-
1
-
-
0035458366
-
The art and design of genetic screens: yeast
-
Forsburg S.L. The art and design of genetic screens: yeast. Nature Rev. Genet. 2 (2001) 659-668
-
(2001)
Nature Rev. Genet.
, vol.2
, pp. 659-668
-
-
Forsburg, S.L.1
-
2
-
-
4344592252
-
The uses of genome-wide mutant collections
-
Scherens B., and Goffeau A. The uses of genome-wide mutant collections. Genome Biol. 5 (2004) 229
-
(2004)
Genome Biol.
, vol.5
, pp. 229
-
-
Scherens, B.1
Goffeau, A.2
-
4
-
-
0032439653
-
Oxidative stress responses of yeast Saccharomyces cerevisiae
-
Jamieson D.J. Oxidative stress responses of yeast Saccharomyces cerevisiae. Yeast 14 (1998) 1511-1527
-
(1998)
Yeast
, vol.14
, pp. 1511-1527
-
-
Jamieson, D.J.1
-
5
-
-
0035131144
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
-
Grant C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39 (2001) 533-541
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 533-541
-
-
Grant, C.M.1
-
6
-
-
1842521224
-
-
Hohmann S., and Mager P.W.H. (Eds), Springer-Verlag
-
Toledano M.B., Delaunay A., Biteau B., Spector D., and Azevedo D. In: Hohmann S., and Mager P.W.H. (Eds). Oxidative Stress Responses in Yeast, Topics in Current Genetics, Yeast Stress Responses vol. 1 (2003), Springer-Verlag 241-303
-
(2003)
Oxidative Stress Responses in Yeast, Topics in Current Genetics, Yeast Stress Responses
, vol.1
, pp. 241-303
-
-
Toledano, M.B.1
Delaunay, A.2
Biteau, B.3
Spector, D.4
Azevedo, D.5
-
8
-
-
49349084071
-
-
Dalle-Donne I., Scaloni A., and Butterfield D.A. (Eds), Wiley Interscience
-
Cabiscol E., and Ros J. In: Dalle-Donne I., Scaloni A., and Butterfield D.A. (Eds). Oxidative Damage to Proteins: Structural Modifications and Consequences in Cell Function, Redox Proteomics (2006), Wiley Interscience 247-281
-
(2006)
Oxidative Damage to Proteins: Structural Modifications and Consequences in Cell Function, Redox Proteomics
, pp. 247-281
-
-
Cabiscol, E.1
Ros, J.2
-
9
-
-
0032488513
-
Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?
-
Cotgreave I.A., and Gerdes R.G. Recent trends in glutathione biochemistry-glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?. Biochem. Biophys. Res. Commun. 242 (1998) 1-9
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.242
, pp. 1-9
-
-
Cotgreave, I.A.1
Gerdes, R.G.2
-
10
-
-
27944504099
-
Oxidoreduction of protein thiols in redox regulation
-
Ghezzi P. Oxidoreduction of protein thiols in redox regulation. Biochem. Soc. Trans. 33 (2005) 1378-1381
-
(2005)
Biochem. Soc. Trans.
, vol.33
, pp. 1378-1381
-
-
Ghezzi, P.1
-
11
-
-
31044455445
-
Redox modifications of protein thiols: emerging roles in cell signalling
-
Biswas S., Chida A.S., and Rahman I. Redox modifications of protein thiols: emerging roles in cell signalling. Biochem. Pharmacol. 71 (2006) 551-564
-
(2006)
Biochem. Pharmacol.
, vol.71
, pp. 551-564
-
-
Biswas, S.1
Chida, A.S.2
Rahman, I.3
-
12
-
-
33750604604
-
Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways
-
Jacob C., Knight I., and Winyard P.G. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol. Chem. 387 (2006) 1385-1397
-
(2006)
Biol. Chem.
, vol.387
, pp. 1385-1397
-
-
Jacob, C.1
Knight, I.2
Winyard, P.G.3
-
13
-
-
14044257843
-
Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation
-
Shelton M.D., Chock P.B., and Mieyal J.J. Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid. Redox Signal. 7 (2005) 348-366
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 348-366
-
-
Shelton, M.D.1
Chock, P.B.2
Mieyal, J.J.3
-
14
-
-
0024393963
-
Thioredoxin and glutaredoxin systems
-
Holmgren A. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 254 (1989) 13963-13966
-
(1989)
J. Biol. Chem.
, vol.254
, pp. 13963-13966
-
-
Holmgren, A.1
-
15
-
-
0348230942
-
Glutaredoxins: glutathione-dependent redox enzymes with functions as far beyond a simple thioredoxin backup system
-
Fernandes A.P., and Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions as far beyond a simple thioredoxin backup system. Antioxid. Redox Signal 6 (2004) 63-74
-
(2004)
Antioxid. Redox Signal
, vol.6
, pp. 63-74
-
-
Fernandes, A.P.1
Holmgren, A.2
-
16
-
-
0346158357
-
Cell respiration and formation of reactive oxygen species: facts and artefacts
-
Nohl H., Kozlov A.V., Gille L., and Staniek K. Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem. Soc. Trans. 31 (2003) 1308-1311
-
(2003)
Biochem. Soc. Trans.
, vol.31
, pp. 1308-1311
-
-
Nohl, H.1
Kozlov, A.V.2
Gille, L.3
Staniek, K.4
-
17
-
-
0142150051
-
Mitochondrial formation of reactive oxygen species
-
Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2003) 335-344
-
(2003)
J. Physiol.
, vol.552
, pp. 335-344
-
-
Turrens, J.F.1
-
18
-
-
2942572700
-
Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?
-
Halliwell B., and Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br. J. Pharmacol. 142 (2004) 231-255
-
(2004)
Br. J. Pharmacol.
, vol.142
, pp. 231-255
-
-
Halliwell, B.1
Whiteman, M.2
-
19
-
-
0030969868
-
Superoxide production by the mitochondrial respiratory chain
-
Turrens J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17 (1997) 3-8
-
(1997)
Biosci. Rep.
, vol.17
, pp. 3-8
-
-
Turrens, J.F.1
-
20
-
-
0034306267
-
Mitochondria, oxygen free radicals, disease and ageing
-
Raha S., and Robinson B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25 (2000) 502-508
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 502-508
-
-
Raha, S.1
Robinson, B.H.2
-
21
-
-
0033369476
-
Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity and relation to aging and longevity
-
Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity and relation to aging and longevity. Bioenerg. Biomembr. 31 (1999) 347-366
-
(1999)
Bioenerg. Biomembr.
, vol.31
, pp. 347-366
-
-
Barja, G.1
-
22
-
-
0035170286
-
Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae
-
Bakker B.M., Overkamp K.M., van Maris A.J.A., Kötter P., Luttik M.A.H., van Dijken J.P., and Pronk J.T. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25 (2001) 15-17
-
(2001)
FEMS Microbiol. Rev.
, vol.25
, pp. 15-17
-
-
Bakker, B.M.1
Overkamp, K.M.2
van Maris, A.J.A.3
Kötter, P.4
Luttik, M.A.H.5
van Dijken, J.P.6
Pronk, J.T.7
-
23
-
-
0026089901
-
Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
-
Marres C.A.M., De Vries S., and Grivell L.A. Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur. J. Biochem. 195 (1991) 857-862
-
(1991)
Eur. J. Biochem.
, vol.195
, pp. 857-862
-
-
Marres, C.A.M.1
De Vries, S.2
Grivell, L.A.3
-
24
-
-
0015866720
-
Mechanism of electron transport and energy conservation in the site I region of the respiratory chain
-
Ohnishi T. Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim. Biophys. Acta 301 (1973) 105-128
-
(1973)
Biochim. Biophys. Acta
, vol.301
, pp. 105-128
-
-
Ohnishi, T.1
-
25
-
-
0034057725
-
In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria
-
Overkamp K.M., Bakker B.M., Kötter P., van Tuijl A., de Vries S., van Dijken J.P., and Pronk J.T. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J. Bacteriol. 182 (2000) 2823-2830
-
(2000)
J. Bacteriol.
, vol.182
, pp. 2823-2830
-
-
Overkamp, K.M.1
Bakker, B.M.2
Kötter, P.3
van Tuijl, A.4
de Vries, S.5
van Dijken, J.P.6
Pronk, J.T.7
-
26
-
-
0035200326
-
Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae
-
Davidson J.F., and Schiestl R.H. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol. Cell. Biol. 21 (2001) 8483-8489
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 8483-8489
-
-
Davidson, J.F.1
Schiestl, R.H.2
-
27
-
-
0023561970
-
The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism
-
De Vries S., and Marres C.A.M. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895 (1987) 205-239
-
(1987)
Biochim. Biophys. Acta
, vol.895
, pp. 205-239
-
-
De Vries, S.1
Marres, C.A.M.2
-
28
-
-
2642671097
-
The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae
-
Larsson C., Pahlman I.L., Ansell R., Rigoulet M., Adler L., and Gustafsson L. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14 (1998) 347-357
-
(1998)
Yeast
, vol.14
, pp. 347-357
-
-
Larsson, C.1
Pahlman, I.L.2
Ansell, R.3
Rigoulet, M.4
Adler, L.5
Gustafsson, L.6
-
29
-
-
0037441390
-
External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide
-
Fang J., and Beattie D.S. External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34 (2003) 478-488
-
(2003)
Free Radic. Biol. Med.
, vol.34
, pp. 478-488
-
-
Fang, J.1
Beattie, D.S.2
-
30
-
-
0017154414
-
Role of ubiquinone in the mitochondrial generation of hydrogen peroxide
-
Boveris A., Cadenas E., and Stoppani A.O. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156 (1976) 435-444
-
(1976)
Biochem. J.
, vol.156
, pp. 435-444
-
-
Boveris, A.1
Cadenas, E.2
Stoppani, A.O.3
-
31
-
-
0034467677
-
Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria
-
Herrero A., and Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32 (2000) 609-615
-
(2000)
J. Bioenerg. Biomembr.
, vol.32
, pp. 609-615
-
-
Herrero, A.1
Barja, G.2
-
32
-
-
4544354262
-
Inhibitors of the quinone binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
-
Lambert A.J., and Brand M.D. Inhibitors of the quinone binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279 (2004) 39414-39420
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39414-39420
-
-
Lambert, A.J.1
Brand, M.D.2
-
33
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport
-
Liu Y., Fiskum G., and Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport. J. Neurochem. 80 (2002) 780-787
-
(2002)
J. Neurochem.
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
34
-
-
0037229425
-
Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation
-
Sherer T.B., Kim J.H., Betarbet R., and Greenamyre J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179 (2003) 9-16
-
(2003)
Exp. Neurol.
, vol.179
, pp. 9-16
-
-
Sherer, T.B.1
Kim, J.H.2
Betarbet, R.3
Greenamyre, J.T.4
-
35
-
-
0034282468
-
Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae
-
Cabiscol E., Piulats E., Echave P., Herrero E., and Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 27393-27398
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 27393-27398
-
-
Cabiscol, E.1
Piulats, E.2
Echave, P.3
Herrero, E.4
Ros, J.5
-
36
-
-
0037394045
-
2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach
-
2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach. Eur. J. Biochem. 270 (2003) 1578-1589
-
(2003)
Eur. J. Biochem.
