087
    • (2005) J. Biol. Chem. , vol.280 , pp. 42078-42087
    • Tanaka, T.1    Izawa, S.2    Inoue, Y.3
  • 100
    • 33748347924 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases active as 1-Cys thiol transferases
    • Garcerá A., Barreto L., Piedrafita L., Tamarit J., and Herrero E. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases active as 1-Cys thiol transferases. Biochem. J. 398 (2006) 187-196
    • (2006) Biochem. J. , vol.398 , pp. 187-196
    • Garcerá, A.1    Barreto, L.2    Piedrafita, L.3    Tamarit, J.4    Herrero, E.5
  • 101
    • 31944434598 scopus 로고    scopus 로고
    • Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
    • Enjalbert B., Cornell M.J., Alam I., Nicholls S., Brown A.J.P., and Quinn J. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17 (2006) 1018-1032
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1018-1032
    • Enjalbert, B.1    Cornell, M.J.2    Alam, I.3    Nicholls, S.4    Brown, A.J.P.5    Quinn, J.6
  • 102
    • 6344285788 scopus 로고    scopus 로고
    • Transcriptional response of Candida albicans upon internalization by macrophages
    • Lorenz M.C., Bender J.A., and Fink G.R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3 (2003) 1076-1087
    • (2003) Eukaryot. Cell , vol.3 , pp. 1076-1087
    • Lorenz, M.C.1    Bender, J.A.2    Fink, G.R.3
  • 103
    • 23844498015 scopus 로고    scopus 로고
    • Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates
    • Missall T.A., Cherry-Harris J.F., and Lodge J.K. Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151 (2005) 2573-2581
    • (2005) Microbiology , vol.151 , pp. 2573-2581
    • Missall, T.A.1    Cherry-Harris, J.F.2    Lodge, J.K.3
  • 105
    • 19444375216 scopus 로고    scopus 로고
    • Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling
    • Rhee S.G., Chae H.Z., and Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Rad. Biol. Med. 38 (2005) 1543-1552
    • (2005) Free Rad. Biol. Med. , vol.38 , pp. 1543-1552
    • Rhee, S.G.1    Chae, H.Z.2    Kim, K.3
  • 106
    • 0000056465 scopus 로고    scopus 로고
    • Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae
    • Park S.G., Cha M.K., Jeong W., and Kim I.K. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 5723-5732
    • (2000) J. Biol. Chem. , vol.275 , pp. 5723-5732
    • Park, S.G.1    Cha, M.K.2    Jeong, W.3    Kim, I.K.4
  • 107
    • 0037085384 scopus 로고    scopus 로고
    • Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress
    • Wong C.M., Zhou Y., Ng R.W.M., Kung H., and Jin D.Y. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277 (2002) 5385-5394
    • (2002) J. Biol. Chem. , vol.277 , pp. 5385-5394
    • Wong, C.M.1    Zhou, Y.2    Ng, R.W.M.3    Kung, H.4    Jin, D.Y.5
  • 108
    • 33845917628 scopus 로고    scopus 로고
    • Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
    • Ogusucu R., Rettori D., Munhoz D.C., Netto L.E.S., and Augusto O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Rad. Biol. Med. 42 (2007) 326-334
    • (2007) Free Rad. Biol. Med. , vol.42 , pp. 326-334
    • Ogusucu, R.1    Rettori, D.2    Munhoz, D.C.3    Netto, L.E.S.4    Augusto, O.5
  • 109
    • 4143074740 scopus 로고    scopus 로고
    • Cytosolic thioredoxin peroxidases I and II are important defenses of yeast against organic hydroperoxide insult
    • Munhoz D.C., and Netto L.E.S. Cytosolic thioredoxin peroxidases I and II are important defenses of yeast against organic hydroperoxide insult. J. Biol. Chem. 279 (2004) 35219-35227
    • (2004) J. Biol. Chem. , vol.279 , pp. 35219-35227
    • Munhoz, D.C.1    Netto, L.E.S.2
  • 110
    • 0034717135 scopus 로고    scopus 로고
    • Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity
    • Pedrajas J.R., Miranda-Vizuete A., Javanmardy N., Gustafsson J.A., and Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275 (2000) 16296-16301
    • (2000) J. Biol. Chem. , vol.275 , pp. 16296-16301
    • Pedrajas, J.R.1    Miranda-Vizuete, A.2    Javanmardy, N.3    Gustafsson, J.A.4    Spyrou, G.5
  • 111
    • 2542504409 scopus 로고    scopus 로고
    • Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable
    • Wong C.M., Siu K.L., and Jin D.Y. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279 (2004) 23207-23213
    • (2004) J. Biol. Chem. , vol.279 , pp. 23207-23213
    • Wong, C.M.1    Siu, K.L.2    Jin, D.Y.3
  • 112
    • 33644932478 scopus 로고    scopus 로고
    • Yeast oxidative stress response: influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state
    • Demasi A.P.D., Pereira G.A.G., and Netto L.E.S. Yeast oxidative stress response: influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J. 273 (2006) 805-816
    • (2006) FEBS J. , vol.273 , pp. 805-816
    • Demasi, A.P.D.1    Pereira, G.A.G.2    Netto, L.E.S.3
  • 113
    • 34047243851 scopus 로고    scopus 로고
    • Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency
    • Wu C.Y., Bird A.J., Winge D.R., and Eide D.J. Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282 (2007) 2184-2195
    • (2007) J. Biol. Chem. , vol.282 , pp. 2184-2195
    • Wu, C.Y.1    Bird, A.J.2    Winge, D.R.3    Eide, D.J.4
  • 114
    • 0037026866 scopus 로고    scopus 로고
    • Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion
    • Nguyen-nhu N.T., and Knoops B. Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol. Lett. 135 (2002) 219-228
    • (2002) Toxicol. Lett. , vol.135 , pp. 219-228
    • Nguyen-nhu, N.T.1    Knoops, B.2
  • 116
    • 0042706146 scopus 로고    scopus 로고
    • Moonlighting proteins: old proteins learning new tricks
    • Jeffery C.J. Moonlighting proteins: old proteins learning new tricks. Trends Genet. 19 (2003) 415-417
    • (2003) Trends Genet. , vol.19 , pp. 415-417
    • Jeffery, C.J.1
  • 118
    • 1642268643 scopus 로고    scopus 로고
    • Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing
    • Izawa S., Kuroki K., and Inoue Y. Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing. Appl. Microbiol. Biotechnol. 64 (2004) 120-124
