-
1
-
-
85037849476
-
American Society Of Mechanical Engineers 3D printing takes off
-
American Society Of Mechanical Engineers website; Available at: (Accessed 30 August 2017)
-
Sniderman, D., American Society Of Mechanical Engineers 3D printing takes off. American Society Of Mechanical Engineers website; Available at: http://bit.ly/2vAauKy, 2012. (Accessed 30 August 2017)
-
(2012)
-
-
Sniderman, D.1
-
2
-
-
0003465262
-
Apparatus for production of three-dimensional objects by stereolithography
-
Uvp, Inc., inventor; Uvp, Inc., assignee; United States patent; Available at: (Accessed 30 August 2017)
-
Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. Uvp, Inc., inventor; Uvp, Inc., assignee; United States patent US 4,575,330; Available at: http://www.google.com/patents/us4575330, 1986. (Accessed 30 August 2017)
-
(1986)
-
-
Hull, C.W.1
-
3
-
-
58149204685
-
Three-dimensional printing: rapid tooling and prototypes directly from a CAD model
-
Sachs, E., Cima, M., Cornie, J., Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Annals—Manuf Tech 39 (1990), 201–204, 10.1016/S0007-8506(07)61035-X.
-
(1990)
CIRP Annals—Manuf Tech
, vol.39
, pp. 201-204
-
-
Sachs, E.1
Cima, M.2
Cornie, J.3
-
4
-
-
0003691544
-
Three-dimensional printing techniques
-
United States patent; Available at: (Accessed 30 August 2017)
-
Sachs, E.M., Haggerty, J.S., Cima, M.J., et al. Three-dimensional printing techniques. United States patent US 5,204,055; Available at: http://www.google.com/patents/US5204055, 1993. (Accessed 30 August 2017)
-
(1993)
-
-
Sachs, E.M.1
Haggerty, J.S.2
Cima, M.J.3
-
5
-
-
84897557208
-
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
-
Gross, B.C., Erkal, J.L., Lockwood, S.Y., et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86 (2014), 3240–3253, 10.1021/ac403397r.
-
(2014)
Anal Chem
, vol.86
, pp. 3240-3253
-
-
Gross, B.C.1
Erkal, J.L.2
Lockwood, S.Y.3
-
6
-
-
0033813833
-
Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell
-
Curodeau, A., Sachs, E., Caldarise, S., Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53 (2000), 525–535.
-
(2000)
J Biomed Mater Res
, vol.53
, pp. 525-535
-
-
Curodeau, A.1
Sachs, E.2
Caldarise, S.3
-
7
-
-
0035019836
-
A new Ti-5Ag alloy for customized prostheses by three-dimensional printing (3DP)
-
Hong, S.B., Eliaz, N., Leisk, G.G., et al. A new Ti-5Ag alloy for customized prostheses by three-dimensional printing (3DP). J Dent Res 80 (2001), 860–863.
-
(2001)
J Dent Res
, vol.80
, pp. 860-863
-
-
Hong, S.B.1
Eliaz, N.2
Leisk, G.G.3
-
8
-
-
0035089666
-
Three-dimensional printing and porous metallic surfaces: a new orthopedic application
-
Melican, M.C., Zimmerman, M.C., Dhillon, M.S., et al. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J Biomed Mater Res 55 (2001), 194–202.
-
(2001)
J Biomed Mater Res
, vol.55
, pp. 194-202
-
-
Melican, M.C.1
Zimmerman, M.C.2
Dhillon, M.S.3
-
9
-
-
0034600192
-
Multimechanism oral dosage forms fabricated by three dimensional printing
-
Rowe, C.W., Katstra, W.E., Palazzolo, R.D., et al. Multimechanism oral dosage forms fabricated by three dimensional printing. J Control Release 66 (2000), 11–17.
-
(2000)
J Control Release
, vol.66
, pp. 11-17
-
-
Rowe, C.W.1
Katstra, W.E.2
Palazzolo, R.D.3
-
10
-
-
43649089540
-
Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting
-
Sodian, R., Schmauss, D., Markert, M., et al. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg 85 (2008), 2105–2108, 10.1016/j.athoracsur.2007.12.033.
-
(2008)
Ann Thorac Surg
, vol.85
, pp. 2105-2108
-
-
Sodian, R.1
Schmauss, D.2
Markert, M.3
-
11
-
-
54049094725
-
Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart
-
Sodian, R., Weber, S., Markert, M., et al. Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136 (2008), 1098–1099, 10.1016/j.jtcvs.2008.03.055.
-
(2008)
J Thorac Cardiovasc Surg
, vol.136
, pp. 1098-1099
-
-
Sodian, R.1
Weber, S.2
Markert, M.3
-
12
-
-
80053036713
-
Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees
-
Wilasrusmee, C., Suvikrom, J., Suthakorn, J., et al. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int J Angiol 17 (2008), 129–133.
-
(2008)
Int J Angiol
, vol.17
, pp. 129-133
-
-
Wilasrusmee, C.1
Suvikrom, J.2
Suthakorn, J.3
-
13
-
-
38349125420
-
Rapid prototyping model for percutaneous nephrolithotomy training
-
Bruyère, F., Leroux, C., Brunereau, L., et al. Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol 22 (2008), 91–96, 10.1089/end.2007.0025.
