-
1
-
-
0034880399
-
DNA damage and cell cycle checkpoints in hyperoxic lung injury: Braking to facilitate repair
-
O'Reilly, M. A. (2001 ) DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L291-L305
-
(2001)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.281
-
-
O'Reilly, M.A.1
-
2
-
-
0015882341
-
The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
-
Boveris, A. and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707-716
-
(1973)
Biochem. J.
, vol.134
, pp. 707-716
-
-
Boveris, A.1
Chance, B.2
-
3
-
-
0020397137
-
The effect of hyperoxia on superoxide production by lung submitochondrial particles
-
Turrens, J. F., Freeman, B. A., Levitt, J. G. and Crapo, J. D. (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401-410
-
(1982)
Arch. Biochem. Biophys.
, vol.217
, pp. 401-410
-
-
Turrens, J.F.1
Freeman, B.A.2
Levitt, J.G.3
Crapo, J.D.4
-
5
-
-
2342446531
-
Mitochondrial metabolism underlies hyperoxic cell carnage
-
Li, J., Gao, X., Qian, M. and Eaton, J. W. (2004) Mitochondrial metabolism underlies hyperoxic cell carnage. Free Radical Biol. Med. 36, 1460-1470
-
(2004)
Free Radical Biol. Med.
, vol.36
, pp. 1460-1470
-
-
Li, J.1
Gao, X.2
Qian, M.3
Eaton, J.W.4
-
6
-
-
0019848340
-
Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria
-
Freeman, B. A. and Crapo, J. D. (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256, 10986-10992
-
(1981)
J. Biol. Chem.
, vol.256
, pp. 10986-10992
-
-
Freeman, B.A.1
Crapo, J.D.2
-
7
-
-
1342325422
-
Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells
-
Buccellato, L. J., Tso, M., Akinci, O. I., Chandel, N. S. and Budinger, G. R. (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J. Biol. Chem. 279, 6753-6760
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 6753-6760
-
-
Buccellato, L.J.1
Tso, M.2
Akinci, O.I.3
Chandel, N.S.4
Budinger, G.R.5
-
8
-
-
0037013272
-
Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins
-
Budinger, G. R., Tso, M., McClintock, D. S., Dean, D. A., Sznajder, J. I. and Chandel, N. S. (2002) Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J. Biol. Chem. 277, 15654-15660
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 15654-15660
-
-
Budinger, G.R.1
Tso, M.2
McClintock, D.S.3
Dean, D.A.4
Sznajder, J.I.5
Chandel, N.S.6
-
9
-
-
0036139845
-
Effects of high inspired oxygen fraction during elective caesarean section under spinal anaesthesia en maternal and fetal oxygenation and lipid peroxidation
-
Khaw, K. S., Wang, C. C., Ngan Kee, W. D., Pang, C. P. and Rogers, M. S. (2002) Effects of high inspired oxygen fraction during elective caesarean section under spinal anaesthesia en maternal and fetal oxygenation and lipid peroxidation. Br. J. Anaesth. 88, 18-23
-
(2002)
Br. J. Anaesth.
, vol.88
, pp. 18-23
-
-
Khaw, K.S.1
Wang, C.C.2
Ngan Kee, W.D.3
Pang, C.P.4
Rogers, M.S.5
-
10
-
-
0347416893
-
Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: A randomized controlled trial
-
Pryor, K. O., Fahey, T. J., Lien, 3rd, C. A. and Goldstein, P. A. (2004) Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA, J. Am. Med. Assoc. 291, 79-87
-
(2004)
JAMA, J. Am. Med. Assoc.
, vol.291
, pp. 79-87
-
-
Pryor, K.O.1
Fahey, T.J.2
Lien III, C.A.3
Goldstein, P.A.4
-
11
-
-
0037376801
-
The controversies surrounding oxygen therapy in neonatal intensive care units
-
Sinha, S. K. and Tin, W. (2003) The controversies surrounding oxygen therapy in neonatal intensive care units. Curr. Opin. Pediatr. 15, 161-165
-
(2003)
Curr. Opin. Pediatr.