    • (2004) Appl. Microbiol. Biotechnol. , vol.64 , pp. 120-124
    • Izawa, S.1    Kuroki, K.2    Inoue, Y.3
  • 119
    • 23844556478 scopus 로고    scopus 로고
    • The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans
    • Urban C., Xiong X., Sohn K., Schröpel K., Brunner H., and Rupp S. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol. Microbiol. 57 (2005) 1318-1341
    • (2005) Mol. Microbiol. , vol.57 , pp. 1318-1341
    • Urban, C.1    Xiong, X.2    Sohn, K.3    Schröpel, K.4    Brunner, H.5    Rupp, S.6
  • 120
    • 0034955016 scopus 로고    scopus 로고
    • Micronutrients: oxidant/antioxidant status
    • Evans P., and Halliwell B. Micronutrients: oxidant/antioxidant status. Br. J. Nutr. 85 Suppl 2 (2001) S67-S74
    • (2001) Br. J. Nutr. , vol.85 , Issue.SUPPL. 2
    • Evans, P.1    Halliwell, B.2
  • 122
    • 34247604468 scopus 로고    scopus 로고
    • Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C
    • Monteiro G., Horta B.B., Pimenta D.C., Augusto O., and Netto L.E. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 4886-4891
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 4886-4891
    • Monteiro, G.1    Horta, B.B.2    Pimenta, D.C.3    Augusto, O.4    Netto, L.E.5
  • 123
    • 0034607625 scopus 로고    scopus 로고
    • Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae
    • Hancock R.D., Galpin J.R., and Viola R. Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol. Lett. 186 (2000) 245-250
    • (2000) FEMS Microbiol. Lett. , vol.186 , pp. 245-250
    • Hancock, R.D.1    Galpin, J.R.2    Viola, R.3
  • 124
    • 0023722640 scopus 로고
    • Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides in solution
    • Mukai K., Kohno Y., and Ishizu K. Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides in solution. Biochem. Biophys. Res. Commun. 155 (1988) 1046-1050
    • (1988) Biochem. Biophys. Res. Commun. , vol.155 , pp. 1046-1050
    • Mukai, K.1    Kohno, Y.2    Ishizu, K.3
  • 125
    • 14844342861 scopus 로고    scopus 로고
    • Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid)
    • Raspor P., Plesnicar S., Gazdag Z., Pesti M., Miklavcic M., Lah B., Logar-Marinsek R., and Poljsak B. Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biol. Int. 29 (2005) 57-63
    • (2005) Cell Biol. Int. , vol.29 , pp. 57-63
    • Raspor, P.1    Plesnicar, S.2    Gazdag, Z.3    Pesti, M.4    Miklavcic, M.5    Lah, B.6    Logar-Marinsek, R.7    Poljsak, B.8
  • 127
    • 0022683672 scopus 로고
    • Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?
    • Carlioz A., and Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. EMBO J. 5 (1986) 623-630
    • (1986) EMBO J. , vol.5 , pp. 623-630
    • Carlioz, A.1    Touati, D.2
  • 128
    • 33744960105 scopus 로고    scopus 로고
    • Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia
    • Irazusta V., Cabiscol E., Reverter-Branchat G., Ros J., and Tamarit J. Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia. J. Biol. Chem. 281 (2006) 12227-12232
    • (2006) J. Biol. Chem. , vol.281 , pp. 12227-12232
    • Irazusta, V.1    Cabiscol, E.2    Reverter-Branchat, G.3    Ros, J.4    Tamarit, J.5
  • 129
    • 0041335593 scopus 로고    scopus 로고
    • Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family
    • Luk E., Carroll M., Baker M., and Culotta V.C. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10353-10357
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 10353-10357
    • Luk, E.1    Carroll, M.2    Baker, M.3    Culotta, V.C.4
  • 131
    • 0032898512 scopus 로고    scopus 로고
    • The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague
    • Bearden S.W., and Perry R.D. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32 (1999) 403-414
    • (1999) Mol. Microbiol. , vol.32 , pp. 403-414
    • Bearden, S.W.1    Perry, R.D.2
  • 132
    • 0034011567 scopus 로고    scopus 로고
    • The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium
    • Janakiraman A., and Slauch J.M. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35 (2000) 1146-1155
    • (2000) Mol. Microbiol. , vol.35 , pp. 1146-1155
    • Janakiraman, A.1    Slauch, J.M.2
  • 133
    • 0033767925 scopus 로고    scopus 로고
    • Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress
    • Carmel-Harel O., and Storz G. Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54 (2000) 439-461
    • (2000) Annu. Rev. Microbiol. , vol.54 , pp. 439-461
    • Carmel-Harel, O.1    Storz, G.2
  • 134
    • 1642547105 scopus 로고    scopus 로고
    • Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae
    • Wheeler G.L., and Grant C.M. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol. Plant. 120 (2004) 12-20
    • (2004) Physiol. Plant. , vol.120 , pp. 12-20
    • Wheeler, G.L.1    Grant, C.M.2
  • 135
    • 0032411723 scopus 로고    scopus 로고
    • The genetics of disulphide bond metabolism
    • Rietsch A., and Beckwith J. The genetics of disulphide bond metabolism. Annu. Rev. Genet. 32 (1998) 163-184
    • (1998) Annu. Rev. Genet. , vol.32 , pp. 163-184
    • Rietsch, A.1    Beckwith, J.2
  • 136
    • 0029165589 scopus 로고
    • Thioredoxin-a fold for all reasons
    • Martin J.L. Thioredoxin-a fold for all reasons. Structure 3 (1995) 245-250
    • (1995) Structure , vol.3 , pp. 245-250
    • Martin, J.L.1
  • 137
    • 0026020092 scopus 로고
    • Yeast thioredoxin genes
    • Gan Z.R. Yeast thioredoxin genes. J. Biol. Chem. 266 (1991) 1692-1696
    • (1991) J. Biol. Chem. , vol.266 , pp. 1692-1696
    • Gan, Z.R.1
  • 138
    • 0033525509 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae
    • Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustaffson J.A., Wright A.P.H., and Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274 (1999) 6566-6573
    • (1999) J. Biol. Chem. , vol.274 , pp. 6566-6573