, vol.270
, pp. 1578-1589
-
-
Osorio, H.1
Carvalho, E.2
del Valle, M.3
Gunther Sillero, M.A.4
Moradas-Ferreira, P.5
Sillero, A.6
-
37
-
-
33751520926
-
Paraquat exposure as an etiological factor of Parkinson's disease
-
Dinis-Oliveira R.J., Remiao F., Carmo H., Duarte J.A., Navarro A.S., Bastos M.L., and Carvalho F. Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology 27 (2006) 1110-1122
-
(2006)
Neurotoxicology
, vol.27
, pp. 1110-1122
-
-
Dinis-Oliveira, R.J.1
Remiao, F.2
Carmo, H.3
Duarte, J.A.4
Navarro, A.S.5
Bastos, M.L.6
Carvalho, F.7
-
38
-
-
0035797151
-
Mitochondria as subcellular targets for clinically useful anthracyclines
-
Jung K., and Reszka B. Mitochondria as subcellular targets for clinically useful anthracyclines. Adv. Drug Deliv. Rev. 49 (2001) 87-105
-
(2001)
Adv. Drug Deliv. Rev.
, vol.49
, pp. 87-105
-
-
Jung, K.1
Reszka, B.2
-
39
-
-
0038160860
-
2 generation in Saccharomyces cerevisiae respiratory pet mutants: effect of cytochrome c
-
2 generation in Saccharomyces cerevisiae respiratory pet mutants: effect of cytochrome c. Free Radic. Biol. Med. 35 (2003) 179-188
-
(2003)
Free Radic. Biol. Med.
, vol.35
, pp. 179-188
-
-
Barros, M.1
Netto, L.E.S.2
Kowaltowski, A.J.3
-
40
-
-
0346850862
-
The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide
-
Guo J., and Lemire B.D. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J. Biol. Chem. 278 (2003) 47629-47635
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 47629-47635
-
-
Guo, J.1
Lemire, B.D.2
-
41
-
-
0030003064
-
Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
-
Schmitt A.P., and McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 5777-5782
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 5777-5782
-
-
Schmitt, A.P.1
McEntee, K.2
-
43
-
-
33750347347
-
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
-
Lin M.T., and Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 (2006) 787-795
-
(2006)
Nature
, vol.443
, pp. 787-795
-
-
Lin, M.T.1
Beal, M.F.2
-
44
-
-
0030038103
-
Oxidative stress, caloric restriction, and aging
-
Sohal R.S., and Weindruch R. Oxidative stress, caloric restriction, and aging. Science 273 (1996) 59-63
-
(1996)
Science
, vol.273
, pp. 59-63
-
-
Sohal, R.S.1
Weindruch, R.2
-
45
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin S.J., Kaeberlein M., Andalis A.A., Sturtz L.A., Defossez P.A., Culotta V.C., Fink G.R., and Guarente L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418 (2002) 344-348
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
Kaeberlein, M.2
Andalis, A.A.3
Sturtz, L.A.4
Defossez, P.A.5
Culotta, V.C.6
Fink, G.R.7
Guarente, L.8
-
46
-
-
3843151554
-
Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction
-
Reverter-Branchat G., Cabiscol E., Tamarit J., and Ros J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J. Biol. Chem. 279 (2004) 31983-31989
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 31983-31989
-
-
Reverter-Branchat, G.1
Cabiscol, E.2
Tamarit, J.3
Ros, J.4
-
48
-
-
27644530546
-
Protein translocation machineries: how organelles bring in matrix proteins
-
Gunkel K., Veenhuis M., and van der Klei I.J. Protein translocation machineries: how organelles bring in matrix proteins. FEMS Yeast Res. 5 (2005) 1037-1045
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 1037-1045
-
-
Gunkel, K.1
Veenhuis, M.2
van der Klei, I.J.3
-
49
-
-
0027369594
-
A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids
-
Filipits M., Simon M.M., Rapatz W., Hamilton B., and Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene 132 (1993) 49-55
-
(1993)
Gene
, vol.132
, pp. 49-55
-
-
Filipits, M.1
Simon, M.M.2
Rapatz, W.3
Hamilton, B.4
Ruis, H.5
-
50
-
-
34250002745
-
Physiological functions of d-amino acid oxidases: from yeast to humans
-
Pollegioni L., Piubelli L., Sacchi S., Pilone M.S., and Molla G. Physiological functions of d-amino acid oxidases: from yeast to humans. Cell. Mol. Life Sci. 64 (2007) 1373-1394
-
(2007)
Cell. Mol. Life Sci.
, vol.64
, pp. 1373-1394
-
-
Pollegioni, L.1
Piubelli, L.2
Sacchi, S.3
Pilone, M.S.4
Molla, G.5
-
51
-
-
0019787519
-
Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis
-
Ames B.N., Cathcart R., Schwiers E., and Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. U. S. A. 78 (1981) 6858-6862
-
(1981)
Proc. Natl. Acad. Sci. U. S. A.
, vol.78
, pp. 6858-6862
-
-
Ames, B.N.1
Cathcart, R.2
Schwiers, E.3
Hochstein, P.4
-
52
-
-
0346100345
-
Free radical-mediated oxidation of free amino acids and amino acid residues in proteins
-
Stadtman E.R., and Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25 (2003) 207-218
-
(2003)
Amino Acids
, vol.25
, pp. 207-218
-
-
Stadtman, E.R.1
Levine, R.L.2
-
53
-
-
14044272119
-
S-glutathionylation: from redox regulation of protein functions to human diseases
-
Giustarini D., Rossi R., Milzani A., Colombo R., and Dalle-Donne I. S-glutathionylation: from redox regulation of protein functions to human diseases. J. Cell. Mol. Med. 8 (2004) 201-212
-
(2004)
J. Cell. Mol. Med.
, vol.8
, pp. 201-212
-
-
Giustarini, D.1
Rossi, R.2
Milzani, A.3
Colombo, R.4
Dalle-Donne, I.5
-
54
-
-
33750989372
-
Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity
-
Lewinska A., and Bartosz G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep. 11 (2006) 231-239
-
(2006)
Redox Rep.
, vol.11
, pp. 231-239
-
-
Lewinska, A.1
Bartosz, G.2
-
57
-
-
33645560710
-
Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signalling in eukaryotes
-
Castello P.R., David P.S., McClure T., Crook Z., and Poyton R.O. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signalling in eukaryotes. Cell Metab. 3 (2006) 277-287
-
(2006)
Cell Metab.
, vol.3
, pp. 277-287
-
-
Castello, P.R.1
David, P.S.2
McClure, T.3
Crook, Z.4
Poyton, R.O.5
-
58
-
-
33746366221
-
The existence and significance of a mitochondrial nitrite reductase
-
Nohl H., Staniek K., and Kozlov A.V. The existence and significance of a mitochondrial nitrite reductase. Redox Rep. 10 (2005) 281-286
-
(2005)
Redox Rep.
, vol.10
, pp. 281-286
-
-
Nohl, H.1
Staniek, K.2
Kozlov, A.V.3
-
59
-
-
0034712838
-
Protection from nitrosative stress by yeast flavohemoglobin
-
Liu L., Zeng M., Hausladen A., Heitman J., and Stamler J.S. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 4672-4676
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 4672-4676
-
-
Liu, L.1
Zeng, M.2
Hausladen, A.3
Heitman, J.4
Stamler, J.S.5
-
60
-
-
0029053451
-
Superoxide radical and superoxide dismutases
-
Fridovich I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64 (1995) 97-112
-
(1995)
Annu. Rev. Biochem.
, vol.64
, pp. 97-112
-
-
Fridovich, I.1
-
61
-
-
33746932518
-
Activation of superoxide dismutases: putting the metal to the pedal
-
Culotta V.C., Yang M., and O'Halloran T.V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim. Biophys. Acta 1763 (2006) 747-758
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 747-758
-
-
Culotta, V.C.1
Yang, M.2
O'Halloran, T.V.3
-
62
-
-
0035851122
-
A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage
-
Sturtz L.A., Diekert K., Jensen L.T., Lill R., and Culotta V.C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276 (2001) 38084-38089
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38084-38089
-
-
Sturtz, L.A.1
Diekert, K.2
Jensen, L.T.3
Lill, R.4
Culotta, V.C.5
-
63
-
-
0041344579
-
Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria
-
Field L.S., Furukawa Y., O'Halloran T.V., and Culotta V.C. Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J. Biol. Chem. (2003) 28052-28059
-
(2003)
J. Biol. Chem.
, pp. 28052-28059
-
-
Field, L.S.1
Furukawa, Y.2
O'Halloran, T.V.3
Culotta, V.C.4
-
64
-
-
0035863011
-
Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space
-
Han D., Williams E., and Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353 (2001) 411-416
-
(2001)
Biochem. J.
, vol.353
, pp. 411-416
-
-
Han, D.1
Williams, E.2
Cadenas, E.3
-
65
-
-
0039604509
-
A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen
-
van Loon A.P., Pesold-Hurt B., and Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 3820-3824
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, pp. 3820-3824
-
-
van Loon, A.P.1
Pesold-Hurt, B.2
Schatz, G.3
-
66
-
-
0027426263
-
0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia
-
0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. J. Biol. Chem. 268 (1993) 26699-26703
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 26699-26703
-
-
Guidot, D.M.1
McCord, J.M.2
Wright, R.M.3
Repine, J.E.4
-
67
-
-
0030997844
-
Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase
-
Costa V., Amorim M.A., Reis E., Quintanilha A., and Moradas-Ferreira P. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143 (1997) 1649-1656
-
(1997)
Microbiology
, vol.143
, pp. 1649-1656
-
-
Costa, V.1
Amorim, M.A.2
Reis, E.3
Quintanilha, A.4
Moradas-Ferreira, P.5
-
68
-
-
0025938799
-
Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates
-
Gralla E.B., and Valentine J.S. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J. Bacteriol. 173 (1991) 5918-5920
-
(1991)
J. Bacteriol.
, vol.173
, pp. 5918-5920
-
-
Gralla, E.B.1
Valentine, J.S.2
-
69
-
-
0026665991
-
Yeast lacking superoxide dismutase: isolation of genetic suppressors
-
Liu X., Elashvili I., Gralla E.B., Valentine J., Lapinskas P., and Culotta V. Yeast lacking superoxide dismutase: isolation of genetic suppressors. J. Biol. Chem. 267 (1992) 18298-18302
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 18298-18302
-
-
Liu, X.1
Elashvili, I.2
Gralla, E.B.3
Valentine, J.4
Lapinskas, P.5
Culotta, V.6
-
70
-
-
15844429977
-
Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic species in vivo
-
Longo V.D., Gralla E.B., and Valentine J.S. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic species in vivo. J. Biol. Chem. 271 (1996) 12275-12280
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 12275-12280
-
-
Longo, V.D.1
Gralla, E.B.2
Valentine, J.S.3
-
71
-
-
0029828902
-
The yeast Cu,Zn superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
-
Slekar K.H., Kosman D.J., and Culotta V.C. The yeast Cu,Zn superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271 (1996) 28831-28836
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28831-28836
-
-
Slekar, K.H.1
Kosman, D.J.2
Culotta, V.C.3
-
72
-
-
3142732809
-
Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly gens and oxidative stress relevant to Cu,Zn superoxide dismutase
-
Jensen L.T., Sanchez R.J., Srinivasan C., Valentine J.S., and Culotta V.C. Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly gens and oxidative stress relevant to Cu,Zn superoxide dismutase. J. Biol. Chem. 279 (2004) 29938-29943
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29938-29943
-
-
Jensen, L.T.1
Sanchez, R.J.2
Srinivasan, C.3
Valentine, J.S.4
Culotta, V.C.5
-
73
-
-
3543029884
-
Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS
-
Furukawa Y., Torres A.S., and O'Halloran T.V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23 (2004) 2872-2881
-
(2004)
EMBO J.