, vol.15
, pp. 161-165
-
-
Sinha, S.K.1
Tin, W.2
-
13
-
-
0032439653
-
Oxidative stress responses of the yeast Saccharomyces cerevisiae
-
Jamieson, D. J. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527
-
(1998)
Yeast
, vol.14
, pp. 1511-1527
-
-
Jamieson, D.J.1
-
14
-
-
2342487990
-
Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes
-
Thorpe, G. W., Fong, C. S., Alic, N., Higgins. V. J. and Dawes, I. W. (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. U.S.A. 101, 6564-6569
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 6564-6569
-
-
Thorpe, G.W.1
Fong, C.S.2
Alic, N.3
Higgins, V.J.4
Dawes, I.W.5
-
15
-
-
2942618604
-
Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress
-
Tucker, C. L. and Fields, S. (2004) Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224
-
(2004)
Comp. Funct. Genom.
, vol.5
, pp. 216-224
-
-
Tucker, C.L.1
Fields, S.2
-
16
-
-
0033767925
-
Roles of the glutathione- And thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress
-
Carmel-Harel, O. and Storz, G. (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439-461
-
(2000)
Annu. Rev. Microbiol.
, vol.54
, pp. 439-461
-
-
Carmel-Harel, O.1
Storz, G.2
-
17
-
-
0037173615
-
Functional profiling of the Saccharomyces cerevisiae genome
-
Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K. Andre, B. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature (London) 418, 387-391
-
(2002)
Nature (London)
, vol.418
, pp. 387-391
-
-
Giaever, G.1
Chu, A.M.2
Ni, L.3
Connelly, C.4
Riles, L.5
Veronneau, S.6
Dow, S.7
Lucau-Danila, A.8
Anderson, K.9
Andre, B.10
-
18
-
-
0026665991
-
Yeast lacking superoxide dismutase: Isolation of genetic suppressors
-
Liu, X. F., Elashvili, I., Gralla, E. B., Valentine, J. S., Lapinskas, P. and Culotta, V. C. (1992) Yeast lacking superoxide dismutase: isolation of genetic suppressors. J. Biol. Chem. 267, 18298-18302
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 18298-18302
-
-
Liu, X.F.1
Elashvili, I.2
Gralla, E.B.3
Valentine, J.S.4
Lapinskas, P.5
Culotta, V.C.6
-
19
-
-
1542319976
-
Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
-
Outten, C. E. and Culotta, V. C. (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279, 7785-7791
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7785-7791
-
-
Outten, C.E.1
Culotta, V.C.2
-
20
-
-
0037881908
-
A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae
-
Outten, C. E. and Culotta, V. C. (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J. 22, 2015-2024
-
(2003)
EMBO J.
, vol.22
, pp. 2015-2024
-
-
Outten, C.E.1
Culotta, V.C.2
-
21
-
-
19544385354
-
-
Master's Thesis in Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD
-
Garland, S. A. (2000) Iron-Sulfur Clusters and Oxidative Stress in Saccharomyces cerevisiae. Master's Thesis in Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD
-
(2000)
Iron-sulfur Clusters and Oxidative Stress in Saccharomyces Cerevisiae
-
-
Garland, S.A.1
-
22
-
-
0029828902
-
The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
-
Slekar, K. H., Kosman, D. J. and Culotta, V. C. (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol Chem. 271, 28831-23336
-
(1996)
J. Biol Chem.
, vol.271
, pp. 28831-123336
-
-
Slekar, K.H.1
Kosman, D.J.2
Culotta, V.C.3
-
23
-
-
0025903857
-
Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier
-
Gietz, R. D. and Schiestl, R. H. (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7, 253-263
-
(1991)
Yeast
, vol.7
, pp. 253-263
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
24
-
-
0003529274
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor
-
Sherman, F., Fink, G. R. and Lawrence, C. W. (1978) Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor
-
(1978)
Methods in Yeast Genetics
-
-
Sherman, F.1
Fink, G.R.2
Lawrence, C.W.3
-
25
-
-
0035861588
-
Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p
-
Luk, E. E. and Culotta, V. C. (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J. Biol. Chem. 276, 47556-47562
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 47556-47562
-
-
Luk, E.E.1
Culotta, V.C.2
-
26
-
-
0021288878
-
Superoxide dismutase assays
-
Flohe, L. and Otting, F. (1984) Superoxide dismutase assays. Methods Enzymol. 105, 93-104
-
(1984)
Methods Enzymol.