    • Pedrajas, J.R.1    Kosmidou, E.2    Miranda-Vizuete, A.3    Gustaffson, J.A.4    Wright, A.P.H.5    Spyrou, G.6
  • 139
    • 0025740886 scopus 로고
    • Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle
    • Muller E.G.D. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J. Biol. Chem. 266 (1991) 9194-9202
    • (1991) J. Biol. Chem. , vol.266 , pp. 9194-9202
    • Muller, E.G.D.1
  • 140
    • 13844313006 scopus 로고    scopus 로고
    • Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae
    • Trotter E.W., and Grant C.M. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot. Cell 4 (2005) 392-400
    • (2005) Eukaryot. Cell , vol.4 , pp. 392-400
    • Trotter, E.W.1    Grant, C.M.2
  • 141
    • 33847637126 scopus 로고    scopus 로고
    • Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast
    • Camier S., Ma E., Leroy C., Pruvost A., Toledano M., and Marsolier-Kergoat M.C. Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast. Free Rad. Biol. Med. 42 (2007) 1008-1016
    • (2007) Free Rad. Biol. Med. , vol.42 , pp. 1008-1016
    • Camier, S.1    Ma, E.2    Leroy, C.3    Pruvost, A.4    Toledano, M.5    Marsolier-Kergoat, M.C.6
  • 142
    • 33744960023 scopus 로고    scopus 로고
    • Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase
    • Koc A., Mathews C.K., Wheeler L.J., Gross M.K., and Merrill G.F. Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. J. Biol. Chem. 281 (2006) 15058-15063
    • (2006) J. Biol. Chem. , vol.281 , pp. 15058-15063
    • Koc, A.1    Mathews, C.K.2    Wheeler, L.J.3    Gross, M.K.4    Merrill, G.F.5
  • 143
    • 0037166354 scopus 로고    scopus 로고
    • Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase and function
    • Potamitou A., Holmgren A., and Vlamis-Gardikas A. Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase and function. J. Biol. Chem. 277 (2002) 18561-18567
    • (2002) J. Biol. Chem. , vol.277 , pp. 18561-18567
    • Potamitou, A.1    Holmgren, A.2    Vlamis-Gardikas, A.3
  • 144
    • 0036227450 scopus 로고    scopus 로고
    • Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides
    • Ocón-Garrido E., and Grant C.M. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol. Microbiol. 43 (2002) 993-1003
    • (2002) Mol. Microbiol. , vol.43 , pp. 993-1003
    • Ocón-Garrido, E.1    Grant, C.M.2
  • 145
    • 33747761623 scopus 로고    scopus 로고
    • The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen
    • Brombacher K., Fischer B.B., Rüfenacht K., and Eggen R.I.L. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Yeast 23 (2006) 741-750
    • (2006) Yeast , vol.23 , pp. 741-750
    • Brombacher, K.1    Fischer, B.B.2    Rüfenacht, K.3    Eggen, R.I.L.4
  • 146
  • 147
    • 0036435926 scopus 로고    scopus 로고
    • Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae
    • Trotter E.W., and Grant C.M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 46 (2002) 869-878
    • (2002) Mol. Microbiol. , vol.46 , pp. 869-878
    • Trotter, E.W.1    Grant, C.M.2
  • 148
    • 30044436319 scopus 로고    scopus 로고
    • The thioredoxin system protects ribosomes against stress-induced aggregation
    • Rand J.D., and Grant C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 17 (2006) 387-401
    • (2006) Mol. Biol. Cell , vol.17 , pp. 387-401
    • Rand, J.D.1    Grant, C.M.2
  • 149
    • 34447518686 scopus 로고    scopus 로고
    • The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis
    • Toledano M.B., Kumar C., Le Moan N., Spector D., and Tacnet F. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett. 581 (2007) 3598-3607
    • (2007) FEBS Lett. , vol.581 , pp. 3598-3607
    • Toledano, M.B.1    Kumar, C.2    Le Moan, N.3    Spector, D.4    Tacnet, F.5
  • 150
    • 0031719952 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
    • Luikenhuis S., Perrone G., Dawes I.W., and Grant C.M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell 9 (1998) 1081-1091
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1081-1091
    • Luikenhuis, S.1    Perrone, G.2    Dawes, I.W.3    Grant, C.M.4
  • 151
    • 33745210793 scopus 로고    scopus 로고
    • One single in-frame AUG codon is responsible for a diversity of subcellular localizations for glutaredoxin 2 in Saccharomyces cerevisiae
    • Porras P., Padilla C.A., Krayl M., Voos W., and Bárcena J.A. One single in-frame AUG codon is responsible for a diversity of subcellular localizations for glutaredoxin 2 in Saccharomyces cerevisiae. J. Biol. Chem. 281 (2006) 16551-16562
    • (2006) J. Biol. Chem. , vol.281 , pp. 16551-16562
    • Porras, P.1    Padilla, C.A.2    Krayl, M.3    Voos, W.4    Bárcena, J.A.5
  • 152
    • 0037053371 scopus 로고    scopus 로고
    • Role of yeast glutaredoxins as glutathione S-transferases
    • Collinson E.J., and Grant C.M. Role of yeast glutaredoxins as glutathione S-transferases. J. Biol. Chem. 277 (2002) 16712-16717
    • (2002) J. Biol. Chem. , vol.277 , pp. 16712-16717
    • Collinson, E.J.1    Grant, C.M.2
  • 154
    • 5444271187 scopus 로고    scopus 로고
    • The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast
    • Teixeira M.C., Telo J.P., Duarte N.F., and Sá-Correia I. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast. Biochem. Biophys. Res. Commun. 324 (2004) 1101-1107
    • (2004) Biochem. Biophys. Res. Commun. , vol.324 , pp. 1101-1107
    • Teixeira, M.C.1    Telo, J.P.2    Duarte, N.F.3    Sá-Correia, I.4
  • 155
    • 0034076851 scopus 로고    scopus 로고
    • A single glutaredoxin or thioredoxin is essential for viability in the yeast Saccharomyces cerevisiae
    • Draculic T., Dawes I.W., and Grant C.M. A single glutaredoxin or thioredoxin is essential for viability in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 36 (2000) 1167-1174
    • (2000) Mol. Microbiol. , vol.36 , pp. 1167-1174
    • Draculic, T.1    Dawes, I.W.2    Grant, C.M.3
  • 156
    • 0034647748 scopus 로고    scopus 로고
    • Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase
    • Mukhopadhyay R., Shi J., and Rosen B.P. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275 (2000) 21149-21157
    • (2000) J. Biol. Chem. , vol.275 , pp. 21149-21157
    • Mukhopadhyay, R.1    Shi, J.2    Rosen, B.P.3
  • 157
    • 34250731291 scopus 로고    scopus 로고
    • Monothiol glutaredoxins: a common domain for multiple functions
    • Herrero E., and de la Torre-Ruiz M.A. Monothiol glutaredoxins: a common domain for multiple functions. Cell. Mol. Life Sci. 64 (2007) 1518-1530
    • (2007) Cell. Mol. Life Sci. , vol.64 , pp. 1518-1530
    • Herrero, E.1    de la Torre-Ruiz, M.A.2
  • 158
    • 0942268722 scopus 로고    scopus 로고
    • Analysis of the interaction between piD261/Bud32, an evolutionary conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin
    • Lopreiato R., Facchin S., Sartori G., Arrigoni G., Casonato S., Ruzzene M., Pinna L.A., and Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionary conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem. J. 377 (2004) 395-405
    • (2004) Biochem. J. , vol.377 , pp. 395-405
    • Lopreiato, R.1    Facchin, S.2    Sartori, G.3    Arrigoni, G.4    Casonato, S.5    Ruzzene, M.6    Pinna, L.A.7    Carignani, G.8
  • 159
    • 10644242480 scopus 로고    scopus 로고
    • Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins
    • Molina M.M., Bellí G., de la Torre M.A., Rodríguez-Manzaneque M.T., and Herrero E. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J. Biol. Chem. 279 (2004) 51923-51930
    • (2004) J. Biol. Chem. , vol.279 , pp. 51923-51930
    • Molina, M.M.1    Bellí, G.2    de la Torre, M.A.3    Rodríguez-Manzaneque, M.T.4    Herrero, E.5
  • 160
    • 33745872884 scopus 로고    scopus 로고
    • Role of glutaredoxin-3 and glutaredoxin-4 in the iron-regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
    • Ojeda L., Keller G., Mühlenhoff U., Rutherford J.C., Lill R., and Winge D.R. Role of glutaredoxin-3 and glutaredoxin-4 in the iron-regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281 (2006) 17661-17669
    • (2006) J. Biol. Chem. , vol.281 , pp. 17661-17669
    • Ojeda, L.1    Keller, G.2    Mühlenhoff, U.3    Rutherford, J.C.4    Lill, R.5    Winge, D.R.6
  • 161
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • Pujol-Carrión N., Bellí G., Herrero E., Bogues A., and de la Torre-Ruiz M.A. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 119 (2006) 4554-4564
    • (2006) J. Cell Sci. , vol.119 , pp. 4554-4564
    • Pujol-Carrión, N.1    Bellí, G.2    Herrero, E.3    Bogues, A.4    de la Torre-Ruiz, M.A.5
  • 162
    • 0037166279 scopus 로고    scopus 로고
    • Subcellular localisation of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae
    • Yamaguchi-Iwai Y., Ueta R., Fukunaka A., and Sasaki R. Subcellular localisation of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J. Biol. Chem. 277 (2002) 18914-18918
    • (2002) J. Biol. Chem. , vol.277 , pp. 18914-18918
    • Yamaguchi-Iwai, Y.1    Ueta, R.2    Fukunaka, A.3    Sasaki, R.4
  • 163
    • 33745596108 scopus 로고    scopus 로고
    • Genome-wide analysis of plant glutaredoxin systems
    • Rouhier N., Couturier J., and Jacquot J.P. Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 57 (2006) 1685-1696
    • (2006) J. Exp. Bot. , vol.57 , pp. 1685-1696
    • Rouhier, N.1    Couturier, J.2    Jacquot, J.P.3
  • 164
    • 0034695550 scopus 로고    scopus 로고
    • Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interaction protein with a thioredoxin homology domain
    • Witte S., Villalba M., Bi K., Liu Y., Isakov N., and Altman A. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interaction protein with a thioredoxin homology domain. J. Biol. Chem. 275 (2000) 1902-1909
    • (2000) J. Biol. Chem. , vol.275 , pp. 1902-1909
    • Witte, S.1    Villalba, M.2    Bi, K.3    Liu, Y.4    Isakov, N.5    Altman, A.6
  • 166
    • 0036226063 scopus 로고    scopus 로고
    • Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
    • Rodríguez-Manzaneque M.T., Tamarit J., Bellí G., Ros J., and Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13 (2002) 1109-1121
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1109-1121
    • Rodríguez-Manzaneque, M.T.1    Tamarit, J.2    Bellí, G.3    Ros, J.4    Herrero, E.5
  • 167
    • 0141737067 scopus 로고    scopus 로고
    • Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p
    • Mühlenhoff U., Gerber J., Richhardt N., and Lill R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22 (2003) 4815-4825
    • (2003) EMBO J. , vol.22 , pp. 4815-4825
    • Mühlenhoff, U.1    Gerber, J.2    Richhardt, N.3    Lill, R.4
  • 168
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against oxidative damage in Saccharomyces cerevisiae
    • Rodríguez-Manzaneque M.T., Ros J., Cabiscol E., Sorribas A., and Herrero E. Grx5 glutaredoxin plays a central role in protection against oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 (1999) 8180-8190
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8180-8190
    • Rodríguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 169
    • 0037020228 scopus 로고    scopus 로고
    • Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein
    • Bellí G., Polaina J., Tamarit J., de la Torre M.A., Rodríguez-Manzaneque M.T., Ros J., and Herrero E. Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J. Biol. Chem. 277 (2002) 37590-37596
    • (2002) J. Biol. Chem. , vol.277 , pp. 37590-37596
    • Bellí, G.1    Polaina, J.2    Tamarit, J.3    de la Torre, M.A.4    Rodríguez-Manzaneque, M.T.5    Ros, J.6    Herrero, E.7
  • 170
    • 33645990964 scopus 로고    scopus 로고
    • Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria
    • Molina-Navarro M.M., Casas C., Piedrafita L., Bellí G., and Herrero E. Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett. 580 (2006) 2273-2280
    • (2006) FEBS Lett. , vol.580 , pp. 2273-2280