, vol.23
, pp. 2872-2881
-
-
Furukawa, Y.1
Torres, A.S.2
O'Halloran, T.V.3
-
74
-
-
33646486372
-
Disulfide cross-linked protein represents a significant fraction of ALS-associated SOD1 aggregates in spinal cords of model mice
-
Furukawa Y., Fu R., Deng H.X., Siddique T., and O'Halloran T.V. Disulfide cross-linked protein represents a significant fraction of ALS-associated SOD1 aggregates in spinal cords of model mice. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 7148-7153
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 7148-7153
-
-
Furukawa, Y.1
Fu, R.2
Deng, H.X.3
Siddique, T.4
O'Halloran, T.V.5
-
75
-
-
33749372482
-
The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase
-
Carroll M.C., Outten C.E., Proescher J.B., Rosenfeld L., Watson W.H., Whitson L.J., Hart P.J., Jensen L.T., and Culotta V.C. The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J. Biol. Chem. 281 (2006) 28648-28656
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 28648-28656
-
-
Carroll, M.C.1
Outten, C.E.2
Proescher, J.B.3
Rosenfeld, L.4
Watson, W.H.5
Whitson, L.J.6
Hart, P.J.7
Jensen, L.T.8
Culotta, V.C.9
-
76
-
-
0037383706
-
The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae
-
Hiltunen J.K., Mursula A.M., Rottensteiner H., Wierenga R.K., Kastaniotis A.J., and Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27 (2003) 35-64
-
(2003)
FEMS Microbiol. Rev.
, vol.27
, pp. 35-64
-
-
Hiltunen, J.K.1
Mursula, A.M.2
Rottensteiner, H.3
Wierenga, R.K.4
Kastaniotis, A.J.5
Gurvitz, A.6
-
77
-
-
0027369594
-
A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids
-
Filipits M., Simon M.M., Rapatz W., Hamilton B., and Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene (1993) 49-55
-
(1993)
Gene
, pp. 49-55
-
-
Filipits, M.1
Simon, M.M.2
Rapatz, W.3
Hamilton, B.4
Ruis, H.5
-
78
-
-
0029844594
-
Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasemic Saccharomyces cerevisiae
-
Izawa S., Inoue Y., and Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasemic Saccharomyces cerevisiae. J. Biochem. 320 (1996) 61-67
-
(1996)
J. Biochem.
, vol.320
, pp. 61-67
-
-
Izawa, S.1
Inoue, Y.2
Kimura, A.3
-
79
-
-
0029879360
-
The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE)
-
Martínez-Pastor M.T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., and Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15 (1996) 2227-2235
-
(1996)
EMBO J.
, vol.15
, pp. 2227-2235
-
-
Martínez-Pastor, M.T.1
Marchler, G.2
Schüller, C.3
Marchler-Bauer, A.4
Ruis, H.5
Estruch, F.6
-
80
-
-
33845298638
-
Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast
-
Izawa S., Ikeda K., Ohdate T., and Inoue Y. Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem. Biophys. Res. Commun. 352 (2007) 750-755
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.352
, pp. 750-755
-
-
Izawa, S.1
Ikeda, K.2
Ohdate, T.3
Inoue, Y.4
-
81
-
-
33748849818
-
The Cryptococcus neoformans catalase gene family and its role in antioxidant defense
-
Giles S.S., Stajich J.E., Nichols C., Gerrald Q.B., Alspaugh J.A., Dietrich F., and Perfect J.R. The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. Eukaryot. Cell 5 (2006) 1447-1459
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 1447-1459
-
-
Giles, S.S.1
Stajich, J.E.2
Nichols, C.3
Gerrald, Q.B.4
Alspaugh, J.A.5
Dietrich, F.6
Perfect, J.R.7
-
82
-
-
0037633096
-
Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents
-
Nakagawa Y., Kanbe T., and Mizuguchi I. Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol. Immunol. 47 (2003) 395-403
-
(2003)
Microbiol. Immunol.
, vol.47
, pp. 395-403
-
-
Nakagawa, Y.1
Kanbe, T.2
Mizuguchi, I.3
-
83
-
-
0037847543
-
Stress-induced gene expression in Candida albicans: absence of a general stress response
-
Enjalbert B., Nantel A., and Whiteway M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14 (2003) 1460-1467
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1460-1467
-
-
Enjalbert, B.1
Nantel, A.2
Whiteway, M.3
-
84
-
-
34248327805
-
Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans
-
Enjalbert B., MacCallum D.M., Odds F.C., and Brown A.J.P. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 75 (2007) 2143-2151
-
(2007)
Infect. Immun.
, vol.75
, pp. 2143-2151
-
-
Enjalbert, B.1
MacCallum, D.M.2
Odds, F.C.3
Brown, A.J.P.4
-
85
-
-
0036854503
-
Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence
-
Hwang C.S., Rhie G.E., Oh J.H., Huh W.K., Yim H.S., and Kang S.O. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148 (2002) 3705-3713
-
(2002)
Microbiology
, vol.148
, pp. 3705-3713
-
-
Hwang, C.S.1
Rhie, G.E.2
Oh, J.H.3
Huh, W.K.4
Yim, H.S.5
Kang, S.O.6
-
86
-
-
0037218164
-
Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages
-
Cox G.M., Harrison T.S., McDade H.C., Taborda C.P., Heinrich G., Casadevall A., and Parfect J.R. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71 (2003) 173-180
-
(2003)
Infect. Immun.
, vol.71
, pp. 173-180
-
-
Cox, G.M.1
Harrison, T.S.2
McDade, H.C.3
Taborda, C.P.4
Heinrich, G.5
Casadevall, A.6
Parfect, J.R.7
-
87
-
-
0742288065
-
Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene
-
Martchenko M., Alarco A.M., Harcus D., and Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15 (2004) 456-467
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 456-467
-
-
Martchenko, M.1
Alarco, A.M.2
Harcus, D.3
Whiteway, M.4
-
88
-
-
0032583570
-
Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
-
Grant C.M., Perrone G., and Dawes I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998) 893-898
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.253
, pp. 893-898
-
-
Grant, C.M.1
Perrone, G.2
Dawes, I.W.3
-
89
-
-
33750629812
-
Glutathione peroxidases and redox-regulated transcription factors
-
Brihelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 387 (2006) 1329-1335
-
(2006)
Biol. Chem.
, vol.387
, pp. 1329-1335
-
-
Brihelius-Flohe, R.1
-
90
-
-
0033578750
-
Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
-
Inoue Y., Matsuda T., Sugiyama K.I., Izawa S., and Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274 (1999) 27002-27009
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 27002-27009
-
-
Inoue, Y.1
Matsuda, T.2
Sugiyama, K.I.3
Izawa, S.4
Kimura, A.5
-
91
-
-
0035823498
-
Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases
-
Avery A.M., and Avery S.V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276 (2001) 33730-33735
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 33730-33735
-
-
Avery, A.M.1
Avery, S.V.2
-
92
-
-
8744228201
-
Genetic dissection of the phospholipids hydroperoxidase activity of yeast Gpx3 reveals its functional importance
-
Avery A.M., Willetts S.A., and Avery S.V. Genetic dissection of the phospholipids hydroperoxidase activity of yeast Gpx3 reveals its functional importance. J. Biol. Chem. 279 (2004) 46652-46658
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46652-46658
-
-
Avery, A.M.1
Willetts, S.A.2
Avery, S.V.3
-
93
-
-
3142756539
-
Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminium resistance in Saccharomyces cerevisiae
-
Basu U., Southron J.L., Stephens J.L., and Taylor G.J. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminium resistance in Saccharomyces cerevisiae. Mol. Gen. Genomics 271 (2004) 627-637
-
(2004)
Mol. Gen. Genomics
, vol.271
, pp. 627-637
-
-
Basu, U.1
Southron, J.L.2
Stephens, J.L.3
Taylor, G.J.4
-
95
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., and O'Shea E.K. Global analysis of protein localization in budding yeast. Nature 425 (2003) 686-691
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
Weissman, J.S.6
O'Shea, E.K.7
-
96
-
-
2342657879
-
-
D. Tsuzi, K. Maeta, Y. Takatsume, S. Igawa, Y. Inoue, Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7, FEBS Lett. 565 (2004) 148-154.
-
D. Tsuzi, K. Maeta, Y. Takatsume, S. Igawa, Y. Inoue, Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7, FEBS Lett. 565 (2004) 148-154.
-
-
-
-
98
-
-
29744463864
-
GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae
-
Tanaka T., Izawa S., and Inoue Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280 (2005) 42078-42087
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42078-42087
-
-
Tanaka, T.1
Izawa, S.2
Inoue, Y.3
-
99
-
-
0037053371
-
The yeast glutaredoxins are active as glutathione peroxidases
-
Collinson E.J., Wheeler G.L., Garrido E.O., Avery A.M., Avery S.V., and Grant C.M. The yeast glutaredoxins are active as glutathione peroxidases. J. Biol. Chem. 277 (2002) 16712-16717
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 16712-16717
-
-
Collinson, E.J.1
Wheeler, G.L.2
Garrido, E.O.3
Avery, A.M.4
Avery, S.V.5
Grant, C.M.6
-
100
-
-
33748347924
-
Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases active as 1-Cys thiol transferases
-
Garcerá A., Barreto L., Piedrafita L., Tamarit J., and Herrero E. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases active as 1-Cys thiol transferases. Biochem. J. 398 (2006) 187-196
-
(2006)
Biochem. J.
, vol.398
, pp. 187-196
-
-
Garcerá, A.1
Barreto, L.2
Piedrafita, L.3
Tamarit, J.4
Herrero, E.5
-
101
-
-
31944434598
-
Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
-
Enjalbert B., Cornell M.J., Alam I., Nicholls S., Brown A.J.P., and Quinn J. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17 (2006) 1018-1032
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1018-1032
-
-
Enjalbert, B.1
Cornell, M.J.2
Alam, I.3
Nicholls, S.4
Brown, A.J.P.5
Quinn, J.6
-
102
-
-
6344285788
-
Transcriptional response of Candida albicans upon internalization by macrophages
-
Lorenz M.C., Bender J.A., and Fink G.R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3 (2003) 1076-1087
-
(2003)
Eukaryot. Cell
, vol.3
, pp. 1076-1087
-
-
Lorenz, M.C.1
Bender, J.A.2
Fink, G.R.3
-
103
-
-
23844498015
-
Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates
-
Missall T.A., Cherry-Harris J.F., and Lodge J.K. Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151 (2005) 2573-2581
-
(2005)
Microbiology
, vol.151
, pp. 2573-2581
-
-
Missall, T.A.1
Cherry-Harris, J.F.2
Lodge, J.K.3
-
104
-
-
0037222255
-
Structure, mechanism and regulation of peroxiredoxins
-
Wood Z.A., Schroder E., Harris J.R., and Poole L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28 (2003) 32-40
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 32-40
-
-
Wood, Z.A.1
Schroder, E.2
Harris, J.R.3
Poole, L.B.4
-
105
-
-
19444375216
-
Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling
-
Rhee S.G., Chae H.Z., and Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Rad. Biol. Med. 38 (2005) 1543-1552
-
(2005)
Free Rad. Biol. Med.