, vol.105
, pp. 93-104
-
-
Flohe, L.1
Otting, F.2
-
27
-
-
0034107324
-
Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis
-
Jensen L. T. and Culotta, V. C. (2000) Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol. Cell. Biol. 20, 3918-3927
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 3918-3927
-
-
Jensen, L.T.1
Culotta, V.C.2
-
28
-
-
0033985228
-
Iron and oxidative stress in bacteria
-
Touati, D. (2000) Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1-6
-
(2000)
Arch. Biochem. Biophys.
, vol.373
, pp. 1-6
-
-
Touati, D.1
-
29
-
-
0029806025
-
Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles
-
Lin, S. J. and Culotta, V. C. (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol. Cell. Biol. 16, 6303-6312
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 6303-6312
-
-
Lin, S.J.1
Culotta, V.C.2
-
30
-
-
0029787345
-
The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions
-
Lapinskas, P. J., Lin, S. J. and Culotta, V. C. (1996) The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol. Microbiol. 21, 519-528
-
(1996)
Mol. Microbiol.
, vol.21
, pp. 519-528
-
-
Lapinskas, P.J.1
Lin, S.J.2
Culotta, V.C.3
-
31
-
-
0019866695
-
Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria
-
Archibald, F. S. and Fridovich, I. (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928-936
-
(1981)
J. Bacteriol.
, vol.146
, pp. 928-936
-
-
Archibald, F.S.1
Fridovich, I.2
-
32
-
-
0026636441
-
Free radicals, antioxidants, and human disease: Where are we now?
-
Halliwell, B., Gutteridge, J. M. and Cross, C. E. (1992) Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119, 598-620
-
(1992)
J. Lab. Clin. Med.
, vol.119
, pp. 598-620
-
-
Halliwell, B.1
Gutteridge, J.M.2
Cross, C.E.3
-
33
-
-
0039604509
-
A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen
-
van Loon, A. P., Pesold-Hurt, B. and Schatz, G. (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. U.S.A. 83, 3820-3824
-
(1986)
Proc. Natl. Acad. Sci. U.S.A.
, vol.83
, pp. 3820-3824
-
-
Van Loon, A.P.1
Pesold-Hurt, B.2
Schatz, G.3
-
34
-
-
0026679293
-
Molecular genetics of superoxide dismutases in yeasts and related fungi
-
Gralla, E. B. and Kosman, D. J. (1992) Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319
-
(1992)
Adv. Genet.
, vol.30
, pp. 251-319
-
-
Gralla, E.B.1
Kosman, D.J.2
-
35
-
-
0035861895
-
Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria
-
Demasi, A. P., Pereira, G. A. and Netto, L. E. (2001) Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett. 509, 430-434
-
(2001)
FEBS Lett.
, vol.509
, pp. 430-434
-
-
Demasi, A.P.1
Pereira, G.A.2
Netto, L.E.3
-
36
-
-
0030739963
-
Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
-
Grant, C. M., MacIver, F. H. and Dawes, I. W. (1997) Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 410, 219-222
-
(1997)
FEBS Lett.
, vol.410
, pp. 219-222
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
37
-
-
0017154414
-
Role of ubiquinone in the mitochondrial generation of hydrogen peroxide
-
Boveris, A., Cadenas, E and Stoppani, A. C. (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435-444
-
(1976)
Biochem. J.
, vol.156
, pp. 435-444
-
-
Boveris, A.1
Cadenas, E.2
Stoppani, A.C.3
-
38
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421-427
-
(1980)
Biochem. J.
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
39
-
-
0021996572
-
Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
-
Turrens, J. F., Alexandre, A. and Lehninger. A. L. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408-414
-
(1985)
Arch. Biochem. Biophys.
, vol.237
, pp. 408-414
-
-
Turrens, J.F.1
Alexandre, A.2
Lehninger, A.L.3
-
40
-
-
0026504047
-
Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
-
de Vries, S., Van Witzenburg, R., Grivell, L. A. and Marres, C. A. (1992) Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae Eur. J. Biochem. 203, 587-592
-
(1992)
Eur. J. Biochem.
