메뉴 건너뛰기




Volumn 388, Issue 1, 2005, Pages 93-101

Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae

Author keywords

Glutathione; Hyperoxia; Mitochondrion; Reactive oxygen species; Superoxide dismutase; Yeast

Indexed keywords

MUTANTS; SUPEROXIDE DETOXIFICATION; SUPEROXIDE DISMUTASE (SOD); VACUOLE FUNCTION;

EID: 19544391785     PISSN: 02646021     EISSN: None     Source Type: Journal    
DOI: 10.1042/BJ20041914     Document Type: Article
Times cited : (67)

References (50)
  • 1
    • 0034880399 scopus 로고    scopus 로고
    • DNA damage and cell cycle checkpoints in hyperoxic lung injury: Braking to facilitate repair
    • O'Reilly, M. A. (2001 ) DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L291-L305
    • (2001) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.281
    • O'Reilly, M.A.1
  • 2
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris, A. and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707-716
    • (1973) Biochem. J. , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 3
    • 0020397137 scopus 로고
    • The effect of hyperoxia on superoxide production by lung submitochondrial particles
    • Turrens, J. F., Freeman, B. A., Levitt, J. G. and Crapo, J. D. (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401-410
    • (1982) Arch. Biochem. Biophys. , vol.217 , pp. 401-410
    • Turrens, J.F.1    Freeman, B.A.2    Levitt, J.G.3    Crapo, J.D.4
  • 5
    • 2342446531 scopus 로고    scopus 로고
    • Mitochondrial metabolism underlies hyperoxic cell carnage
    • Li, J., Gao, X., Qian, M. and Eaton, J. W. (2004) Mitochondrial metabolism underlies hyperoxic cell carnage. Free Radical Biol. Med. 36, 1460-1470
    • (2004) Free Radical Biol. Med. , vol.36 , pp. 1460-1470
    • Li, J.1    Gao, X.2    Qian, M.3    Eaton, J.W.4
  • 6
    • 0019848340 scopus 로고
    • Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria
    • Freeman, B. A. and Crapo, J. D. (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256, 10986-10992
    • (1981) J. Biol. Chem. , vol.256 , pp. 10986-10992
    • Freeman, B.A.1    Crapo, J.D.2
  • 7
    • 1342325422 scopus 로고    scopus 로고
    • Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells
    • Buccellato, L. J., Tso, M., Akinci, O. I., Chandel, N. S. and Budinger, G. R. (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J. Biol. Chem. 279, 6753-6760
    • (2004) J. Biol. Chem. , vol.279 , pp. 6753-6760
    • Buccellato, L.J.1    Tso, M.2    Akinci, O.I.3    Chandel, N.S.4    Budinger, G.R.5
  • 8
    • 0037013272 scopus 로고    scopus 로고
    • Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins
    • Budinger, G. R., Tso, M., McClintock, D. S., Dean, D. A., Sznajder, J. I. and Chandel, N. S. (2002) Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J. Biol. Chem. 277, 15654-15660
    • (2002) J. Biol. Chem. , vol.277 , pp. 15654-15660
    • Budinger, G.R.1    Tso, M.2    McClintock, D.S.3    Dean, D.A.4    Sznajder, J.I.5    Chandel, N.S.6
  • 9
    • 0036139845 scopus 로고    scopus 로고
    • Effects of high inspired oxygen fraction during elective caesarean section under spinal anaesthesia en maternal and fetal oxygenation and lipid peroxidation
    • Khaw, K. S., Wang, C. C., Ngan Kee, W. D., Pang, C. P. and Rogers, M. S. (2002) Effects of high inspired oxygen fraction during elective caesarean section under spinal anaesthesia en maternal and fetal oxygenation and lipid peroxidation. Br. J. Anaesth. 88, 18-23
    • (2002) Br. J. Anaesth. , vol.88 , pp. 18-23
    • Khaw, K.S.1    Wang, C.C.2    Ngan Kee, W.D.3    Pang, C.P.4    Rogers, M.S.5
  • 10
    • 0347416893 scopus 로고    scopus 로고
    • Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: A randomized controlled trial
    • Pryor, K. O., Fahey, T. J., Lien, 3rd, C. A. and Goldstein, P. A. (2004) Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA, J. Am. Med. Assoc. 291, 79-87
    • (2004) JAMA, J. Am. Med. Assoc. , vol.291 , pp. 79-87
    • Pryor, K.O.1    Fahey, T.J.2    Lien III, C.A.3    Goldstein, P.A.4
  • 11