, vol.38
, pp. 1543-1552
-
-
Rhee, S.G.1
Chae, H.Z.2
Kim, K.3
-
106
-
-
0000056465
-
Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae
-
Park S.G., Cha M.K., Jeong W., and Kim I.K. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275 (2000) 5723-5732
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 5723-5732
-
-
Park, S.G.1
Cha, M.K.2
Jeong, W.3
Kim, I.K.4
-
107
-
-
0037085384
-
Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress
-
Wong C.M., Zhou Y., Ng R.W.M., Kung H., and Jin D.Y. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277 (2002) 5385-5394
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 5385-5394
-
-
Wong, C.M.1
Zhou, Y.2
Ng, R.W.M.3
Kung, H.4
Jin, D.Y.5
-
108
-
-
33845917628
-
Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
-
Ogusucu R., Rettori D., Munhoz D.C., Netto L.E.S., and Augusto O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Rad. Biol. Med. 42 (2007) 326-334
-
(2007)
Free Rad. Biol. Med.
, vol.42
, pp. 326-334
-
-
Ogusucu, R.1
Rettori, D.2
Munhoz, D.C.3
Netto, L.E.S.4
Augusto, O.5
-
109
-
-
4143074740
-
Cytosolic thioredoxin peroxidases I and II are important defenses of yeast against organic hydroperoxide insult
-
Munhoz D.C., and Netto L.E.S. Cytosolic thioredoxin peroxidases I and II are important defenses of yeast against organic hydroperoxide insult. J. Biol. Chem. 279 (2004) 35219-35227
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 35219-35227
-
-
Munhoz, D.C.1
Netto, L.E.S.2
-
110
-
-
0034717135
-
Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity
-
Pedrajas J.R., Miranda-Vizuete A., Javanmardy N., Gustafsson J.A., and Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275 (2000) 16296-16301
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 16296-16301
-
-
Pedrajas, J.R.1
Miranda-Vizuete, A.2
Javanmardy, N.3
Gustafsson, J.A.4
Spyrou, G.5
-
111
-
-
2542504409
-
Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable
-
Wong C.M., Siu K.L., and Jin D.Y. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279 (2004) 23207-23213
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23207-23213
-
-
Wong, C.M.1
Siu, K.L.2
Jin, D.Y.3
-
112
-
-
33644932478
-
Yeast oxidative stress response: influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state
-
Demasi A.P.D., Pereira G.A.G., and Netto L.E.S. Yeast oxidative stress response: influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J. 273 (2006) 805-816
-
(2006)
FEBS J.
, vol.273
, pp. 805-816
-
-
Demasi, A.P.D.1
Pereira, G.A.G.2
Netto, L.E.S.3
-
113
-
-
34047243851
-
Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency
-
Wu C.Y., Bird A.J., Winge D.R., and Eide D.J. Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282 (2007) 2184-2195
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2184-2195
-
-
Wu, C.Y.1
Bird, A.J.2
Winge, D.R.3
Eide, D.J.4
-
114
-
-
0037026866
-
Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion
-
Nguyen-nhu N.T., and Knoops B. Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol. Lett. 135 (2002) 219-228
-
(2002)
Toxicol. Lett.
, vol.135
, pp. 219-228
-
-
Nguyen-nhu, N.T.1
Knoops, B.2
-
115
-
-
2542464938
-
Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
-
Jang H.H., Lee K.O., Chi Y.H., Jung B.G., Park S.K., Park J.H., Lee J.R., Lee S.S., Moon J.C., Yun J.W., Choi Y.O., Kim W.Y., Kang J.S., Cheong G.W., Yun D.J., Rhee S.G., Cho M.J., and Lee S.Y. Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117 (2004) 625-635
-
(2004)
Cell
, vol.117
, pp. 625-635
-
-
Jang, H.H.1
Lee, K.O.2
Chi, Y.H.3
Jung, B.G.4
Park, S.K.5
Park, J.H.6
Lee, J.R.7
Lee, S.S.8
Moon, J.C.9
Yun, J.W.10
Choi, Y.O.11
Kim, W.Y.12
Kang, J.S.13
Cheong, G.W.14
Yun, D.J.15
Rhee, S.G.16
Cho, M.J.17
Lee, S.Y.18
-
116
-
-
0042706146
-
Moonlighting proteins: old proteins learning new tricks
-
Jeffery C.J. Moonlighting proteins: old proteins learning new tricks. Trends Genet. 19 (2003) 415-417
-
(2003)
Trends Genet.
, vol.19
, pp. 415-417
-
-
Jeffery, C.J.1
-
117
-
-
0031658303
-
Identification of high-copy disrupters of telomeric silencing in Saccharomyces cerevisiae
-
Singer M.S., Kahana A., Wolf A.J., Meisinger L.L., Peterson S.E., Goggin C., Mahowald M., and Gottschling D.E. Identification of high-copy disrupters of telomeric silencing in Saccharomyces cerevisiae. Genetics 150 (1998) 613-632
-
(1998)
Genetics
, vol.150
, pp. 613-632
-
-
Singer, M.S.1
Kahana, A.2
Wolf, A.J.3
Meisinger, L.L.4
Peterson, S.E.5
Goggin, C.6
Mahowald, M.7
Gottschling, D.E.8
-
118
-
-
1642268643
-
Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing
-
Izawa S., Kuroki K., and Inoue Y. Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing. Appl. Microbiol. Biotechnol. 64 (2004) 120-124
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.64
, pp. 120-124
-
-
Izawa, S.1
Kuroki, K.2
Inoue, Y.3
-
119
-
-
23844556478
-
The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans
-
Urban C., Xiong X., Sohn K., Schröpel K., Brunner H., and Rupp S. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol. Microbiol. 57 (2005) 1318-1341
-
(2005)
Mol. Microbiol.
, vol.57
, pp. 1318-1341
-
-
Urban, C.1
Xiong, X.2
Sohn, K.3
Schröpel, K.4
Brunner, H.5
Rupp, S.6
-
120
-
-
0034955016
-
Micronutrients: oxidant/antioxidant status
-
Evans P., and Halliwell B. Micronutrients: oxidant/antioxidant status. Br. J. Nutr. 85 Suppl 2 (2001) S67-S74
-
(2001)
Br. J. Nutr.
, vol.85
, Issue.SUPPL. 2
-
-
Evans, P.1
Halliwell, B.2
-
121
-
-
5044247320
-
Ascorbate restores lifespan of superoxide-dismutase deficient yeast
-
Krzepilko A., Swiecilo A., Wawryn J., Zadrag R., Koziol S., Bartosz G., and Bilinski T. Ascorbate restores lifespan of superoxide-dismutase deficient yeast. Free Radic. Res. 38 (2004) 1019-1024
-
(2004)
Free Radic. Res.
, vol.38
, pp. 1019-1024
-
-
Krzepilko, A.1
Swiecilo, A.2
Wawryn, J.3
Zadrag, R.4
Koziol, S.5
Bartosz, G.6
Bilinski, T.7
-
122
-
-
34247604468
-
Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C
-
Monteiro G., Horta B.B., Pimenta D.C., Augusto O., and Netto L.E. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 4886-4891
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 4886-4891
-
-
Monteiro, G.1
Horta, B.B.2
Pimenta, D.C.3
Augusto, O.4
Netto, L.E.5
-
123
-
-
0034607625
-
Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae
-
Hancock R.D., Galpin J.R., and Viola R. Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol. Lett. 186 (2000) 245-250
-
(2000)
FEMS Microbiol. Lett.
, vol.186
, pp. 245-250
-
-
Hancock, R.D.1
Galpin, J.R.2
Viola, R.3
-
124
-
-
0023722640
-
Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides in solution
-
Mukai K., Kohno Y., and Ishizu K. Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides in solution. Biochem. Biophys. Res. Commun. 155 (1988) 1046-1050
-
(1988)
Biochem. Biophys. Res. Commun.
, vol.155
, pp. 1046-1050
-
-
Mukai, K.1
Kohno, Y.2
Ishizu, K.3
-
125
-
-
14844342861
-
Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid)
-
Raspor P., Plesnicar S., Gazdag Z., Pesti M., Miklavcic M., Lah B., Logar-Marinsek R., and Poljsak B. Prevention of intracellular oxidation in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biol. Int. 29 (2005) 57-63
-
(2005)
Cell Biol. Int.
, vol.29
, pp. 57-63
-
-
Raspor, P.1
Plesnicar, S.2
Gazdag, Z.3
Pesti, M.4
Miklavcic, M.5
Lah, B.6
Logar-Marinsek, R.7
Poljsak, B.8
-
126
-
-
0035922167
-
Protective effects of vitamins and selenium compounds in yeast
-
Bronzetti G., Cini M., Andreoli E., Caltavuturo L., Panunzio M., and Croce C.D. Protective effects of vitamins and selenium compounds in yeast. Mutat. Res. 496 (2001) 105-115
-
(2001)
Mutat. Res.
, vol.496
, pp. 105-115
-
-
Bronzetti, G.1
Cini, M.2
Andreoli, E.3
Caltavuturo, L.4
Panunzio, M.5
Croce, C.D.6
-
127
-
-
0022683672
-
Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?
-
Carlioz A., and Touati D. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. EMBO J. 5 (1986) 623-630
-
(1986)
EMBO J.
, vol.5
, pp. 623-630
-
-
Carlioz, A.1
Touati, D.2
-
128
-
-
33744960105
-
Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia
-
Irazusta V., Cabiscol E., Reverter-Branchat G., Ros J., and Tamarit J. Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia. J. Biol. Chem. 281 (2006) 12227-12232
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 12227-12232
-
-
Irazusta, V.1
Cabiscol, E.2
Reverter-Branchat, G.3
Ros, J.4
Tamarit, J.5
-
129
-
-
0041335593
-
Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family
-
Luk E., Carroll M., Baker M., and Culotta V.C. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10353-10357
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10353-10357
-
-
Luk, E.1
Carroll, M.2
Baker, M.3
Culotta, V.C.4
-
131
-
-
0032898512
-
The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague
-
Bearden S.W., and Perry R.D. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32 (1999) 403-414
-
(1999)
Mol. Microbiol.
, vol.32
, pp. 403-414
-
-
Bearden, S.W.1
Perry, R.D.2
-
132
-
-
0034011567
-
The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium
-
Janakiraman A., and Slauch J.M. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35 (2000) 1146-1155
-
(2000)
Mol. Microbiol.