-
(2008)
J Endourol
, vol.22
, pp. 91-96
-
-
Bruyère, F.1
Leroux, C.2
Brunereau, L.3
-
14
-
-
85037865885
-
Protos Eyewear website
-
Available at: (Accessed 30 August 2017)
-
Protos Eyewear website. Available at: http://www.protoseyewear.com/, 2017. (Accessed 30 August 2017)
-
(2017)
-
-
-
15
-
-
85037846942
-
Natural Machines website
-
Available at: (Accessed 30 August 2017)
-
Natural Machines website. Available at: http://www.naturalmachines.com/, 2017. (Accessed 30 August 2017)
-
(2017)
-
-
-
16
-
-
85037824191
-
A 3-D Printed Car, Ready for the Road. The New York Times
-
Available at: (Accessed 30 August 2017)
-
Kessler, A.M., A 3-D Printed Car, Ready for the Road. The New York Times. Available at: http://nyti.ms/2u6eiUj, 2015. (Accessed 30 August 2017)
-
(2015)
-
-
Kessler, A.M.1
-
17
-
-
85037838635
-
Reed Smith white paper: 3D printing of medical devices: when a novel technology meets traditional legal principles
-
Reed Smith website; Available at: (Accessed 30 August 2017)
-
Davies, C.T., Baird, L.M., Jacobson, M.D., et al. Reed Smith white paper: 3D printing of medical devices: when a novel technology meets traditional legal principles. Reed Smith website; Available at: http://bit.ly/2oH5PY4. (Accessed 30 August 2017)
-
-
-
Davies, C.T.1
Baird, L.M.2
Jacobson, M.D.3
-
18
-
-
85037858691
-
Society for manufacturing engineers website
-
Available at: (Accessed 30 August 2017)
-
SME Medical Additive Manufacturing/3D Printing Workgroup, Society for manufacturing engineers website. Available at: http://www.sme.org/medical-am3dp-workgroup/. (Accessed 30 August 2017)
-
-
-
SME Medical Additive Manufacturing/3D Printing Workgroup1
-
19
-
-
84885248106
-
Radiological society of North America website
-
Available at: (Accessed 30 August 2017)
-
RSNA 3D Printing Special Interest Group. Radiological society of North America website. Available at: http://www.rsna.org/3D-Printing-SIG/. (Accessed 30 August 2017)
-
-
-
-
20
-
-
84917710712
-
Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT
-
Kijima, S., Sasaki, T., Nagata, K., et al. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J Gastroenterol 20 (2014), 16964–16975, 10.3748/wjg.v20.i45.16964.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 16964-16975
-
-
Kijima, S.1
Sasaki, T.2
Nagata, K.3
-
21
-
-
84898611812
-
Roles of universal three-dimensional image analysis devices that assist surgical operations
-
Sakamoto, T., Roles of universal three-dimensional image analysis devices that assist surgical operations. J Hepatobiliary Pancreat Sci 21 (2014), 230–234, 10.1002/jhbp.88.
-
(2014)
J Hepatobiliary Pancreat Sci
, vol.21
, pp. 230-234
-
-
Sakamoto, T.1
-
22
-
-
70349675793
-
Value of 3D CT in defining skeletal complications of orthopedic hardware in the postoperative patient
-
Fayad, L.M., Patra, A., Fishman, E.K., Value of 3D CT in defining skeletal complications of orthopedic hardware in the postoperative patient. AJR Am J Roentgenol 193 (2009), 1155–1163, 10.2214/AJR.09.2610.
-
(2009)
AJR Am J Roentgenol
, vol.193
, pp. 1155-1163
-
-
Fayad, L.M.1
Patra, A.2
Fishman, E.K.3
-
23
-
-
84999806647
-
3D printing to guide ventricular assist device placement in adults with Congenital Heart Disease and heart failure
-
Farooqi, K.M., Saeed, O., Zaidi, A., et al. 3D printing to guide ventricular assist device placement in adults with Congenital Heart Disease and heart failure. JACC Heart Fail 4 (2016), 301–311, 10.1016/j.jchf.2016.01.012.
-
(2016)
JACC Heart Fail
, vol.4
, pp. 301-311
-
-
Farooqi, K.M.1
Saeed, O.2
Zaidi, A.3
-
24
-
-
84925991186
-
Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience
-
Schmauss, D., Haeberle, S., Hagl, C., et al. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg 47 (2015), 1044–1052, 10.1093/ejcts/ezu310.
-
(2015)
Eur J Cardiothorac Surg
, vol.47
, pp. 1044-1052
-
-
Schmauss, D.1
Haeberle, S.2
Hagl, C.3
-
25
-
-
84927699615
-
Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians
-
Costello, J.P., Olivieri, L.J., Su, L., et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10 (2015), 185–190, 10.1111/chd.12238.
-
(2015)
Congenit Heart Dis
, vol.10
, pp. 185-190
-
-
Costello, J.P.1
Olivieri, L.J.2
Su, L.3
-
26
-
-
84921490003
-
Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of “Mumbai EUS” stereolithography/3D printing bile duct prototype (with videos)
-
Dhir, V., Itoi, T., Fockens, P., et al. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of “Mumbai EUS” stereolithography/3D printing bile duct prototype (with videos). Gastrointest Endosc 81 (2015), 440–446, 10.1016/j.gie.2014.09.011.