    • Molina-Navarro, M.M.1    Casas, C.2    Piedrafita, L.3    Bellí, G.4    Herrero, E.5
  • 171
    • 33748747966 scopus 로고    scopus 로고
    • AtGRXcp, an Arabidopsis chloroplastic/plastidic glutaredoxin is critical for protection against protein oxidative damage
    • Cheng N.H., Liu J.Z., Brock A., Nelson R.S., and Hirschi K.D. AtGRXcp, an Arabidopsis chloroplastic/plastidic glutaredoxin is critical for protection against protein oxidative damage. J. Biol. Chem. 281 (2006) 26280-26288
    • (2006) J. Biol. Chem. , vol.281 , pp. 26280-26288
    • Cheng, N.H.1    Liu, J.Z.2    Brock, A.3    Nelson, R.S.4    Hirschi, K.D.5
  • 175
    • 0035813229 scopus 로고    scopus 로고
    • Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain
    • Rahlfs S., Fischer M., and Becker K. Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J. Biol. Chem. 276 (2001) 37133-37140
    • (2001) J. Biol. Chem. , vol.276 , pp. 37133-37140
    • Rahlfs, S.1    Fischer, M.2    Becker, K.3
  • 176
    • 0038491193 scopus 로고    scopus 로고
    • Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin
    • Tamarit J., Bellí G., Cabiscol E., Herrero E., and Ros J. Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J. Biol. Chem. 278 (2003) 25745-25751
    • (2003) J. Biol. Chem. , vol.278 , pp. 25745-25751
    • Tamarit, J.1    Bellí, G.2    Cabiscol, E.3    Herrero, E.4    Ros, J.5
  • 177
    • 15744374257 scopus 로고    scopus 로고
    • Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe
    • Chung W.H., Kim K.D., and Roe J.H. Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 330 (2005) 604-610
    • (2005) Biochem. Biophys. Res. Commun. , vol.330 , pp. 604-610
    • Chung, W.H.1    Kim, K.D.2    Roe, J.H.3
  • 178
    • 1542319976 scopus 로고    scopus 로고
    • Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
    • Outten C.E., and Culotta V.C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279 (2004) 7785-7791
    • (2004) J. Biol. Chem. , vol.279 , pp. 7785-7791
    • Outten, C.E.1    Culotta, V.C.2
  • 179
    • 0030004354 scopus 로고    scopus 로고
    • Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    • Grant C.M., MacIver F.H., and Dawes I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29 (1996) 511-515
    • (1996) Curr. Genet. , vol.29 , pp. 511-515
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 180
    • 3543095148 scopus 로고    scopus 로고
    • Monitoring disulfide bond formation in the eukaryotic cytosol
    • Ostergaard H., Tachibana C., and Winther J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166 (2004) 337-345
    • (2004) J. Cell Biol. , vol.166 , pp. 337-345
    • Ostergaard, H.1    Tachibana, C.2    Winther, J.R.3
  • 181
    • 27744574661 scopus 로고    scopus 로고
    • Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae
    • Drakulic T., Temple M.D., Guido R., Jarolim S., Breitenbach M., Attfield P.V., and Dawes I.W. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 1215-1228
    • (2005) FEMS Yeast Res. , vol.5 , pp. 1215-1228
    • Drakulic, T.1    Temple, M.D.2    Guido, R.3    Jarolim, S.4    Breitenbach, M.5    Attfield, P.V.6    Dawes, I.W.7
  • 182
    • 0037297417 scopus 로고    scopus 로고
    • Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems
    • Trotter E.W., and Grant C.M. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep. 4 (2003) 184-188
    • (2003) EMBO Rep. , vol.4 , pp. 184-188
    • Trotter, E.W.1    Grant, C.M.2
  • 183
    • 0029948308 scopus 로고    scopus 로고
    • A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth
    • Muller E.G.D. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7 (1996) 1805-1813
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1805-1813
    • Muller, E.G.D.1
  • 186
    • 33750380347 scopus 로고    scopus 로고
    • A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism
    • Barreto L., Garcerá A., Jansson K., Sunnerhagen P., and Herrero E. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot. Cell 5 (2006) 1748-1759
    • (2006) Eukaryot. Cell , vol.5 , pp. 1748-1759
    • Barreto, L.1    Garcerá, A.2    Jansson, K.3    Sunnerhagen, P.4    Herrero, E.5
  • 187
    • 12844267504 scopus 로고    scopus 로고
    • Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases
    • Moskovitz J. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta 1703 (2005) 213-219
    • (2005) Biochim. Biophys. Acta , vol.1703 , pp. 213-219
    • Moskovitz, J.1
  • 189
    • 34249692347 scopus 로고    scopus 로고
    • Methionine sulfoxide reduction and the aging process
    • Kox A., and Gladyshev V.N. Methionine sulfoxide reduction and the aging process. Ann. N.Y. Acad. Sci. 1100 (2007) 383-386
    • (2007) Ann. N.Y. Acad. Sci. , vol.1100 , pp. 383-386
    • Kox, A.1    Gladyshev, V.N.2
  • 192
    • 34249014672 scopus 로고    scopus 로고
    • Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain
    • Oien D., and Moskovitz J. Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32 (2007) 603-606
    • (2007) Amino Acids , vol.32 , pp. 603-606
    • Oien, D.1    Moskovitz, J.2
  • 193
    • 33646064159 scopus 로고    scopus 로고
    • The yeast cytosolic thioredoxins are involved in the regulation of methionine sulfoxide reductase A
    • Hanbauer I., and Moskovitz J. The yeast cytosolic thioredoxins are involved in the regulation of methionine sulfoxide reductase A. Free Rad. Biol. Med. 40 (2006) 1391-1396
    • (2006) Free Rad. Biol. Med. , vol.40 , pp. 1391-1396
    • Hanbauer, I.1    Moskovitz, J.2
  • 194
    • 33746718025 scopus 로고    scopus 로고
    • Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox-dependent way
    • Kho C.W., Lee P.Y., Bae K.H., Cho S., Lee Z.W., Park B.C., Kang S., Lee D.H., and Park S.G. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox-dependent way. Biochem. Biophys. Res. Commun. 348 (2006) 25-35
    • (2006) Biochem. Biophys. Res. Commun. , vol.348 , pp. 25-35