, vol.35
, pp. 1146-1155
-
-
Janakiraman, A.1
Slauch, J.M.2
-
133
-
-
0033767925
-
Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress
-
Carmel-Harel O., and Storz G. Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54 (2000) 439-461
-
(2000)
Annu. Rev. Microbiol.
, vol.54
, pp. 439-461
-
-
Carmel-Harel, O.1
Storz, G.2
-
134
-
-
1642547105
-
Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae
-
Wheeler G.L., and Grant C.M. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol. Plant. 120 (2004) 12-20
-
(2004)
Physiol. Plant.
, vol.120
, pp. 12-20
-
-
Wheeler, G.L.1
Grant, C.M.2
-
135
-
-
0032411723
-
The genetics of disulphide bond metabolism
-
Rietsch A., and Beckwith J. The genetics of disulphide bond metabolism. Annu. Rev. Genet. 32 (1998) 163-184
-
(1998)
Annu. Rev. Genet.
, vol.32
, pp. 163-184
-
-
Rietsch, A.1
Beckwith, J.2
-
136
-
-
0029165589
-
Thioredoxin-a fold for all reasons
-
Martin J.L. Thioredoxin-a fold for all reasons. Structure 3 (1995) 245-250
-
(1995)
Structure
, vol.3
, pp. 245-250
-
-
Martin, J.L.1
-
137
-
-
0026020092
-
Yeast thioredoxin genes
-
Gan Z.R. Yeast thioredoxin genes. J. Biol. Chem. 266 (1991) 1692-1696
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 1692-1696
-
-
Gan, Z.R.1
-
138
-
-
0033525509
-
Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae
-
Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustaffson J.A., Wright A.P.H., and Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274 (1999) 6566-6573
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 6566-6573
-
-
Pedrajas, J.R.1
Kosmidou, E.2
Miranda-Vizuete, A.3
Gustaffson, J.A.4
Wright, A.P.H.5
Spyrou, G.6
-
139
-
-
0025740886
-
Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle
-
Muller E.G.D. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J. Biol. Chem. 266 (1991) 9194-9202
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 9194-9202
-
-
Muller, E.G.D.1
-
140
-
-
13844313006
-
Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae
-
Trotter E.W., and Grant C.M. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot. Cell 4 (2005) 392-400
-
(2005)
Eukaryot. Cell
, vol.4
, pp. 392-400
-
-
Trotter, E.W.1
Grant, C.M.2
-
141
-
-
33847637126
-
Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast
-
Camier S., Ma E., Leroy C., Pruvost A., Toledano M., and Marsolier-Kergoat M.C. Visualization of ribonucleotide reductase catalytic oxidation establishes thioredoxins as its major reductants in yeast. Free Rad. Biol. Med. 42 (2007) 1008-1016
-
(2007)
Free Rad. Biol. Med.
, vol.42
, pp. 1008-1016
-
-
Camier, S.1
Ma, E.2
Leroy, C.3
Pruvost, A.4
Toledano, M.5
Marsolier-Kergoat, M.C.6
-
142
-
-
33744960023
-
Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase
-
Koc A., Mathews C.K., Wheeler L.J., Gross M.K., and Merrill G.F. Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. J. Biol. Chem. 281 (2006) 15058-15063
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 15058-15063
-
-
Koc, A.1
Mathews, C.K.2
Wheeler, L.J.3
Gross, M.K.4
Merrill, G.F.5
-
143
-
-
0037166354
-
Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase and function
-
Potamitou A., Holmgren A., and Vlamis-Gardikas A. Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase and function. J. Biol. Chem. 277 (2002) 18561-18567
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18561-18567
-
-
Potamitou, A.1
Holmgren, A.2
Vlamis-Gardikas, A.3
-
144
-
-
0036227450
-
Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides
-
Ocón-Garrido E., and Grant C.M. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol. Microbiol. 43 (2002) 993-1003
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 993-1003
-
-
Ocón-Garrido, E.1
Grant, C.M.2
-
145
-
-
33747761623
-
The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen
-
Brombacher K., Fischer B.B., Rüfenacht K., and Eggen R.I.L. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Yeast 23 (2006) 741-750
-
(2006)
Yeast
, vol.23
, pp. 741-750
-
-
Brombacher, K.1
Fischer, B.B.2
Rüfenacht, K.3
Eggen, R.I.L.4
-
146
-
-
33744543755
-
The Saccharomyces cerevisiae proteome of oxidized protein thiols
-
Le Moan N., Clement G., Le Maout S., Tacnet F., and Toledano M.B. The Saccharomyces cerevisiae proteome of oxidized protein thiols. J. Biol. Chem. 281 (2006) 10420-10430
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10420-10430
-
-
Le Moan, N.1
Clement, G.2
Le Maout, S.3
Tacnet, F.4
Toledano, M.B.5
-
147
-
-
0036435926
-
Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae
-
Trotter E.W., and Grant C.M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 46 (2002) 869-878
-
(2002)
Mol. Microbiol.
, vol.46
, pp. 869-878
-
-
Trotter, E.W.1
Grant, C.M.2
-
148
-
-
30044436319
-
The thioredoxin system protects ribosomes against stress-induced aggregation
-
Rand J.D., and Grant C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 17 (2006) 387-401
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 387-401
-
-
Rand, J.D.1
Grant, C.M.2
-
149
-
-
34447518686
-
The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis
-
Toledano M.B., Kumar C., Le Moan N., Spector D., and Tacnet F. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett. 581 (2007) 3598-3607
-
(2007)
FEBS Lett.
, vol.581
, pp. 3598-3607
-
-
Toledano, M.B.1
Kumar, C.2
Le Moan, N.3
Spector, D.4
Tacnet, F.5
-
150
-
-
0031719952
-
The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
-
Luikenhuis S., Perrone G., Dawes I.W., and Grant C.M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell 9 (1998) 1081-1091
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 1081-1091
-
-
Luikenhuis, S.1
Perrone, G.2
Dawes, I.W.3
Grant, C.M.4
-
151
-
-
33745210793
-
One single in-frame AUG codon is responsible for a diversity of subcellular localizations for glutaredoxin 2 in Saccharomyces cerevisiae
-
Porras P., Padilla C.A., Krayl M., Voos W., and Bárcena J.A. One single in-frame AUG codon is responsible for a diversity of subcellular localizations for glutaredoxin 2 in Saccharomyces cerevisiae. J. Biol. Chem. 281 (2006) 16551-16562
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 16551-16562
-
-
Porras, P.1
Padilla, C.A.2
Krayl, M.3
Voos, W.4
Bárcena, J.A.5
-
152
-
-
0037053371
-
Role of yeast glutaredoxins as glutathione S-transferases
-
Collinson E.J., and Grant C.M. Role of yeast glutaredoxins as glutathione S-transferases. J. Biol. Chem. 277 (2002) 16712-16717
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 16712-16717
-
-
Collinson, E.J.1
Grant, C.M.2
-
154
-
-
5444271187
-
The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast
-
Teixeira M.C., Telo J.P., Duarte N.F., and Sá-Correia I. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast. Biochem. Biophys. Res. Commun. 324 (2004) 1101-1107
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.324
, pp. 1101-1107
-
-
Teixeira, M.C.1
Telo, J.P.2
Duarte, N.F.3
Sá-Correia, I.4
-
155
-
-
0034076851
-
A single glutaredoxin or thioredoxin is essential for viability in the yeast Saccharomyces cerevisiae
-
Draculic T., Dawes I.W., and Grant C.M. A single glutaredoxin or thioredoxin is essential for viability in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 36 (2000) 1167-1174
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 1167-1174
-
-
Draculic, T.1
Dawes, I.W.2
Grant, C.M.3
-
156
-
-
0034647748
-
Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase
-
Mukhopadhyay R., Shi J., and Rosen B.P. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275 (2000) 21149-21157
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 21149-21157
-
-
Mukhopadhyay, R.1
Shi, J.2
Rosen, B.P.3
-
157
-
-
34250731291
-
Monothiol glutaredoxins: a common domain for multiple functions
-
Herrero E., and de la Torre-Ruiz M.A. Monothiol glutaredoxins: a common domain for multiple functions. Cell. Mol. Life Sci. 64 (2007) 1518-1530
-
(2007)
Cell. Mol. Life Sci.
, vol.64
, pp. 1518-1530
-
-
Herrero, E.1
de la Torre-Ruiz, M.A.2
-
158
-
-
0942268722
-
Analysis of the interaction between piD261/Bud32, an evolutionary conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin
-
Lopreiato R., Facchin S., Sartori G., Arrigoni G., Casonato S., Ruzzene M., Pinna L.A., and Carignani G. Analysis of the interaction between piD261/Bud32, an evolutionary conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem. J. 377 (2004) 395-405
-
(2004)
Biochem. J.
, vol.377
, pp. 395-405
-
-
Lopreiato, R.1
Facchin, S.2
Sartori, G.3
Arrigoni, G.4
Casonato, S.5
Ruzzene, M.6
Pinna, L.A.7
Carignani, G.8
-
159
-
-
10644242480
-
Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins
-
Molina M.M., Bellí G., de la Torre M.A., Rodríguez-Manzaneque M.T., and Herrero E. Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J. Biol. Chem. 279 (2004) 51923-51930
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 51923-51930
-
-
Molina, M.M.1
Bellí, G.2
de la Torre, M.A.3
Rodríguez-Manzaneque, M.T.4
Herrero, E.5
-
160
-
-
33745872884
-
Role of glutaredoxin-3 and glutaredoxin-4 in the iron-regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
-
Ojeda L., Keller G., Mühlenhoff U., Rutherford J.C., Lill R., and Winge D.R. Role of glutaredoxin-3 and glutaredoxin-4 in the iron-regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281 (2006) 17661-17669
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 17661-17669
-
-
Ojeda, L.1
Keller, G.2
Mühlenhoff, U.3
Rutherford, J.C.4
Lill, R.5
Winge, D.R.6
-
161
-
-
33751529756
-
Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
-
Pujol-Carrión N., Bellí G., Herrero E., Bogues A., and de la Torre-Ruiz M.A. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 119 (2006) 4554-4564
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4554-4564
-
-
Pujol-Carrión, N.1
Bellí, G.2
Herrero, E.3
Bogues, A.4
de la Torre-Ruiz, M.A.5
-
162
-
-
0037166279
-
Subcellular localisation of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae
-
Yamaguchi-Iwai Y., Ueta R., Fukunaka A., and Sasaki R. Subcellular localisation of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J. Biol. Chem. 277 (2002) 18914-18918
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18914-18918
-
-
Yamaguchi-Iwai, Y.1
Ueta, R.2
Fukunaka, A.3
Sasaki, R.4
-
163
-
-
33745596108
-
Genome-wide analysis of plant glutaredoxin systems
-
Rouhier N., Couturier J., and Jacquot J.P. Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 57 (2006) 1685-1696
-
(2006)
J. Exp. Bot.
, vol.57
, pp. 1685-1696
-
-
Rouhier, N.1
Couturier, J.2
Jacquot, J.P.3
-
164
-
-
0034695550
-
Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interaction protein with a thioredoxin homology domain
-
Witte S., Villalba M., Bi K., Liu Y., Isakov N., and Altman A. Inhibition of the c-Jun N-terminal kinase/AP-1 and NF-kappaB pathways by PICOT, a novel protein kinase C-interaction protein with a thioredoxin homology domain. J. Biol. Chem. 275 (2000) 1902-1909
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 1902-1909
-
-
Witte, S.1
Villalba, M.2
Bi, K.3
Liu, Y.4
Isakov, N.5
Altman, A.6
-
165
-
-
33746825412
-
PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility
-
Jeong D., Cha H., Kim E., Kang M., Yang D.K., Kim J.M., Yoon P.O., Oh J.G., Bernecker O.Y., Sakata S., Le T.T., Cui L., Lee Y.H., Kim do H., Woo S.H., Liao R., Hajjar R.J., and Park W.J. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ. Res. 99 (2006) 307-314
-
(2006)
Circ. Res.