-
(2015)
Gastrointest Endosc
, vol.81
, pp. 440-446
-
-
Dhir, V.1
Itoi, T.2
Fockens, P.3
-
27
-
-
84960960383
-
Three-dimensional printing in surgery: a review of current surgical applications
-
Malik, H.H., Darwood, A.R.J., Shaunak, S., et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 199 (2015), 512–522, 10.1016/j.jss.2015.06.051.
-
(2015)
J Surg Res
, vol.199
, pp. 512-522
-
-
Malik, H.H.1
Darwood, A.R.J.2
Shaunak, S.3
-
28
-
-
84936096647
-
Using 3D printed models for planning and guidance during endovascular intervention: a technical advance
-
Itagaki, M.W., Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol 21 (2015), 338–341, 10.5152/dir.2015.14469.
-
(2015)
Diagn Interv Radiol
, vol.21
, pp. 338-341
-
-
Itagaki, M.W.1
-
29
-
-
84963749897
-
Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models
-
Anderson, J.R., Thompson, W.L., Alkattan, A.K., et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg 8 (2016), 517–520, 10.1136/neurintsurg-2015-011686.
-
(2016)
J Neurointerv Surg
, vol.8
, pp. 517-520
-
-
Anderson, J.R.1
Thompson, W.L.2
Alkattan, A.K.3
-
30
-
-
84971324185
-
Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing
-
Weinstock, P., Prabhu, S.P., Flynn, K., et al. Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr 16 (2015), 584–589, 10.3171/2015.3.PEDS14677.
-
(2015)
J Neurosurg Pediatr
, vol.16
, pp. 584-589
-
-
Weinstock, P.1
Prabhu, S.P.2
Flynn, K.3
-
31
-
-
84907646513
-
3D Printing: print the future of ophthalmology
-
Huang, W., Zhang, X., 3D Printing: print the future of ophthalmology. Invest Ophthalmol Vis Sci 55 (2014), 5380–5381, 10.1167/iovs.14-15231.
-
(2014)
Invest Ophthalmol Vis Sci
, vol.55
, pp. 5380-5381
-
-
Huang, W.1
Zhang, X.2
-
32
-
-
84939801552
-
Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering
-
Obregon, F., Vaquette, C., Ivanovski, S., et al. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 94 (2015), 143–152, 10.1177/0022034515588885.
-
(2015)
J Dent Res
, vol.94
, pp. 143-152
-
-
Obregon, F.1
Vaquette, C.2
Ivanovski, S.3
-
33
-
-
84925223535
-
Three-dimensional printing technology
-
Groth, C., Kravitz, N.D., Jones, P.E., et al. Three-dimensional printing technology. J Clin Orthod 48 (2014), 475S–485S.
-
(2014)
J Clin Orthod
, vol.48
, pp. 475S-485S
-
-
Groth, C.1
Kravitz, N.D.2
Jones, P.E.3
-
34
-
-
84946919932
-
Three-dimensional printing in orthopedic surgery
-
Lindeque BGP, ed
-
Eltorai, A.E.M., Nguyen, E., Daniels, A.H., Three-dimensional printing in orthopedic surgery. Lindeque BGP, ed Orthopedics 38 (2015), 684–687, 10.3928/01477447-20151016-05.
-
(2015)
Orthopedics
, vol.38
, pp. 684-687
-
-
Eltorai, A.E.M.1
Nguyen, E.2
Daniels, A.H.3
-
35
-
-
85014509918
-
Advances in 3-dimensional printing in otolaryngology: a review
-
VanKoevering, K.K., Hollister, S.J., Green, G.E., Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngol Head Neck Surg 143 (2017), 178–183, 10.1001/jamaoto.2016.3002.
-
(2017)
JAMA Otolaryngol Head Neck Surg
, vol.143
, pp. 178-183
-
-
VanKoevering, K.K.1
Hollister, S.J.2
Green, G.E.3
-
36
-
-
84877995448
-
Bioresorbable airway splint created with a three-dimensional printer
-
Zopf, D.A., Hollister, S.J., Nelson, M.E., et al. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368 (2013), 2043–2045, 10.1056/NEJMc1206319.
-
(2013)
N Engl J Med
, vol.368
, pp. 2043-2045
-
-
Zopf, D.A.1
Hollister, S.J.2
Nelson, M.E.3
-
37
-
-
84948716954
-
Emerging applications of bedside 3D printing in plastic surgery
-
Chae, M.P., Rozen, W.M., McMenamin, P.G., et al. Emerging applications of bedside 3D printing in plastic surgery. Front Surg, 2, 2015, 25, 10.3389/fsurg.2015.00025.
-
(2015)
Front Surg
, vol.2
, pp. 25
-
-
Chae, M.P.1
Rozen, W.M.2
McMenamin, P.G.3
-
38
-
-
84959534262
-
Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery
-
Jastifer, J.R., Gustafson, P.A., Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery. J Foot Ankle Surg 56 (2017), 191–195, 10.1053/j.jfas.2016.01.052.