    • 0037376801 scopus 로고    scopus 로고
    • The controversies surrounding oxygen therapy in neonatal intensive care units
    • Sinha, S. K. and Tin, W. (2003) The controversies surrounding oxygen therapy in neonatal intensive care units. Curr. Opin. Pediatr. 15, 161-165
    • (2003) Curr. Opin. Pediatr. , vol.15 , pp. 161-165
    • Sinha, S.K.1    Tin, W.2
  • 13
    • 0032439653 scopus 로고    scopus 로고
    • Oxidative stress responses of the yeast Saccharomyces cerevisiae
    • Jamieson, D. J. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527
    • (1998) Yeast , vol.14 , pp. 1511-1527
    • Jamieson, D.J.1
  • 14
    • 2342487990 scopus 로고    scopus 로고
    • Cells have distinct mechanisms to maintain protection against different reactive oxygen species: Oxidative-stress-response genes
    • Thorpe, G. W., Fong, C. S., Alic, N., Higgins. V. J. and Dawes, I. W. (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. U.S.A. 101, 6564-6569
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 6564-6569
    • Thorpe, G.W.1    Fong, C.S.2    Alic, N.3    Higgins, V.J.4    Dawes, I.W.5
  • 15
    • 2942618604 scopus 로고    scopus 로고
    • Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress
    • Tucker, C. L. and Fields, S. (2004) Quantitative genome-wide analysis of yeast deletion strain sensitivities to oxidative and chemical stress. Comp. Funct. Genom. 5, 216-224
    • (2004) Comp. Funct. Genom. , vol.5 , pp. 216-224
    • Tucker, C.L.1    Fields, S.2
  • 16
    • 0033767925 scopus 로고    scopus 로고
    • Roles of the glutathione- And thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress
    • Carmel-Harel, O. and Storz, G. (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439-461
    • (2000) Annu. Rev. Microbiol. , vol.54 , pp. 439-461
    • Carmel-Harel, O.1    Storz, G.2
  • 19
    • 1542319976 scopus 로고    scopus 로고
    • Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase
    • Outten, C. E. and Culotta, V. C. (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279, 7785-7791
    • (2004) J. Biol. Chem. , vol.279 , pp. 7785-7791
    • Outten, C.E.1    Culotta, V.C.2
  • 20
    • 0037881908 scopus 로고    scopus 로고
    • A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae
    • Outten, C. E. and Culotta, V. C. (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J. 22, 2015-2024
    • (2003) EMBO J. , vol.22 , pp. 2015-2024
    • Outten, C.E.1    Culotta, V.C.2
  • 21
    • 19544385354 scopus 로고    scopus 로고
    • Master's Thesis in Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD
    • Garland, S. A. (2000) Iron-Sulfur Clusters and Oxidative Stress in Saccharomyces cerevisiae. Master's Thesis in Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, MD
    • (2000) Iron-sulfur Clusters and Oxidative Stress in Saccharomyces Cerevisiae
    • Garland, S.A.1
  • 22
    • 0029828902 scopus 로고    scopus 로고
    • The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
    • Slekar, K. H., Kosman, D. J. and Culotta, V. C. (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol Chem. 271, 28831-23336
    • (1996) J. Biol Chem. , vol.271 , pp. 28831-123336
    • Slekar, K.H.1    Kosman, D.J.2    Culotta, V.C.3
  • 23
    • 0025903857 scopus 로고
    • Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier
    • Gietz, R. D. and Schiestl, R. H. (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7, 253-263
    • (1991) Yeast , vol.7 , pp. 253-263
    • Gietz, R.D.1    Schiestl, R.H.2
  • 25
    • 0035861588 scopus 로고    scopus 로고
    • Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p
    • Luk, E. E. and Culotta, V. C. (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J. Biol. Chem. 276, 47556-47562
    • (2001) J. Biol. Chem. , vol.276 , pp. 47556-47562
    • Luk, E.E.1    Culotta, V.C.2
  • 26
    • 0021288878 scopus 로고
    • Superoxide dismutase assays
    • Flohe, L. and Otting, F. (1984) Superoxide dismutase assays. Methods Enzymol. 105, 93-104
    • (1984) Methods Enzymol. , vol.105 , pp. 93-104
    • Flohe, L.1    Otting, F.2
  • 27