, vol.99
, pp. 307-314
-
-
Jeong, D.1
Cha, H.2
Kim, E.3
Kang, M.4
Yang, D.K.5
Kim, J.M.6
Yoon, P.O.7
Oh, J.G.8
Bernecker, O.Y.9
Sakata, S.10
Le, T.T.11
Cui, L.12
Lee, Y.H.13
Kim do, H.14
Woo, S.H.15
Liao, R.16
Hajjar, R.J.17
Park, W.J.18
-
166
-
-
0036226063
-
Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
-
Rodríguez-Manzaneque M.T., Tamarit J., Bellí G., Ros J., and Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13 (2002) 1109-1121
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 1109-1121
-
-
Rodríguez-Manzaneque, M.T.1
Tamarit, J.2
Bellí, G.3
Ros, J.4
Herrero, E.5
-
167
-
-
0141737067
-
Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p
-
Mühlenhoff U., Gerber J., Richhardt N., and Lill R. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J. 22 (2003) 4815-4825
-
(2003)
EMBO J.
, vol.22
, pp. 4815-4825
-
-
Mühlenhoff, U.1
Gerber, J.2
Richhardt, N.3
Lill, R.4
-
168
-
-
0040932016
-
Grx5 glutaredoxin plays a central role in protection against oxidative damage in Saccharomyces cerevisiae
-
Rodríguez-Manzaneque M.T., Ros J., Cabiscol E., Sorribas A., and Herrero E. Grx5 glutaredoxin plays a central role in protection against oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 (1999) 8180-8190
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 8180-8190
-
-
Rodríguez-Manzaneque, M.T.1
Ros, J.2
Cabiscol, E.3
Sorribas, A.4
Herrero, E.5
-
169
-
-
0037020228
-
Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein
-
Bellí G., Polaina J., Tamarit J., de la Torre M.A., Rodríguez-Manzaneque M.T., Ros J., and Herrero E. Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J. Biol. Chem. 277 (2002) 37590-37596
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37590-37596
-
-
Bellí, G.1
Polaina, J.2
Tamarit, J.3
de la Torre, M.A.4
Rodríguez-Manzaneque, M.T.5
Ros, J.6
Herrero, E.7
-
170
-
-
33645990964
-
Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria
-
Molina-Navarro M.M., Casas C., Piedrafita L., Bellí G., and Herrero E. Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett. 580 (2006) 2273-2280
-
(2006)
FEBS Lett.
, vol.580
, pp. 2273-2280
-
-
Molina-Navarro, M.M.1
Casas, C.2
Piedrafita, L.3
Bellí, G.4
Herrero, E.5
-
171
-
-
33748747966
-
AtGRXcp, an Arabidopsis chloroplastic/plastidic glutaredoxin is critical for protection against protein oxidative damage
-
Cheng N.H., Liu J.Z., Brock A., Nelson R.S., and Hirschi K.D. AtGRXcp, an Arabidopsis chloroplastic/plastidic glutaredoxin is critical for protection against protein oxidative damage. J. Biol. Chem. 281 (2006) 26280-26288
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 26280-26288
-
-
Cheng, N.H.1
Liu, J.Z.2
Brock, A.3
Nelson, R.S.4
Hirschi, K.D.5
-
172
-
-
23944500052
-
Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis
-
The Tübingen 2000 Screen Consortium
-
Wingert R.A., Galloway J.L., Barut B., Foott H., Fraenkel P., Axe J.L., Weber G.J., Dooley K., Davidson A.J., Schmidt B., Paw B.H., Shaw G.C., Kingsley P., Palis J., Schubert H., Chen O., Kaplan J., The Tübingen 2000 Screen Consortium, and Zon L.I. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436 (2005) 1035-1039
-
(2005)
Nature
, vol.436
, pp. 1035-1039
-
-
Wingert, R.A.1
Galloway, J.L.2
Barut, B.3
Foott, H.4
Fraenkel, P.5
Axe, J.L.6
Weber, G.J.7
Dooley, K.8
Davidson, A.J.9
Schmidt, B.10
Paw, B.H.11
Shaw, G.C.12
Kingsley, P.13
Palis, J.14
Schubert, H.15
Chen, O.16
Kaplan, J.17
Zon, L.I.18
-
173
-
-
34548013116
-
The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload
-
Camaschella C., Campanella A., De Falco L., Boschetto L., Merlini R., Silvestri L., Levi S., and Iolascon A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110 (2007) 1353-1358
-
(2007)
Blood
, vol.110
, pp. 1353-1358
-
-
Camaschella, C.1
Campanella, A.2
De Falco, L.3
Boschetto, L.4
Merlini, R.5
Silvestri, L.6
Levi, S.7
Iolascon, A.8
-
174
-
-
21644463195
-
A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase
-
Fernandes A.P., Fladvad M., Berndt C., Andrésen C., Lillig C.H., Neubauer P., Sunnerhagen M., Holmgren A., and Vlamis-Gardikas A. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J. Biol. Chem. 280 (2005) 24544-24552
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 24544-24552
-
-
Fernandes, A.P.1
Fladvad, M.2
Berndt, C.3
Andrésen, C.4
Lillig, C.H.5
Neubauer, P.6
Sunnerhagen, M.7
Holmgren, A.8
Vlamis-Gardikas, A.9
-
175
-
-
0035813229
-
Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain
-
Rahlfs S., Fischer M., and Becker K. Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J. Biol. Chem. 276 (2001) 37133-37140
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 37133-37140
-
-
Rahlfs, S.1
Fischer, M.2
Becker, K.3
-
176
-
-
0038491193
-
Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin
-
Tamarit J., Bellí G., Cabiscol E., Herrero E., and Ros J. Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J. Biol. Chem. 278 (2003) 25745-25751
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25745-25751
-
-
Tamarit, J.1
Bellí, G.2
Cabiscol, E.3
Herrero, E.4
Ros, J.5
-
177
-
-
15744374257
-
Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe
-
Chung W.H., Kim K.D., and Roe J.H. Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 330 (2005) 604-610
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.330
, pp. 604-610
-
-
Chung, W.H.1
Kim, K.D.2
Roe, J.H.3
-
178
-
-
1542319976
-
Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
-
Outten C.E., and Culotta V.C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279 (2004) 7785-7791
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7785-7791
-
-
Outten, C.E.1
Culotta, V.C.2
-
179
-
-
0030004354
-
Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
-
Grant C.M., MacIver F.H., and Dawes I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29 (1996) 511-515
-
(1996)
Curr. Genet.
, vol.29
, pp. 511-515
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
180
-
-
3543095148
-
Monitoring disulfide bond formation in the eukaryotic cytosol
-
Ostergaard H., Tachibana C., and Winther J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166 (2004) 337-345
-
(2004)
J. Cell Biol.
, vol.166
, pp. 337-345
-
-
Ostergaard, H.1
Tachibana, C.2
Winther, J.R.3
-
181
-
-
27744574661
-
Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae
-
Drakulic T., Temple M.D., Guido R., Jarolim S., Breitenbach M., Attfield P.V., and Dawes I.W. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 1215-1228
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 1215-1228
-
-
Drakulic, T.1
Temple, M.D.2
Guido, R.3
Jarolim, S.4
Breitenbach, M.5
Attfield, P.V.6
Dawes, I.W.7
-
182
-
-
0037297417
-
Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems
-
Trotter E.W., and Grant C.M. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep. 4 (2003) 184-188
-
(2003)
EMBO Rep.
, vol.4
, pp. 184-188
-
-
Trotter, E.W.1
Grant, C.M.2
-
183
-
-
0029948308
-
A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth
-
Muller E.G.D. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7 (1996) 1805-1813
-
(1996)
Mol. Biol. Cell
, vol.7
, pp. 1805-1813
-
-
Muller, E.G.D.1
-
184
-
-
0034637481
-
Identification, characterization, and crystal structure of the omega class glutathione transferases
-
Board P.G., Coggan M., Chelvanagayam G., Easteal S., Jermiin L.S., Schulte G.K., Danley D.E., Hoth L.R., Griffor M.C., Kamath A.V., Rosner M.H., Chrunyk B.A., Perregaux D.E., Gabel C.A., Geoghegan K.F., and Pandit J. Identification, characterization, and crystal structure of the omega class glutathione transferases. J. Biol. Chem. 275 (2000) 24800-24806
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 24800-24806
-
-
Board, P.G.1
Coggan, M.2
Chelvanagayam, G.3
Easteal, S.4
Jermiin, L.S.5
Schulte, G.K.6
Danley, D.E.7
Hoth, L.R.8
Griffor, M.C.9
Kamath, A.V.10
Rosner, M.H.11
Chrunyk, B.A.12
Perregaux, D.E.13
Gabel, C.A.14
Geoghegan, K.F.15
Pandit, J.16
-
185
-
-
30144438819
-
Characterization of the Omega-class of glutathione transferases
-
Whitbread A.K., Masoumi A., Tetlow N., Schmuck E., Coggan M., and Board P.G. Characterization of the Omega-class of glutathione transferases. Methods Enzymol. 401 (2005) 77-99
-
(2005)
Methods Enzymol.
, vol.401
, pp. 77-99
-
-
Whitbread, A.K.1
Masoumi, A.2
Tetlow, N.3
Schmuck, E.4
Coggan, M.5
Board, P.G.6
-
186
-
-
33750380347
-
A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism
-
Barreto L., Garcerá A., Jansson K., Sunnerhagen P., and Herrero E. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot. Cell 5 (2006) 1748-1759
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 1748-1759
-
-
Barreto, L.1
Garcerá, A.2
Jansson, K.3
Sunnerhagen, P.4
Herrero, E.5
-
187
-
-
12844267504
-
Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases
-
Moskovitz J. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta 1703 (2005) 213-219
-
(2005)
Biochim. Biophys. Acta
, vol.1703
, pp. 213-219
-
-
Moskovitz, J.1
-
188
-
-
12844268130
-
Methionine oxidation and aging
-
Stadtman E.R., Van Remmen H., Richardson A., Wehr N.B., and Levine R.L. Methionine oxidation and aging. Biochim. Biophys. Acta 1703 (2005) 135-140
-
(2005)
Biochim. Biophys. Acta
, vol.1703
, pp. 135-140
-
-
Stadtman, E.R.1
Van Remmen, H.2
Richardson, A.3
Wehr, N.B.4
Levine, R.L.5
-
189
-
-
34249692347
-
Methionine sulfoxide reduction and the aging process
-
Kox A., and Gladyshev V.N. Methionine sulfoxide reduction and the aging process. Ann. N.Y. Acad. Sci. 1100 (2007) 383-386
-
(2007)
Ann. N.Y. Acad. Sci.