-
(2017)
J Foot Ankle Surg
, vol.56
, pp. 191-195
-
-
Jastifer, J.R.1
Gustafson, P.A.2
-
39
-
-
84996602381
-
3D printing for simulation in thoracic anesthesia
-
Bustamante, S., Shravan Cheruku, M.D., 3D printing for simulation in thoracic anesthesia. J Cardiothorac Vasc Anesth 30 (2016), 61–63, 10.1053/j.jvca.2016.05.044.
-
(2016)
J Cardiothorac Vasc Anesth
, vol.30
, pp. 61-63
-
-
Bustamante, S.1
Shravan Cheruku, M.D.2
-
40
-
-
84965088929
-
Use of 3D printers to create a patient-specific 3D bolus for external beam therapy
-
Burleson, S., Baker, J., Hsia, A.T., et al. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys, 16, 2015, 5247.
-
(2015)
J Appl Clin Med Phys
, vol.16
, pp. 5247
-
-
Burleson, S.1
Baker, J.2
Hsia, A.T.3
-
41
-
-
84889080620
-
Three-dimensional print of a liver for preoperative planning in living donor liver transplantation
-
Zein, N.N., Hanouneh, I.A., Bishop, P.D., et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl 19 (2013), 1304–1310, 10.1002/lt.23729.
-
(2013)
Liver Transpl
, vol.19
, pp. 1304-1310
-
-
Zein, N.N.1
Hanouneh, I.A.2
Bishop, P.D.3
-
42
-
-
84943584590
-
Applications of three-dimensional printing technology in urological practice
-
Youssef, R.F., Spradling, K., Yoon, R., et al. Applications of three-dimensional printing technology in urological practice. BJU Int 116 (2015), 697–702, 10.1111/bju.13183.
-
(2015)
BJU Int
, vol.116
, pp. 697-702
-
-
Youssef, R.F.1
Spradling, K.2
Yoon, R.3
-
43
-
-
84907332980
-
Bioprinting of artificial blood vessels: current approaches towards a demanding goal
-
Hoch, E., Tovar, G.E.M., Borchers, K., Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 46 (2014), 767–778, 10.1093/ejcts/ezu242.
-
(2014)
Eur J Cardiothorac Surg
, vol.46
, pp. 767-778
-
-
Hoch, E.1
Tovar, G.E.M.2
Borchers, K.3
-
44
-
-
85010297166
-
3-Dimensional printed anatomic models as planning aids in complex oncology surgery
-
Matsumoto, J.S., Morris, J.M., Rose, P.S., 3-Dimensional printed anatomic models as planning aids in complex oncology surgery. JAMA Oncol 2 (2016), 1121–1122, 10.1001/jamaoncol.2016.2469.
-
(2016)
JAMA Oncol
, vol.2
, pp. 1121-1122
-
-
Matsumoto, J.S.1
Morris, J.M.2
Rose, P.S.3
-
45
-
-
84992123283
-
3D-printing techniques in a medical setting: a systematic literature review
-
Tack, P., Victor, J., Gemmel, P., et al. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online, 15, 2016, 115, 10.1186/s12938-016-0236-4.
-
(2016)
Biomed Eng Online
, vol.15
, pp. 115
-
-
Tack, P.1
Victor, J.2
Gemmel, P.3
-
46
-
-
84942295473
-
The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects
-
Mao, Y., Xu, C., Xu, J., et al. The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects. Int Orthop 39 (2015), 2023–2030, 10.1007/s00264-015-2965-6.
-
(2015)
Int Orthop
, vol.39
, pp. 2023-2030
-
-
Mao, Y.1
Xu, C.2
Xu, J.3
-
47
-
-
84908663551
-
Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool
-
Chung, K.J., Hong, D.Y., Kim, Y.T., et al. Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool. Foot Ankle Int 35 (2014), 1231–1236, 10.1177/1071100714544522.
-
(2014)
Foot Ankle Int
, vol.35
, pp. 1231-1236
-
-
Chung, K.J.1
Hong, D.Y.2
Kim, Y.T.3
-
48
-
-
84930041281
-
Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery
-
Huang, H., Hsieh, M.-F., Zhang, G., et al. Improved accuracy of 3D-printed navigational template during complicated tibial plateau fracture surgery. Australas Phys Eng Sci Med 38 (2015), 109–117, 10.1007/s13246-015-0330-0.1.
-
(2015)
Australas Phys Eng Sci Med
, vol.38
, pp. 109-117
-
-
Huang, H.1
Hsieh, M.-F.2
Zhang, G.3
-
49
-
-
85018193671
-
The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction
-
Pacione, D., Tanweer, O., Berman, P., et al. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction. J Neurosurg 125 (2016), 1194–1197, 10.3171/2015.12.JNS151936.
-
(2016)
J Neurosurg
, vol.125
, pp. 1194-1197
-
-
Pacione, D.1
Tanweer, O.2
Berman, P.3
-
50
-
-
84977637734
-
A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction
-
Zeng, C., Xing, W., Wu, Z., et al. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Injury 47 (2016), 2223–2227, 10.1016/j.injury.2016.03.015.
-
(2016)
Injury
, vol.47
, pp. 2223-2227
-
-
Zeng, C.1
Xing, W.2
Wu, Z.3
-
51
-
-
84905119129
-
Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study
-
Silberstein, J.L., Maddox, M.M., Dorsey, P., et al. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology 84 (2014), 268–272, 10.1016/j.urology.2014.03.042.