    • Kho, C.W.1    Lee, P.Y.2    Bae, K.H.3    Cho, S.4    Lee, Z.W.5    Park, B.C.6    Kang, S.7    Lee, D.H.8    Park, S.G.9
  • 195
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch A.P., Spellman P.T., Kao C.M., et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11 (2000) 4241-4257
    • (2000) Mol. Biol. Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3
  • 196
    • 10444257943 scopus 로고    scopus 로고
    • Yeast signalling pathways in the oxidative stress response
    • Ikner A., and Shiozaki K. Yeast signalling pathways in the oxidative stress response. Mutat. Res. 569 (2005) 13-27
    • (2005) Mutat. Res. , vol.569 , pp. 13-27
    • Ikner, A.1    Shiozaki, K.2
  • 197
    • 20444415235 scopus 로고    scopus 로고
    • Complex cellular responses to reactive oxygen species
    • Temple M.D., Perrone G.G., and Dawes I.W. Complex cellular responses to reactive oxygen species. Trends Cell Biol. 15 (2005) 319-326
    • (2005) Trends Cell Biol. , vol.15 , pp. 319-326
    • Temple, M.D.1    Perrone, G.G.2    Dawes, I.W.3
  • 201
    • 0033916138 scopus 로고    scopus 로고
    • The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress
    • Raitt D.C., Johnson A.L., Erkine A.M., Makino K., Morgan B., Gross D.S., and Johnston L.H. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol. Biol. Cell 11 (2000) 2335-2347
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2335-2347
    • Raitt, D.C.1    Johnson, A.L.2    Erkine, A.M.3    Makino, K.4    Morgan, B.5    Gross, D.S.6    Johnston, L.H.7
  • 202
    • 0031048280 scopus 로고    scopus 로고
    • The Skn7 response regulator controls gene expressión in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
    • Morgan B.A., Banks G.R., Toone W.M., Arit D., Kuge S., and Johnston L.H. The Skn7 response regulator controls gene expressión in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16 (1997) 1035-1044
    • (1997) EMBO J. , vol.16 , pp. 1035-1044
    • Morgan, B.A.1    Banks, G.R.2    Toone, W.M.3    Arit, D.4    Kuge, S.5    Johnston, L.H.6
  • 203
    • 0037827692 scopus 로고    scopus 로고
    • Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences
    • Moye-Rowley W.S. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot. Cell 2 (2003) 381-389
    • (2003) Eukaryot. Cell , vol.2 , pp. 381-389
    • Moye-Rowley, W.S.1
  • 204
    • 1842483549 scopus 로고    scopus 로고
    • SKN7 of Candida albicans: mutant construction and phenotype analysis
    • Singh P., Chauhan N., Ghosh A., Dixon F., and Calderone R. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72 (2004) 2390-2394
    • (2004) Infect. Immun. , vol.72 , pp. 2390-2394
    • Singh, P.1    Chauhan, N.2    Ghosh, A.3    Dixon, F.4    Calderone, R.5
  • 205
    • 23344445944 scopus 로고    scopus 로고
    • Identification and characterization of an SKN7 homologue in Cryptococcus neoformans
    • Wormley Jr. F.L., Heinrich G., Millar J.L., Perfect J.R., and Cox G.M. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect. Immun. 73 (2005) 5022-5030
    • (2005) Infect. Immun. , vol.73 , pp. 5022-5030
    • Wormley Jr., F.L.1    Heinrich, G.2    Millar, J.L.3    Perfect, J.R.4    Cox, G.M.5
  • 207
    • 34547901379 scopus 로고    scopus 로고
    • Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response
    • Yamamoto A., Ueda J., Yamamoto N., Hashikawa N., and Sakurai H. Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 6 (2007) 1373-1379
    • (2007) Eukaryot. Cell , vol.6 , pp. 1373-1379
    • Yamamoto, A.1    Ueda, J.2    Yamamoto, N.3    Hashikawa, N.4    Sakurai, H.5
  • 208
    • 9944235916 scopus 로고    scopus 로고
    • The role of cysteine residues as redox-sensitive regulatory switches
    • Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Op. Struct. Biol. 14 (2004) 679-686
    • (2004) Curr. Op. Struct. Biol. , vol.14 , pp. 679-686
    • Barford, D.1
  • 209
    • 0033991496 scopus 로고    scopus 로고
    • Redox sensing by prokaryotic transcription factors
    • Zheng M., and Storz G. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59 (2000) 1-6
    • (2000) Biochem. Pharmacol. , vol.59 , pp. 1-6
    • Zheng, M.1    Storz, G.2
  • 210
    • 0035815274 scopus 로고    scopus 로고
    • Structural basis of the redox switch in the OxyR transcription factor
    • Choi H., Kim S., Mukhopadhyay P., Cho S., Woo J., Storz G., and Ryu S. Structural basis of the redox switch in the OxyR transcription factor. Cell 105 (2001) 103-113
    • (2001) Cell , vol.105 , pp. 103-113
    • Choi, H.1    Kim, S.2    Mukhopadhyay, P.3    Cho, S.4    Woo, J.5    Storz, G.6    Ryu, S.7
  • 211
    • 0035138443 scopus 로고    scopus 로고
    • Role of thioredoxin reductase in the Yap1-dependent response to oxidative stress in Saccharomyces cerevisiae
    • Carmel-Harel O., Stearman R., Gash A.P., Botstein D., Brown P.O., and Storz G. Role of thioredoxin reductase in the Yap1-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39 (2001) 595-605
    • (2001) Mol. Microbiol. , vol.39 , pp. 595-605
    • Carmel-Harel, O.1    Stearman, R.2    Gash, A.P.3    Botstein, D.4    Brown, P.O.5    Storz, G.6
  • 212
    • 0028057226 scopus 로고
    • YAP1-dependent activation of TRX2 is essential for the response of S. cerevisiae to oxidative stress by hydroperoxides
    • Kuge S., and Jones N. YAP1-dependent activation of TRX2 is essential for the response of S. cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13 (1994) 655-664
    • (1994) EMBO J. , vol.13 , pp. 655-664
    • Kuge, S.1    Jones, N.2
  • 213
    • 0028168801 scopus 로고
    • GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulator
    • Wu A., and Moye-Rowley W.S. GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulator. Mol. Cell. Biol. 14 (1994) 5832-5839
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 5832-5839
    • Wu, A.1    Moye-Rowley, W.S.2
  • 214
    • 0036199670 scopus 로고    scopus 로고
    • Transcription factors regulating the response to oxidative stress in yeast