, vol.1100
, pp. 383-386
-
-
Kox, A.1
Gladyshev, V.N.2
-
191
-
-
21344466558
-
Oxidative protein damage causes chromium toxicity in yeast
-
Summer E.R., Shanmuganathan A., Sideri T.C., Willetts S.A., Houghton J.E., and Avery S.V. Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151 (2005) 1939-1948
-
(2005)
Microbiology
, vol.151
, pp. 1939-1948
-
-
Summer, E.R.1
Shanmuganathan, A.2
Sideri, T.C.3
Willetts, S.A.4
Houghton, J.E.5
Avery, S.V.6
-
192
-
-
34249014672
-
Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain
-
Oien D., and Moskovitz J. Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32 (2007) 603-606
-
(2007)
Amino Acids
, vol.32
, pp. 603-606
-
-
Oien, D.1
Moskovitz, J.2
-
193
-
-
33646064159
-
The yeast cytosolic thioredoxins are involved in the regulation of methionine sulfoxide reductase A
-
Hanbauer I., and Moskovitz J. The yeast cytosolic thioredoxins are involved in the regulation of methionine sulfoxide reductase A. Free Rad. Biol. Med. 40 (2006) 1391-1396
-
(2006)
Free Rad. Biol. Med.
, vol.40
, pp. 1391-1396
-
-
Hanbauer, I.1
Moskovitz, J.2
-
194
-
-
33746718025
-
Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox-dependent way
-
Kho C.W., Lee P.Y., Bae K.H., Cho S., Lee Z.W., Park B.C., Kang S., Lee D.H., and Park S.G. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox-dependent way. Biochem. Biophys. Res. Commun. 348 (2006) 25-35
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.348
, pp. 25-35
-
-
Kho, C.W.1
Lee, P.Y.2
Bae, K.H.3
Cho, S.4
Lee, Z.W.5
Park, B.C.6
Kang, S.7
Lee, D.H.8
Park, S.G.9
-
195
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
Gasch A.P., Spellman P.T., Kao C.M., et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11 (2000) 4241-4257
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
-
196
-
-
10444257943
-
Yeast signalling pathways in the oxidative stress response
-
Ikner A., and Shiozaki K. Yeast signalling pathways in the oxidative stress response. Mutat. Res. 569 (2005) 13-27
-
(2005)
Mutat. Res.
, vol.569
, pp. 13-27
-
-
Ikner, A.1
Shiozaki, K.2
-
197
-
-
20444415235
-
Complex cellular responses to reactive oxygen species
-
Temple M.D., Perrone G.G., and Dawes I.W. Complex cellular responses to reactive oxygen species. Trends Cell Biol. 15 (2005) 319-326
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 319-326
-
-
Temple, M.D.1
Perrone, G.G.2
Dawes, I.W.3
-
198
-
-
0032575374
-
2 stimulon in Saccharomyces cerevisiae
-
2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 22480-22489
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 22480-22489
-
-
Godon, C.1
Lagniel, G.2
Lee, J.3
Buhler, J.M.4
Kieffer, S.5
Perror, M.6
Boucherie, H.7
Toledano, M.B.8
Labarre, J.9
-
199
-
-
0033523113
-
Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
-
Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., and Toledano M.B. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274 (1999) 16040-16046
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16040-16046
-
-
Lee, J.1
Godon, C.2
Lagniel, G.3
Spector, D.4
Garin, J.5
Labarre, J.6
Toledano, M.B.7
-
200
-
-
0035896609
-
A proteome analysis of the cadmium response in Saccharomyces cerevisiae
-
Vido K., Spector D., Lagniel G., Lopez S., Toledano M.B., and Labarre J. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276 (2001) 8469-8474
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 8469-8474
-
-
Vido, K.1
Spector, D.2
Lagniel, G.3
Lopez, S.4
Toledano, M.B.5
Labarre, J.6
-
201
-
-
0033916138
-
The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress
-
Raitt D.C., Johnson A.L., Erkine A.M., Makino K., Morgan B., Gross D.S., and Johnston L.H. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol. Biol. Cell 11 (2000) 2335-2347
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2335-2347
-
-
Raitt, D.C.1
Johnson, A.L.2
Erkine, A.M.3
Makino, K.4
Morgan, B.5
Gross, D.S.6
Johnston, L.H.7
-
202
-
-
0031048280
-
The Skn7 response regulator controls gene expressión in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
-
Morgan B.A., Banks G.R., Toone W.M., Arit D., Kuge S., and Johnston L.H. The Skn7 response regulator controls gene expressión in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16 (1997) 1035-1044
-
(1997)
EMBO J.
, vol.16
, pp. 1035-1044
-
-
Morgan, B.A.1
Banks, G.R.2
Toone, W.M.3
Arit, D.4
Kuge, S.5
Johnston, L.H.6
-
203
-
-
0037827692
-
Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences
-
Moye-Rowley W.S. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot. Cell 2 (2003) 381-389
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 381-389
-
-
Moye-Rowley, W.S.1
-
204
-
-
1842483549
-
SKN7 of Candida albicans: mutant construction and phenotype analysis
-
Singh P., Chauhan N., Ghosh A., Dixon F., and Calderone R. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72 (2004) 2390-2394
-
(2004)
Infect. Immun.
, vol.72
, pp. 2390-2394
-
-
Singh, P.1
Chauhan, N.2
Ghosh, A.3
Dixon, F.4
Calderone, R.5
-
205
-
-
23344445944
-
Identification and characterization of an SKN7 homologue in Cryptococcus neoformans
-
Wormley Jr. F.L., Heinrich G., Millar J.L., Perfect J.R., and Cox G.M. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect. Immun. 73 (2005) 5022-5030
-
(2005)
Infect. Immun.
, vol.73
, pp. 5022-5030
-
-
Wormley Jr., F.L.1
Heinrich, G.2
Millar, J.L.3
Perfect, J.R.4
Cox, G.M.5
-
206
-
-
33646539769
-
The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium
-
Coenjaerts F.E.J., Hoepelman A.I.M., Scharringa J., Aarts M., Ellerbroek P.M., Bevaart L., van Strijp J.A.G., and Janbon G. The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res. 6 (2006) 652-661
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 652-661
-
-
Coenjaerts, F.E.J.1
Hoepelman, A.I.M.2
Scharringa, J.3
Aarts, M.4
Ellerbroek, P.M.5
Bevaart, L.6
van Strijp, J.A.G.7
Janbon, G.8
-
207
-
-
34547901379
-
Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response
-
Yamamoto A., Ueda J., Yamamoto N., Hashikawa N., and Sakurai H. Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 6 (2007) 1373-1379
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 1373-1379
-
-
Yamamoto, A.1
Ueda, J.2
Yamamoto, N.3
Hashikawa, N.4
Sakurai, H.5
-
208
-
-
9944235916
-
The role of cysteine residues as redox-sensitive regulatory switches
-
Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Op. Struct. Biol. 14 (2004) 679-686
-
(2004)
Curr. Op. Struct. Biol.
, vol.14
, pp. 679-686
-
-
Barford, D.1
-
209
-
-
0033991496
-
Redox sensing by prokaryotic transcription factors
-
Zheng M., and Storz G. Redox sensing by prokaryotic transcription factors. Biochem. Pharmacol. 59 (2000) 1-6
-
(2000)
Biochem. Pharmacol.
, vol.59
, pp. 1-6
-
-
Zheng, M.1
Storz, G.2
-
210
-
-
0035815274
-
Structural basis of the redox switch in the OxyR transcription factor
-
Choi H., Kim S., Mukhopadhyay P., Cho S., Woo J., Storz G., and Ryu S. Structural basis of the redox switch in the OxyR transcription factor. Cell 105 (2001) 103-113
-
(2001)
Cell
, vol.105
, pp. 103-113
-
-
Choi, H.1
Kim, S.2
Mukhopadhyay, P.3
Cho, S.4
Woo, J.5
Storz, G.6
Ryu, S.7
-
211
-
-
0035138443
-
Role of thioredoxin reductase in the Yap1-dependent response to oxidative stress in Saccharomyces cerevisiae
-
Carmel-Harel O., Stearman R., Gash A.P., Botstein D., Brown P.O., and Storz G. Role of thioredoxin reductase in the Yap1-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39 (2001) 595-605
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 595-605
-
-
Carmel-Harel, O.1
Stearman, R.2
Gash, A.P.3
Botstein, D.4
Brown, P.O.5
Storz, G.6
-
212
-
-
0028057226
-
YAP1-dependent activation of TRX2 is essential for the response of S. cerevisiae to oxidative stress by hydroperoxides
-
Kuge S., and Jones N. YAP1-dependent activation of TRX2 is essential for the response of S. cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13 (1994) 655-664
-
(1994)
EMBO J.
, vol.13
, pp. 655-664
-
-
Kuge, S.1
Jones, N.2
-
213
-
-
0028168801
-
GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulator
-
Wu A., and Moye-Rowley W.S. GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulator. Mol. Cell. Biol. 14 (1994) 5832-5839
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 5832-5839
-
-
Wu, A.1
Moye-Rowley, W.S.2
-
214
-
-
0036199670
-
Transcription factors regulating the response to oxidative stress in yeast
-
Moye-Rowley W.S. Transcription factors regulating the response to oxidative stress in yeast. Antioxid. Redox Signal. 4 (2002) 123-140
-
(2002)
Antioxid. Redox Signal.
, vol.4
, pp. 123-140
-
-
Moye-Rowley, W.S.1
-
215
-
-
0030942294
-
Regulation of yAP-1 nuclear localization in response to oxidative stress
-
Kuge S., Jones N., and Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16 (1997) 1710-1720
-
(1997)
EMBO J.
, vol.16
, pp. 1710-1720
-
-
Kuge, S.1
Jones, N.2
Nomoto, A.3
-
216
-
-
0035846932
-
Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents
-
Nguyen D.T., Alarco A.M., and Raymond M. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276 (2001) 1138-1145
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 1138-1145
-
-
Nguyen, D.T.1
Alarco, A.M.2
Raymond, M.3
-
217
-
-
0036187717
-
The adaptive response of Saccharomyces cerevisiae to mercury exposure
-
Westwater J., McLaren N.F., Dormer U.H., and Jamieson D.J. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19 (2002) 233-239
-
(2002)
Yeast
, vol.19
, pp. 233-239
-
-
Westwater, J.1
McLaren, N.F.2
Dormer, U.H.3
Jamieson, D.J.4
-
218
-
-
0034116016
-
Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae
-
Pinson B., Sagot I., and Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol. Microbiol. 36 (2000) 679-687
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 679-687
-
-
Pinson, B.1
Sagot, I.2
Daignan-Fornier, B.3
-
220
-
-
4544374631
-
Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis
-
Maeta K., Izawa S., Okazaki S., Kuge S., and Inoue Y. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol. Cell. Biol. 24 (2004) 8753-8764
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8753-8764
-
-
Maeta, K.1
Izawa, S.2
Okazaki, S.3
Kuge, S.4
Inoue, Y.5
-
221
-
-
34250011458
-
Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast
-
Molin M., Renault J.P., Lagniel G., Pin S., Toledano M.B., and Labarre J. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Free Rad. Biol. Med. 43 (2007) 136-144
-
(2007)
Free Rad. Biol. Med.