-
(2014)
Urology
, vol.84
, pp. 268-272
-
-
Silberstein, J.L.1
Maddox, M.M.2
Dorsey, P.3
-
52
-
-
85008450513
-
3D printed renal cancer models derived from MRI data: application in pre-surgical planning
-
Wake, N., Rude, T., Kang, S.K., et al. 3D printed renal cancer models derived from MRI data: application in pre-surgical planning. Abdom Radiol 42 (2017), 1501–1509, 10.1007/s00261-016-1022-2.
-
(2017)
Abdom Radiol
, vol.42
, pp. 1501-1509
-
-
Wake, N.1
Rude, T.2
Kang, S.K.3
-
53
-
-
84938497853
-
Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root
-
mmt004
-
Pepper, J., Petrou, M., Rega, F., et al. Implantation of an individually computer-designed and manufactured external support for the Marfan aortic root. Multimed Man Cardiothorac Surg, 2013, 2013, 10.1093/mmcts/mmt004 mmt004.
-
(2013)
Multimed Man Cardiothorac Surg
, vol.2013
-
-
Pepper, J.1
Petrou, M.2
Rega, F.3
-
54
-
-
84977474169
-
The interactive use of multi-dimensional modeling and 3D printing in preplanning of type A aortic dissection
-
Hossien, A., Gesomino, S., Maessen, J., et al. The interactive use of multi-dimensional modeling and 3D printing in preplanning of type A aortic dissection. J Card Surg 31 (2016), 441–445, 10.1111/jocs.12772.
-
(2016)
J Card Surg
, vol.31
, pp. 441-445
-
-
Hossien, A.1
Gesomino, S.2
Maessen, J.3
-
55
-
-
84981203267
-
Three-dimensional printing model for the postoperative follow-up of atrial septal defect
-
Wang, Z., Luo, H., Gao, C., et al. Three-dimensional printing model for the postoperative follow-up of atrial septal defect. Int J Cardiol 222 (2016), 891–892, 10.1016/j.ijcard.2016.08.046.
-
(2016)
Int J Cardiol
, vol.222
, pp. 891-892
-
-
Wang, Z.1
Luo, H.2
Gao, C.3
-
56
-
-
84921311304
-
Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications
-
Weisman, J.A., Nicholson, J.C., Tappa, K., et al. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine 10 (2015), 357–370, 10.2147/IJN.S74811.
-
(2015)
Int J Nanomedicine
, vol.10
, pp. 357-370
-
-
Weisman, J.A.1
Nicholson, J.C.2
Tappa, K.3
-
57
-
-
85027268455
-
3D printing antibiotic and chemotherapeutic eluting catheters and constructs
-
Weisman, J.A., Jammalamadaka, U., Tappa, K., et al. 3D printing antibiotic and chemotherapeutic eluting catheters and constructs. J Vasc Interv Radiol, 26, 2015, S12, 10.1016/j.jvir.2014.12.040.
-
(2015)
J Vasc Interv Radiol
, vol.26
, pp. S12
-
-
Weisman, J.A.1
Jammalamadaka, U.2
Tappa, K.3
-
58
-
-
84992365819
-
Three-dimensional printing of bioactive hernia meshes: in vitro proof of principle
-
Ballard, D.H., Weisman, J.A., Jammalamadaka, U., et al. Three-dimensional printing of bioactive hernia meshes: in vitro proof of principle. Surgery 161 (2017), 1479–1481, 10.1016/j.surg.2016.08.033.
-
(2017)
Surgery
, vol.161
, pp. 1479-1481
-
-
Ballard, D.H.1
Weisman, J.A.2
Jammalamadaka, U.3
-
59
-
-
85027279668
-
Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study
-
e0182929
-
Tappa, K., Jammalamadaka, U., Ballard, D.H., et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS ONE, 12, 2017, 10.1371/journal.pone.0182929 e0182929.
-
(2017)
PLoS ONE
, vol.12
-
-
Tappa, K.1
Jammalamadaka, U.2
Ballard, D.H.3
-
60
-
-
84901232897
-
Three-dimensional printing surgical instruments: are we there yet?
-
Rankin, T.M., Giovinco, N.A., Cucher, D.J., et al. Three-dimensional printing surgical instruments: are we there yet?. J Surg Res 189 (2014), 193–197, 10.1016/j.jss.2014.02.020.
-
(2014)
J Surg Res
, vol.189
, pp. 193-197
-
-
Rankin, T.M.1
Giovinco, N.A.2
Cucher, D.J.3
-
61
-
-
84906936717
-
Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp
-
Fuller, S.M., Butz, D.R., Vevang, C.B., et al. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp. J Hand Surg Am 39 (2014), 1840–1845, 10.1016/j.jhsa.2014.06.009.
-
(2014)
J Hand Surg Am
, vol.39
, pp. 1840-1845
-
-
Fuller, S.M.1
Butz, D.R.2
Vevang, C.B.3
-
62
-
-
0033631168
-
Care of the elderly patient with lower extremity amputation
-
Coletta, E.M., Care of the elderly patient with lower extremity amputation. J Am Board Fam Pract 13 (2000), 23–34.