    • 0034107324 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis
    • Jensen L. T. and Culotta, V. C. (2000) Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol. Cell. Biol. 20, 3918-3927
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3918-3927
    • Jensen, L.T.1    Culotta, V.C.2
  • 28
    • 0033985228 scopus 로고    scopus 로고
    • Iron and oxidative stress in bacteria
    • Touati, D. (2000) Iron and oxidative stress in bacteria. Arch. Biochem. Biophys. 373, 1-6
    • (2000) Arch. Biochem. Biophys. , vol.373 , pp. 1-6
    • Touati, D.1
  • 29
    • 0029806025 scopus 로고    scopus 로고
    • Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles
    • Lin, S. J. and Culotta, V. C. (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol. Cell. Biol. 16, 6303-6312
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 6303-6312
    • Lin, S.J.1    Culotta, V.C.2
  • 30
    • 0029787345 scopus 로고    scopus 로고
    • The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions
    • Lapinskas, P. J., Lin, S. J. and Culotta, V. C. (1996) The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol. Microbiol. 21, 519-528
    • (1996) Mol. Microbiol. , vol.21 , pp. 519-528
    • Lapinskas, P.J.1    Lin, S.J.2    Culotta, V.C.3
  • 31
    • 0019866695 scopus 로고
    • Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria
    • Archibald, F. S. and Fridovich, I. (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928-936
    • (1981) J. Bacteriol. , vol.146 , pp. 928-936
    • Archibald, F.S.1    Fridovich, I.2
  • 32
    • 0026636441 scopus 로고
    • Free radicals, antioxidants, and human disease: Where are we now?
    • Halliwell, B., Gutteridge, J. M. and Cross, C. E. (1992) Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119, 598-620
    • (1992) J. Lab. Clin. Med. , vol.119 , pp. 598-620
    • Halliwell, B.1    Gutteridge, J.M.2    Cross, C.E.3
  • 33
    • 0039604509 scopus 로고
    • A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen
    • van Loon, A. P., Pesold-Hurt, B. and Schatz, G. (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. U.S.A. 83, 3820-3824
    • (1986) Proc. Natl. Acad. Sci. U.S.A. , vol.83 , pp. 3820-3824
    • Van Loon, A.P.1    Pesold-Hurt, B.2    Schatz, G.3
  • 34
    • 0026679293 scopus 로고
    • Molecular genetics of superoxide dismutases in yeasts and related fungi
    • Gralla, E. B. and Kosman, D. J. (1992) Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319
    • (1992) Adv. Genet. , vol.30 , pp. 251-319
    • Gralla, E.B.1    Kosman, D.J.2
  • 35
    • 0035861895 scopus 로고    scopus 로고
    • Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria
    • Demasi, A. P., Pereira, G. A. and Netto, L. E. (2001) Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett. 509, 430-434
    • (2001) FEBS Lett. , vol.509 , pp. 430-434
    • Demasi, A.P.1    Pereira, G.A.2    Netto, L.E.3
  • 36
    • 0030739963 scopus 로고    scopus 로고
    • Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    • Grant, C. M., MacIver, F. H. and Dawes, I. W. (1997) Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 410, 219-222
    • (1997) FEBS Lett. , vol.410 , pp. 219-222
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 37
    • 0017154414 scopus 로고
    • Role of ubiquinone in the mitochondrial generation of hydrogen peroxide
    • Boveris, A., Cadenas, E and Stoppani, A. C. (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156, 435-444
    • (1976) Biochem. J. , vol.156 , pp. 435-444
    • Boveris, A.1    Cadenas, E.2    Stoppani, A.C.3
  • 38
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421-427
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 39
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens, J. F., Alexandre, A. and Lehninger. A. L. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408-414
    • (1985) Arch. Biochem. Biophys. , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 40
    • 0026504047 scopus 로고
    • Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae
    • de Vries, S., Van Witzenburg, R., Grivell, L. A. and Marres, C. A. (1992) Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae Eur. J. Biochem. 203, 587-592
    • (1992) Eur. J. Biochem. , vol.203 , pp. 587-592
    • De Vries, S.1    Van Witzenburg, R.2    Grivell, L.A.3    Marres, C.A.4
  • 41
    • 0032544505 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH
    • Luttik, M. A., Overkamp, K. M., Kotter, P. de Vries, S., van Dijken, J. P. and Pronk, J. T. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273, 24529-24534
    • (1998) J. Biol. Chem. , vol.273 , pp. 24529-24534
    • Luttik, M.A.1    Overkamp, K.M.2    Kotter, P.3    De Vries, S.4    Van Dijken, J.P.5    Pronk, J.T.6
  • 42
    • 0037441390 scopus 로고    scopus 로고
    • External alternative NADH dehydrogenase of Saccharomyces cerevisiae: A potential source of superoxide
    • Fang, J. and Beattie, D. S. (2003) External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radical Biol. Med. 34 478-488
    • (2003) Free Radical Biol. Med. , vol.34 , pp. 478-488
    • Fang, J.1    Beattie, D.S.2
  • 43
    • 0035114298 scopus 로고    scopus 로고
    • Disruption and functional analysis of six ORFs of chromosome IV: YDL103c (QRl1), YDL105w (QRl2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1)
    • Reynaud, A., Facca, C., Sor, F. and Faye, G. (2001) Disruption and functional analysis of six ORFs of chromosome IV: YDL103c (QRl1), YDL105w (QRl2), YDL112w (TRM3), YDL113c, YDL116w (NUP84) and YDL167c (NRP1). Yeast 18, 273-282
    • (2001) Yeast , vol.18 , pp. 273-282
    • Reynaud, A.1    Facca, C.2    Sor, F.3    Faye, G.4
  • 44
    • 0026096914 scopus 로고
    • Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast: Inactivation leads to a nutritional requirement for organic sulfur
    • Thomas, D., Cherest, H. and Surdin-Kerjan, Y. (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast: inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 10, 547-553
    • (1991) EMBO J. , vol.10 , pp. 547-553
    • Thomas, D.1    Cherest, H.2    Surdin-Kerjan, Y.3
  • 45
    • 0033523113 scopus 로고    scopus 로고
    • Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
    • Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J. and Toledano, M. B. (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040-16046
    • (1999) J. Biol. Chem. , vol.274 , pp. 16040-16046
    • Lee, J.1    Godon, C.2    Lagniel, G.3    Spector, D.4    Garin, J.5    Labarre, J.6    Toledano, M.B.7
  • 46
    • 0027426263 scopus 로고
    • Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia: Evidence for electron transport as a major source of superoxide generatoin in vivo
    • Guidot, D. M., McCord, J. M., Wright, R. M. and Repine, J. E. (1993) Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia: evidence for electron transport as a major source of superoxide generatoin in vivo. J. Biol. Chem. 268, 26699-26703
    • (1993) J. Biol. Chem. , vol.268 , pp. 26699-26703
    • Guidot, D.M.1    McCord, J.M.2    Wright, R.M.3    Repine, J.E.4
  • 48
    • 0142248154 scopus 로고    scopus 로고
    • Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae
    • Rosenfeld, E. and Beauvoit, B. (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20, 1115-1144
    • (2003) Yeast , vol.20 , pp. 1115-1144
    • Rosenfeld, E.1    Beauvoit, B.2
  • 49
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer, F. Q. and Buettner, G. R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 30, 1191-1212
    • (2001) Free Radical Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 50
    • 0034124460 scopus 로고    scopus 로고
    • Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase
    • O'Donovan, D. J., Katkin, J. P., Tamura, T., Smith, C. V. and Welty, S. E. (2000) Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase. Am. J. Respir. Cell Mol. Biol. 22, 732-738
    • (2000) Am. J. Respir. Cell Mol. Biol. , vol.22 , pp. 732-738
    • O'Donovan, D.J.1    Katkin, J.P.2    Tamura, T.3    Smith, C.V.4    Welty, S.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.