, vol.43
, pp. 136-144
-
-
Molin, M.1
Renault, J.P.2
Lagniel, G.3
Pin, S.4
Toledano, M.B.5
Labarre, J.6
-
222
-
-
0032535486
-
Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor
-
Yan C., Lee L.H., and Davis L.I. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17 (1998) 7416-7429
-
(1998)
EMBO J.
, vol.17
, pp. 7416-7429
-
-
Yan, C.1
Lee, L.H.2
Davis, L.I.3
-
223
-
-
0035726624
-
Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation
-
Kuge S., Arita M., Murayama A., Maeta K., Izawa S., Inoue Y., and Nomoto A. Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21 (2001) 6139-6150
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 6139-6150
-
-
Kuge, S.1
Arita, M.2
Murayama, A.3
Maeta, K.4
Izawa, S.5
Inoue, Y.6
Nomoto, A.7
-
225
-
-
0034597012
-
H2O2 sensing through oxidation of the Yap1 transcription factor
-
Delaunay A., Isnard A.D., and Toledano M.B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19 (2000) 5157-5166
-
(2000)
EMBO J.
, vol.19
, pp. 5157-5166
-
-
Delaunay, A.1
Isnard, A.D.2
Toledano, M.B.3
-
226
-
-
28844501851
-
Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization
-
Gulshan K., Rovinsky S.A., Coleman S.T., and Moye-Rowley W.S. Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J. Biol. Chem. 280 (2005) 40524-40533
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40524-40533
-
-
Gulshan, K.1
Rovinsky, S.A.2
Coleman, S.T.3
Moye-Rowley, W.S.4
-
227
-
-
4344562921
-
Structural basis for redox regulation of Yap1 transcription factor localization
-
Wood M.J., Storz G., and Tjandra N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430 (2004) 917-921
-
(2004)
Nature
, vol.430
, pp. 917-921
-
-
Wood, M.J.1
Storz, G.2
Tjandra, N.3
-
229
-
-
0042733228
-
Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor
-
Veal E.A., Ross S.J., Malakasi P., Peacok E., and Morgan B.A. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278 (2003) 30896-30904
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 30896-30904
-
-
Veal, E.A.1
Ross, S.J.2
Malakasi, P.3
Peacok, E.4
Morgan, B.A.5
-
230
-
-
14044271510
-
Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast
-
Okazaki S., Naganuma A., and Kuge S. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox Signal. 7 (2005) 327-334
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 327-334
-
-
Okazaki, S.1
Naganuma, A.2
Kuge, S.3
-
231
-
-
12244267727
-
Global transcriptional responses of fission yeast to environmental stress
-
Chen D., Toone W.M., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., and Bahler J. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14 (2003) 214-229
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 214-229
-
-
Chen, D.1
Toone, W.M.2
Mata, J.3
Lyne, R.4
Burns, G.5
Kivinen, K.6
Brazma, A.7
Jones, N.8
Bahler, J.9
-
233
-
-
2942538583
-
Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration
-
Vivancos A.P., Castillo E.A., Jones N., Ayte J., and Hidalgo E. Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52 (2004) 1427-1435
-
(2004)
Mol. Microbiol.
, vol.52
, pp. 1427-1435
-
-
Vivancos, A.P.1
Castillo, E.A.2
Jones, N.3
Ayte, J.4
Hidalgo, E.5
-
235
-
-
0032523783
-
Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1
-
Toone W.M., Kuge S., Samuels M., Morgan B.A., Toda T., and Jones N. Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12 (1998) 1453-1463
-
(1998)
Genes Dev.
, vol.12
, pp. 1453-1463
-
-
Toone, W.M.1
Kuge, S.2
Samuels, M.3
Morgan, B.A.4
Toda, T.5
Jones, N.6
-
236
-
-
0033591412
-
A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1
-
Kudo N., Taoka H., Toda T., Yoshida M., and Horinouchi S. A novel nuclear export signal sensitive to oxidative stress in the fission yeast transcription factor Pap1. J. Biol. Chem. 274 (1999) 15151-15158
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 15151-15158
-
-
Kudo, N.1
Taoka, H.2
Toda, T.3
Yoshida, M.4
Horinouchi, S.5
-
237
-
-
0036047672
-
Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues
-
Castillo E.A., Ayte J., Chiva C., Moldon A., arrascal M., Abian J., Jones N., and Hidalgo E. Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol. 45 (2002) 243-254
-
(2002)
Mol. Microbiol.
, vol.45
, pp. 243-254
-
-
Castillo, E.A.1
Ayte, J.2
Chiva, C.3
Moldon, A.4
arrascal, M.5
Abian, J.6
Jones, N.7
Hidalgo, E.8
-
238
-
-
27744536479
-
The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe
-
Zuin A., Vivancos A.P., Sansó M., Takatsume Y., Ayte J., Inoue Y., and Hidalgo E. The glycolytic metabolite methylglyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe. J. Biol. Chem. 280 (2005) 36708-36713
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 36708-36713
-
-
Zuin, A.1
Vivancos, A.P.2
Sansó, M.3
Takatsume, Y.4
Ayte, J.5
Inoue, Y.6
Hidalgo, E.7
-
239
-
-
20744438779
-
Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide
-
Bozonet S.M., Findlay V.J., Day A.M., Cameron J., Veal E.A., and Morgan B.A. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280 (2005) 23319-23327
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 23319-23327
-
-
Bozonet, S.M.1
Findlay, V.J.2
Day, A.M.3
Cameron, J.4
Veal, E.A.5
Morgan, B.A.6
-
241
-
-
0033166271
-
Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases
-
Nguyen A.N., and Shiozaki K. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13 (1999) 1653-1663
-
(1999)
Genes Dev.
, vol.13
, pp. 1653-1663
-
-
Nguyen, A.N.1
Shiozaki, K.2
-
242
-
-
23844453642
-
Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe
-
Rodriguez-Gabriel M.A., and Russell P. Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe. Eukaryot. Cell 4 (2005) 1396-1402
-
(2005)
Eukaryot. Cell
, vol.4
, pp. 1396-1402
-
-
Rodriguez-Gabriel, M.A.1
Russell, P.2
-
243
-
-
0032524018
-
Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast
-
Gaits F., Degols G., Shiozaki K., and Russell P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12 (1998) 1464-1473
-
(1998)
Genes Dev.
, vol.12
, pp. 1464-1473
-
-
Gaits, F.1
Degols, G.2
Shiozaki, K.3
Russell, P.4
-
244
-
-
0032955703
-
Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spc1/StyI in fission yeast
-
Gaits F., and Russell P. Active nucleocytoplasmic shuttling required for function and regulation of stress-activated kinase Spc1/StyI in fission yeast. Mol. Biol. Cell 10 (1999) 1395-1407
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 1395-1407
-
-
Gaits, F.1
Russell, P.2
-
246
-
-
0036732883
-
Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress
-
Greenall A., Hadcroft A.P., Malakasi P., Jones N., Morgan B.A., Hoffman C.S., and Whitehall S.K. Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress. Mol. Biol. Cell 13 (2002) 2977-2989
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 2977-2989
-
-
Greenall, A.1
Hadcroft, A.P.2
Malakasi, P.3
Jones, N.4
Morgan, B.A.5
Hoffman, C.S.6
Whitehall, S.K.7
-
247
-
-
0031860103
-
The structure and mechanism of protein phosphatases: insights into catalysis and regulation
-
Barford D., Das A.K., and Egloff M.P. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct. 27 (1998) 133-164
-
(1998)
Annu. Rev. Biophys. Biomol. Struct.
, vol.27
, pp. 133-164
-
-
Barford, D.1
Das, A.K.2
Egloff, M.P.3
-
248
-
-
17644371347
-
Functions and mechanisms of redox regulation of cysteine-based phosphatases
-
Salmeen A., and Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal. 7 (2005) 560-577
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 560-577
-
-
Salmeen, A.1
Barford, D.2
-
249
-
-
34249338411
-
Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases
-
Fox G.C., Shafiq M., Briggs D.C., Knowles P.P., Collister M., Didmon M.J., Makrantoni V., Dickinson R.J., Hanrahan S., Totty N., Stark M.J.R., Keyse S.M., and McDonald N.Q. Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Nature 447 (2007) 487-492
-
(2007)
Nature
, vol.447
, pp. 487-492
-
-
Fox, G.C.1
Shafiq, M.2
Briggs, D.C.3
Knowles, P.P.4
Collister, M.5
Didmon, M.J.6
Makrantoni, V.7
Dickinson, R.J.8
Hanrahan, S.9
Totty, N.10
Stark, M.J.R.11
Keyse, S.M.12
McDonald, N.Q.13
-
250
-
-
0037077207
-
Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase
-
Hahn J.S., and Thiele D.J. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J. Biol. Chem. 277 (2002) 21278-21284
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 21278-21284
-
-
Hahn, J.S.1
Thiele, D.J.2
-
251
-
-
0037063353
-
YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae
-
Collister M., Didmon M.P., MacIsaac F., Stark M.J., MacDonald N.Q., and Keyse S.M. YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae. FEBS Lett. 527 (2002) 186-192
-
(2002)
FEBS Lett.
, vol.527
, pp. 186-192
-
-
Collister, M.1
Didmon, M.P.2
MacIsaac, F.3
Stark, M.J.4
MacDonald, N.Q.5
Keyse, S.M.6
-
252
-
-
20544432791
-
Cell wall integrity signaling in Saccharomyces cerevisiae
-
Levin D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69 (2005) 262-291
-
(2005)
Microbiol. Mol. Biol. Rev.
, vol.69
, pp. 262-291
-
-
Levin, D.E.1
-
253
-
-
0142242242
-
Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae
-
Alic N., Higgins V.J., Pichova A., Breitenbach M., and Dawes I.W. Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. J. Biol. Chem. 278 (2003) 41849-41855
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 41849-41855
-
-
Alic, N.1
Higgins, V.J.2
Pichova, A.3
Breitenbach, M.4
Dawes, I.W.5
-
254
-
-
16844368767
-
Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress
-
Vilella F., Herrero E., Torres J., and de la Torre-Ruiz M.A. Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J. Biol. Chem. 280 (2005) 9149-9159
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9149-9159
-
-
Vilella, F.1
Herrero, E.2
Torres, J.3
de la Torre-Ruiz, M.A.4
-
255
-
-
26244442243
-
Protein phosphatases in MAPK signalling: we keep learning from yeast
-
Martin H., Flandez M., Nombela C., and Molina M. Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol. Microbiol. 58 (2005) 6-16
-
(2005)
Mol. Microbiol.
, vol.58
, pp. 6-16
-
-
Martin, H.1
Flandez, M.2
Nombela, C.3
Molina, M.4
|