, vol.203
, pp. 587-592
-
-
De Vries, S.1
Van Witzenburg, R.2
Grivell, L.A.3
Marres, C.A.4
-
41
-
-
0032544505
-
The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH
-
Luttik, M. A., Overkamp, K. M., Kotter, P. de Vries, S., van Dijken, J. P. and Pronk, J. T. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273, 24529-24534
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 24529-24534
-
-
Luttik, M.A.1
Overkamp, K.M.2
Kotter, P.3
De Vries, S.4
Van Dijken, J.P.5
Pronk, J.T.6
-
42
-
-
0037441390
-
External alternative NADH dehydrogenase of Saccharomyces cerevisiae: A potential source of superoxide
-
Fang, J. and Beattie, D. S. (2003) External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radical Biol. Med. 34 478-488
-
(2003)
Free Radical Biol. Med.
, vol.34
, pp. 478-488
-
-
Fang, J.1
Beattie, D.S.2
-
43
-
-
0035114298
-
Disruption and functional analysis of six ORFs of chromosome IV: YDL103c (QRl1), YDL105w (QRl2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1)
-
Reynaud, A., Facca, C., Sor, F. and Faye, G. (2001) Disruption and functional analysis of six ORFs of chromosome IV: YDL103c (QRl1), YDL105w (QRl2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1). Yeast 18, 273-282
-
(2001)
Yeast
, vol.18
, pp. 273-282
-
-
Reynaud, A.1
Facca, C.2
Sor, F.3
Faye, G.4
-
44
-
-
0026096914
-
Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast: Inactivation leads to a nutritional requirement for organic sulfur
-
Thomas, D., Cherest, H. and Surdin-Kerjan, Y. (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast: inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 10, 547-553
-
(1991)
EMBO J.
, vol.10
, pp. 547-553
-
-
Thomas, D.1
Cherest, H.2
Surdin-Kerjan, Y.3
-
45
-
-
0033523113
-
Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
-
Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J. and Toledano, M. B. (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16040-16046
-
-
Lee, J.1
Godon, C.2
Lagniel, G.3
Spector, D.4
Garin, J.5
Labarre, J.6
Toledano, M.B.7
-
46
-
-
0027426263
-
Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia: Evidence for electron transport as a major source of superoxide generatoin in vivo
-
Guidot, D. M., McCord, J. M., Wright, R. M. and Repine, J. E. (1993) Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia: evidence for electron transport as a major source of superoxide generatoin in vivo. J. Biol. Chem. 268, 26699-26703
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 26699-26703
-
-
Guidot, D.M.1
McCord, J.M.2
Wright, R.M.3
Repine, J.E.4
-
47
-
-
0029082812
-
Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism
-
Guidot, D. M., Repine, J. E., Kitlowski, A. D., Flores, S. C., Nelson, S. K., Wright, R. M. and McCord, J. M. (1995) Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J. Clin. Invest. 96, 1131-1136
-
(1995)
J. Clin. Invest.
, vol.96
, pp. 1131-1136
-
-
Guidot, D.M.1
Repine, J.E.2
Kitlowski, A.D.3
Flores, S.C.4
Nelson, S.K.5
Wright, R.M.6
McCord, J.M.7
-
48
-
-
0142248154
-
Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae
-
Rosenfeld, E. and Beauvoit, B. (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20, 1115-1144
-
(2003)
Yeast
, vol.20
, pp. 1115-1144
-
-
Rosenfeld, E.1
Beauvoit, B.2
-
49
-
-
0035371184
-
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
-
Schafer, F. Q. and Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 30, 1191-1212
-
(2001)
Free Radical Biol. Med.
, vol.30
, pp. 1191-1212
-
-
Schafer, F.Q.1
Buettner, G.R.2
-
50
-
-
0034124460
-
Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase
-
O'Donovan, D. J., Katkin, J. P., Tamura, T., Smith, C. V. and Welty, S. E. (2000) Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase. Am. J. Respir. Cell Mol. Biol. 22, 732-738
-
(2000)
Am. J. Respir. Cell Mol. Biol.
, vol.22
, pp. 732-738
-
-
O'Donovan, D.J.1
Katkin, J.P.2
Tamura, T.3
Smith, C.V.4
Welty, S.E.5
|