-
(2000)
J Am Board Fam Pract
, vol.13
, pp. 23-34
-
-
Coletta, E.M.1
-
63
-
-
0034913441
-
Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study
-
Dillingham, T.R., Pezzin, L.E., MacKenzie, E.J., et al. Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study. Am J Phys Med Rehabil 80 (2001), 563–571.
-
(2001)
Am J Phys Med Rehabil
, vol.80
, pp. 563-571
-
-
Dillingham, T.R.1
Pezzin, L.E.2
MacKenzie, E.J.3
-
64
-
-
84922883795
-
Evaluation of PC-ISO for customized, 3D printed, gynecologic 192-Ir HDR brachytherapy applicators
-
Cunha, J.A.M., Mellis, K., Sethi, R., et al. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192-Ir HDR brachytherapy applicators. J Appl Clin Med Phys, 16, 2015, 5168.
-
(2015)
J Appl Clin Med Phys
, vol.16
, pp. 5168
-
-
Cunha, J.A.M.1
Mellis, K.2
Sethi, R.3
-
65
-
-
84994176319
-
3D-printed applicators for high dose rate brachytherapy: dosimetric assessment at different infill percentage
-
Ricotti, R., Vavassori, A., Bazani, A., et al. 3D-printed applicators for high dose rate brachytherapy: dosimetric assessment at different infill percentage. Phys Med 32 (2016), 1698–1706, 10.1016/j.ejmp.2016.08.016.
-
(2016)
Phys Med
, vol.32
, pp. 1698-1706
-
-
Ricotti, R.1
Vavassori, A.2
Bazani, A.3
-
66
-
-
84976871428
-
Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology
-
Sethi, R., Cunha, A., Mellis, K., et al. Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology. J Contemp Brachytherapy 8 (2016), 208–214, 10.5114/jcb.2016.60679.
-
(2016)
J Contemp Brachytherapy
, vol.8
, pp. 208-214
-
-
Sethi, R.1
Cunha, A.2
Mellis, K.3
-
67
-
-
84907998216
-
Medical applications for 3D printing: current and projected uses
-
Ventola, C.L., Medical applications for 3D printing: current and projected uses. P T 39 (2014), 704–711.
-
(2014)
P T
, vol.39
, pp. 704-711
-
-
Ventola, C.L.1
-
68
-
-
85037836477
-
Patient-specific jaw splint for edentulous and partially edentulous patients presenting with jaw fractures
-
Decker, S., Ford, J., Ching, J., Patient-specific jaw splint for edentulous and partially edentulous patients presenting with jaw fractures. Int J Comput Assist Radiol Surg 9 (2014), S258–S259.
-
(2014)
Int J Comput Assist Radiol Surg
, vol.9
, pp. S258-S259
-
-
Decker, S.1
Ford, J.2
Ching, J.3
-
69
-
-
84946905711
-
Medical 3D printing for the radiologist
-
Mitsouras, D., Liacouras, P., Imanzadeh, A., et al. Medical 3D printing for the radiologist. Radiographics 35 (2015), 1965–1988, 10.1148/rg.2015140320.
-
(2015)
Radiographics
, vol.35
, pp. 1965-1988
-
-
Mitsouras, D.1
Liacouras, P.2
Imanzadeh, A.3
-
70
-
-
84948459666
-
Additive manufacturing of custom orthoses and prostheses—a review
-
Jin, Y., Plott, J., Chen, R., et al. Additive manufacturing of custom orthoses and prostheses—a review. Procedia CIRP 36 (2015), 199–204, 10.1016/j.procir.2015.02.125.
-
(2015)
Procedia CIRP
, vol.36
, pp. 199-204
-
-
Jin, Y.1
Plott, J.2
Chen, R.3
-
71
-
-
84992035739
-
Advances in 3D-printed pediatric prostheses for upper extremity differences
-
Tanaka, K.S., Lightdale-Miric, N., Advances in 3D-printed pediatric prostheses for upper extremity differences. J Bone Joint Surg Am 98 (2016), 1320–1326, 10.2106/JBJS.15.01212.
-
(2016)
J Bone Joint Surg Am
, vol.98
, pp. 1320-1326
-
-
Tanaka, K.S.1
Lightdale-Miric, N.2
-
72
-
-
85019539857
-
Maintaining safety and efficacy for 3D printing in medicine
-
Christensen, A., Rybicki, F.J., Maintaining safety and efficacy for 3D printing in medicine. 3D Printing in Medicine, 3, 2017, 10.1186/s41205-016-0009-5.
-
(2017)
3D Printing in Medicine
, vol.3
-
-
Christensen, A.1
Rybicki, F.J.2
-
73
-
-
85037866212
-
Relevance of health literacy to precision medicine: proceedings of a workshop
-
Washington (DC): National Academies Press (US); Available at: (Accessed 5 August 2017)
-
Roundtable on Health Literacy, Board on Population Health and Public Health Practice, Health and Medicine Division, et al. Relevance of health literacy to precision medicine: proceedings of a workshop. Washington (DC): National Academies Press (US); Available at: http://www.ncbi.nlm.nih.gov/books/NBK396049/. (Accessed 5 August 2017)
-
-
-
Roundtable on Health Literacy1
Board on Population Health and Public Health Practice2
Health and Medicine Division3
-
74
-
-
84914703053
-
The shape of things to come: 3D printing in medicine
-
Michalski, M.H., Ross, J.S., The shape of things to come: 3D printing in medicine. JAMA 312 (2014), 2213–2214, 10.1001/jama.2014.9542.