    • Moye-Rowley W.S. Transcription factors regulating the response to oxidative stress in yeast. Antioxid. Redox Signal. 4 (2002) 123-140
    • (2002) Antioxid. Redox Signal. , vol.4 , pp. 123-140
    • Moye-Rowley, W.S.1
  • 215
    • 0030942294 scopus 로고    scopus 로고
    • Regulation of yAP-1 nuclear localization in response to oxidative stress
    • Kuge S., Jones N., and Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16 (1997) 1710-1720
    • (1997) EMBO J. , vol.16 , pp. 1710-1720
    • Kuge, S.1    Jones, N.2    Nomoto, A.3
  • 216
    • 0035846932 scopus 로고    scopus 로고
    • Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents
    • Nguyen D.T., Alarco A.M., and Raymond M. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276 (2001) 1138-1145
    • (2001) J. Biol. Chem. , vol.276 , pp. 1138-1145
    • Nguyen, D.T.1    Alarco, A.M.2    Raymond, M.3
  • 217
    • 0036187717 scopus 로고    scopus 로고
    • The adaptive response of Saccharomyces cerevisiae to mercury exposure
    • Westwater J., McLaren N.F., Dormer U.H., and Jamieson D.J. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19 (2002) 233-239
    • (2002) Yeast , vol.19 , pp. 233-239
    • Westwater, J.1    McLaren, N.F.2    Dormer, U.H.3    Jamieson, D.J.4
  • 218
    • 0034116016 scopus 로고    scopus 로고
    • Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae
    • Pinson B., Sagot I., and Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol. Microbiol. 36 (2000) 679-687
    • (2000) Mol. Microbiol. , vol.36 , pp. 679-687
    • Pinson, B.1    Sagot, I.2    Daignan-Fornier, B.3
  • 220
    • 4544374631 scopus 로고    scopus 로고
    • Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis
    • Maeta K., Izawa S., Okazaki S., Kuge S., and Inoue Y. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol. Cell. Biol. 24 (2004) 8753-8764
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8753-8764
    • Maeta, K.1    Izawa, S.2    Okazaki, S.3    Kuge, S.4    Inoue, Y.5
  • 222
    • 0032535486 scopus 로고    scopus 로고
    • Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor
    • Yan C., Lee L.H., and Davis L.I. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17 (1998) 7416-7429
    • (1998) EMBO J. , vol.17 , pp. 7416-7429
    • Yan, C.1    Lee, L.H.2    Davis, L.I.3
  • 223
    • 0035726624 scopus 로고    scopus 로고
    • Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation
    • Kuge S., Arita M., Murayama A., Maeta K., Izawa S., Inoue Y., and Nomoto A. Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21 (2001) 6139-6150
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 6139-6150
    • Kuge, S.1    Arita, M.2    Murayama, A.3    Maeta, K.4    Izawa, S.5    Inoue, Y.6    Nomoto, A.7
  • 225
    • 0034597012 scopus 로고    scopus 로고
    • H2O2 sensing through oxidation of the Yap1 transcription factor
    • Delaunay A., Isnard A.D., and Toledano M.B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19 (2000) 5157-5166
    • (2000) EMBO J. , vol.19 , pp. 5157-5166
    • Delaunay, A.1    Isnard, A.D.2    Toledano, M.B.3
  • 226
    • 28844501851 scopus 로고    scopus 로고
    • Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization
    • Gulshan K., Rovinsky S.A., Coleman S.T., and Moye-Rowley W.S. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280 (2005) 40524-40533
    • (2005) J. Biol. Chem. , vol.280 , pp. 40524-40533
    • Gulshan, K.1    Rovinsky, S.A.2    Coleman, S.T.3    Moye-Rowley, W.S.4
  • 227
    • 4344562921 scopus 로고    scopus 로고
    • Structural basis for redox regulation of Yap1 transcription factor localization
    • Wood M.J., Storz G., and Tjandra N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430 (2004) 917-921
    • (2004) Nature , vol.430 , pp. 917-921
    • Wood, M.J.1    Storz, G.2    Tjandra, N.3
  • 229
    • 0042733228 scopus 로고    scopus 로고
    • Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor
    • Veal E.A., Ross S.J., Malakasi P., Peacok E., and Morgan B.A. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278 (2003) 30896-30904
    • (2003) J. Biol. Chem. , vol.278 , pp. 30896-30904
    • Veal, E.A.1    Ross, S.J.2    Malakasi, P.3    Peacok, E.4    Morgan, B.A.5
  • 230
    • 14044271510 scopus 로고    scopus 로고
    • Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast
    • Okazaki S., Naganuma A., and Kuge S. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox Signal. 7 (2005) 327-334
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 327-334
    • Okazaki, S.1    Naganuma, A.2    Kuge, S.3
  • 233
    • 2942538583 scopus 로고    scopus 로고
    • Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration
    • Vivancos A.P., Castillo E.A., Jones N., Ayte J., and Hidalgo E. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52 (2004) 1427-1435
    • (2004) Mol. Microbiol. , vol.52 , pp. 1427-1435
    • Vivancos, A.P.1    Castillo, E.A.2    Jones, N.3    Ayte, J.4    Hidalgo, E.5
  • 235
    • 0032523783 scopus 로고    scopus 로고
    • Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1
    • Toone W.M., Kuge S., Samuels M., Morgan B.A., Toda T., and Jones N. Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12 (1998) 1453-1463
    • (1998) Genes Dev. , vol.12 , pp. 1453-1463
    • Toone, W.M.1    Kuge, S.2    Samuels, M.3    Morgan, B.A.4    Toda, T.5    Jones, N.6
  • 236
    • 0033591412 scopus 로고    scopus 로고
    • A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1
    • Kudo N., Taoka H., Toda T., Yoshida M., and Horinouchi S. A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J. Biol. Chem. 274 (1999) 15151-15158
    • (1999) J. Biol. Chem. , vol.274 , pp. 15151-15158
    • Kudo, N.1    Taoka, H.2    Toda, T.3    Yoshida, M.4    Horinouchi, S.5
  • 237
    • 0036047672 scopus 로고    scopus 로고
    • Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues
    • Castillo E.A., Ayte J., Chiva C., Moldon A., arrascal M., Abian J., Jones N., and Hidalgo E. Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol. 45 (2002) 243-254
    • (2002) Mol. Microbiol. , vol.45 , pp. 243-254
    • Castillo, E.A.1    Ayte, J.2    Chiva, C.3    Moldon, A.4    arrascal, M.5    Abian, J.6    Jones, N.7    Hidalgo, E.8
  • 238
    • 27744536479 scopus 로고    scopus 로고
    • The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe
    • Zuin A., Vivancos A.P., Sansó M., Takatsume Y., Ayte J., Inoue Y., and Hidalgo E. The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe. J. Biol. Chem. 280 (2005) 36708-36713
    • (2005) J. Biol. Chem. , vol.280 , pp. 36708-36713
    • Zuin, A.1    Vivancos, A.P.2    Sansó, M.3    Takatsume, Y.4    Ayte, J.5    Inoue, Y.6    Hidalgo, E.7
  • 239
    • 20744438779 scopus 로고    scopus 로고
    • Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide
    • Bozonet S.M., Findlay V.J., Day A.M., Cameron J., Veal E.A., and Morgan B.A. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280 (2005) 23319-23327
    • (2005) J. Biol. Chem. , vol.280 , pp. 23319-23327
    • Bozonet, S.M.1    Findlay, V.J.2    Day, A.M.3    Cameron, J.4    Veal, E.A.5    Morgan, B.A.6
  • 241
    • 0033166271 scopus 로고    scopus 로고
    • Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases
    • Nguyen A.N., and Shiozaki K. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13 (1999) 1653-1663
    • (1999) Genes Dev. , vol.13 , pp. 1653-1663
    • Nguyen, A.N.1    Shiozaki, K.2
  • 242
    • 23844453642 scopus 로고    scopus 로고
    • Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe
    • Rodriguez-Gabriel M.A., and Russell P. Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe. Eukaryot. Cell 4 (2005) 1396-1402
    • (2005) Eukaryot. Cell , vol.4 , pp. 1396-1402
    • Rodriguez-Gabriel, M.A.1    Russell, P.2
  • 243
    • 0032524018 scopus 로고    scopus 로고
    • Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast
    • Gaits F., Degols G., Shiozaki K., and Russell P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12 (1998) 1464-1473
    • (1998) Genes Dev. , vol.12 , pp. 1464-1473
    • Gaits, F.1    Degols, G.2    Shiozaki, K.3    Russell, P.4
  • 244
    • 0032955703 scopus 로고    scopus 로고
    • Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spc1/StyI in fission yeast
    • Gaits F., and Russell P. Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spc1/StyI in fission yeast. Mol. Biol. Cell 10 (1999) 1395-1407
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1395-1407
    • Gaits, F.1    Russell, P.2
  • 245
    • 0032775551 scopus 로고    scopus 로고
    • +) that encodes a response regulator implicated in oxidative stress response
    • +) that encodes a response regulator implicated in oxidative stress response. J. Biochem. 125 (1999) 1061-1066
    • (1999) J. Biochem. , vol.125 , pp. 1061-1066
    • Ohmiya, R.1    Kato, C.2    Yamada, H.3    Aiba, H.4    Mizuno, T.5
  • 247
    • 0031860103 scopus 로고    scopus 로고
    • The structure and mechanism of protein phosphatases: insights into catalysis and regulation
    • Barford D., Das A.K., and Egloff M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27 (1998) 133-164
    • (1998) Annu. Rev. Biophys. Biomol. Struct. , vol.27 , pp. 133-164
    • Barford, D.1    Das, A.K.2    Egloff, M.P.3
  • 248
    • 17644371347 scopus 로고    scopus 로고
    • Functions and mechanisms of redox regulation of cysteine-based phosphatases
    • Salmeen A., and Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal. 7 (2005) 560-577
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 560-577
    • Salmeen, A.1    Barford, D.2
  • 250
    • 0037077207 scopus 로고    scopus 로고
    • Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase
    • Hahn J.S., and Thiele D.J. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J. Biol. Chem. 277 (2002) 21278-21284
    • (2002) J. Biol. Chem. , vol.277 , pp. 21278-21284
    • Hahn, J.S.1    Thiele, D.J.2
  • 251
    • 0037063353 scopus 로고    scopus 로고
    • YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae
    • Collister M., Didmon M.P., MacIsaac F., Stark M.J., MacDonald N.Q., and Keyse S.M. YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae. FEBS Lett. 527 (2002) 186-192
    • (2002) FEBS Lett. , vol.527 , pp. 186-192
    • Collister, M.1    Didmon, M.P.2    MacIsaac, F.3    Stark, M.J.4    MacDonald, N.Q.5    Keyse, S.M.6
  • 252
    • 20544432791 scopus 로고    scopus 로고
    • Cell wall integrity signaling in Saccharomyces cerevisiae
    • Levin D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69 (2005) 262-291
    • (2005) Microbiol. Mol. Biol. Rev. , vol.69 , pp. 262-291
    • Levin, D.E.1
  • 253
    • 0142242242 scopus 로고    scopus 로고
    • Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae
    • Alic N., Higgins V.J., Pichova A., Breitenbach M., and Dawes I.W. Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. J. Biol. Chem. 278 (2003) 41849-41855
    • (2003) J. Biol. Chem. , vol.278 , pp. 41849-41855
    • Alic, N.1    Higgins, V.J.2    Pichova, A.3    Breitenbach, M.4    Dawes, I.W.5
  • 254
    • 16844368767 scopus 로고    scopus 로고
    • Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress
    • Vilella F., Herrero E., Torres J., and de la Torre-Ruiz M.A. Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J. Biol. Chem. 280 (2005) 9149-9159
    • (2005) J. Biol. Chem. , vol.280 , pp. 9149-9159
    • Vilella, F.1    Herrero, E.2    Torres, J.3    de la Torre-Ruiz, M.A.4
  • 255
    • 26244442243 scopus 로고    scopus 로고
    • Protein phosphatases in MAPK signalling: we keep learning from yeast
    • Martin H., Flandez M., Nombela C., and Molina M. Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol. Microbiol. 58 (2005) 6-16
    • (2005) Mol. Microbiol. , vol.58 , pp. 6-16
    • Martin, H.1    Flandez, M.2    Nombela, C.3    Molina, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.