-
(2014)
JAMA
, vol.312
, pp. 2213-2214
-
-
Michalski, M.H.1
Ross, J.S.2
-
75
-
-
84959277353
-
Personalized 3D printed model of the kidney and tumor anatomy: a useful tool for patient education
-
Bernhard, J.C., Isotani, S., Matsugasumi, T., et al. Personalized 3D printed model of the kidney and tumor anatomy: a useful tool for patient education. World J Urol 34 (2016), 337–345, 10.1007/s00345-015-1632-2.
-
(2016)
World J Urol
, vol.34
, pp. 337-345
-
-
Bernhard, J.C.1
Isotani, S.2
Matsugasumi, T.3
-
76
-
-
84963500404
-
Usefulness of three-dimensional printing models for patients with stoma construction
-
Tominaga, T., Takagi, K., Takeshita, H., et al. Usefulness of three-dimensional printing models for patients with stoma construction. Case Rep Gastroenterol 10 (2016), 57–62, 10.1159/000442663.
-
(2016)
Case Rep Gastroenterol
, vol.10
, pp. 57-62
-
-
Tominaga, T.1
Takagi, K.2
Takeshita, H.3
-
77
-
-
85019100843
-
Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education
-
Andolfi, C., Plana, A., Kania, P., et al. Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education. J Laparoendosc Adv Surg Tech A 27 (2017), 512–515, 10.1089/lap.2016.0421.
-
(2017)
J Laparoendosc Adv Surg Tech A
, vol.27
, pp. 512-515
-
-
Andolfi, C.1
Plana, A.2
Kania, P.3
-
78
-
-
84970039386
-
Radiology's emerging role in 3-D printing applications in health care
-
e4
-
Trace, A.P., Ortiz, D., Deal, A., et al. Radiology's emerging role in 3-D printing applications in health care. J Am Coll Radiol 13 (2016), 856–862, 10.1016/j.jacr.2016.03.025 e4.
-
(2016)
J Am Coll Radiol
, vol.13
, pp. 856-862
-
-
Trace, A.P.1
Ortiz, D.2
Deal, A.3
-
79
-
-
84936745802
-
The production of anatomical teaching resources using three-dimensional (3D) printing technology
-
McMenamin, P.G., Quayle, M.R., McHenry, C.R., et al. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 7 (2014), 479–486, 10.1002/ase.1475.
-
(2014)
Anat Sci Educ
, vol.7
, pp. 479-486
-
-
McMenamin, P.G.1
Quayle, M.R.2
McHenry, C.R.3
-
80
-
-
84952057797
-
Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy: use of 3D prints in medical education
-
Lim, K.H.A., Loo, Z.Y., Goldie, S.J., et al. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy: use of 3D prints in medical education. Anat Sci Educ 9 (2016), 213–221, 10.1002/ase.1573.
-
(2016)
Anat Sci Educ
, vol.9
, pp. 213-221
-
-
Lim, K.H.A.1
Loo, Z.Y.2
Goldie, S.J.3
-
81
-
-
84940576893
-
3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry
-
Adams, J.W., Paxton, L., Dawes, K., et al. 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry. Br J Ophthalmol 99 (2015), 1162–1167, 10.1136/bjophthalmol-2014-306189.
-
(2015)
Br J Ophthalmol
, vol.99
, pp. 1162-1167
-
-
Adams, J.W.1
Paxton, L.2
Dawes, K.3
-
82
-
-
84975078625
-
Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms
-
Wang, K., Wu, C., Qian, Z., et al. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit Manuf 12 (2016), 31–37, 10.1016/j.addma.2016.06.006.
-
(2016)
Addit Manuf
, vol.12
, pp. 31-37
-
-
Wang, K.1
Wu, C.2
Qian, Z.3
-
83
-
-
85014270467
-
Hands-on surgical training of congenital heart surgery using 3-dimensional print models
-
Yoo, S.-J., Spray, T., Austin, E.H., et al. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153 (2017), 1530–1540.
-
(2017)
J Thorac Cardiovasc Surg
, vol.153
, pp. 1530-1540
-
-
Yoo, S.-J.1
Spray, T.2
Austin, E.H.3
-
84
-
-
84930018831
-
Use of three-dimensional printed “haptic” models for preoperative planning in an Australian plastic surgery unit
-
Cabalag, M.S., Chae, M.P., Miller, G.S., et al. Use of three-dimensional printed “haptic” models for preoperative planning in an Australian plastic surgery unit. ANZ J Surg, 2015, 10.1111/ans.13168.
-
(2015)
ANZ J Surg
-
-
Cabalag, M.S.1
Chae, M.P.2
Miller, G.S.3
-
85
-
-
84926188017
-
Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing
-
Xu, Y., Fan, F., Kang, N., et al. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing. Plast Reconstr Surg 135 (2015), 451–458, 10.1097/PRS.0000000000000856.
-
(2015)
Plast Reconstr Surg
, vol.135
, pp. 451-458
-
-
Xu, Y.1
Fan, F.2
Kang, N.3
-
86
-
-
84907220896
-
Three-dimensional mock-up model for chondral framework in auricular reconstruction, built with a personal three-dimensional printer
-
Nishimoto, S., Sotsuka, Y., Kawai, K., et al. Three-dimensional mock-up model for chondral framework in auricular reconstruction, built with a personal three-dimensional printer. Plast Reconstr Surg 134 (2014), 180–181, 10.1097/PRS.0000000000000263.
-
(2014)
Plast Reconstr Surg
, vol.134
, pp. 180-181
-
-
Nishimoto, S.1
Sotsuka, Y.2
Kawai, K.3
-
87
-
-
84924982797
-
Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants
-
Bos, E.J., Scholten, T., Song, Y., et al. Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants. J Craniomaxillofac Surg 43 (2015), 390–395, 10.1016/j.jcms.2014.12.016.
-
(2015)
J Craniomaxillofac Surg
, vol.43
, pp. 390-395
-
-
Bos, E.J.1
Scholten, T.2
Song, Y.3
-
88
-
-
84923649924
-
3D-printed haptic “reverse” models for preoperative planning in soft tissue reconstruction: a case report
-
Chae, M.P., Lin, F., Spychal, R.T., et al. 3D-printed haptic “reverse” models for preoperative planning in soft tissue reconstruction: a case report. Microsurgery 35 (2015), 148–153, 10.1002/micr.22293.
-
(2015)
Microsurgery
, vol.35
, pp. 148-153
-
-
Chae, M.P.1
Lin, F.2
Spychal, R.T.3
-
89
-
-
84904122945
-
3D volumetric analysis for planning breast reconstructive surgery
-
Chae, M.P., Hunter-Smith, D.J., Spychal, R.T., et al. 3D volumetric analysis for planning breast reconstructive surgery. Breast Cancer Res Treat 146 (2014), 457–460, 10.1007/s10549-014-3028-1.
-
(2014)
Breast Cancer Res Treat
, vol.146
, pp. 457-460
-
-
Chae, M.P.1
Hunter-Smith, D.J.2
Spychal, R.T.3
-
90
-
-
85003952877
-
Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery
-
Hermsen, J.L., Burke, T.M., Seslar, S.P., et al. Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J Thorac Cardiovasc Surg 153 (2017), 132–140, 10.1016/j.jtcvs.2016.08.007.
-
(2017)
J Thorac Cardiovasc Surg
, vol.153
, pp. 132-140
-
-
Hermsen, J.L.1
Burke, T.M.2
Seslar, S.P.3
-
91
-
-
84930662964
-
Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies
-
Wang, H., Liu, J., Zheng, X., et al. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Sci Rep, 5, 2015, 10945, 10.1038/srep10945.
-
(2015)
Sci Rep
, vol.5
, pp. 10945
-
-
Wang, H.1
Liu, J.2
Zheng, X.3
-
92
-
-
0346363147
-
Cerebrovascular stereolithographic biomodeling for aneurysm surgery
-
Technical note
-
Wurm, G., Tomancok, B., Pogady, P., et al. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J Neurosurg 100 (2004), 139–145, 10.3171/jns.2004.100.1.0139 Technical note.
-
(2004)
J Neurosurg
, vol.100
, pp. 139-145
-
-
Wurm, G.1
Tomancok, B.2
Pogady, P.3
-
93
-
-
66849142182
-
A new training set-up for trans-apical aortic valve replacement
-
Abdel-Sayed, P., Kalejs, M., von Segesser, L.K., A new training set-up for trans-apical aortic valve replacement. Interact Cardiovasc Thorac Surg 8 (2009), 599–601, 10.1510/icvts.2009.204149.
-
(2009)
Interact Cardiovasc Thorac Surg
, vol.8
, pp. 599-601
-
-
Abdel-Sayed, P.1
Kalejs, M.2
von Segesser, L.K.3
-
94
-
-
84905682164
-
Novel application of rapid prototyping for simulation of bronchoscopic anatomy
-
Bustamante, S., Bose, S., Bishop, P., et al. Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J Cardiothorac Vasc Anesth 28 (2014), 1122–1125, 10.1053/j.jvca.2013.08.015.
-
(2014)
J Cardiothorac Vasc Anesth
, vol.28
, pp. 1122-1125
-
-
Bustamante, S.1
Bose, S.2
Bishop, P.3
-
95
-
-
84941948660
-
Technical note: characterization of custom 3D printed multimodality imaging phantoms
-
Bieniosek, M.F., Lee, B.J., Levin, C.S., Technical note: characterization of custom 3D printed multimodality imaging phantoms. Med Phys 42 (2015), 5913–5918, 10.1118/1.4930803.
-
(2015)
Med Phys
, vol.42
, pp. 5913-5918
-
-
Bieniosek, M.F.1
Lee, B.J.2
Levin, C.S.3
-
96
-
-
84962360969
-
Low radiation dose calcium scoring: evidence and techniques
-
Baron, K.B., Choi, A.D., Chen, M.Y., Low radiation dose calcium scoring: evidence and techniques. Curr Cardiovasc Imaging Rep, 9, 2016, 12, 10.1007/s12410-016-9373-1.
-
(2016)
Curr Cardiovasc Imaging Rep
, vol.9
, pp. 12
-
-
Baron, K.B.1
Choi, A.D.2
Chen, M.Y.3
-
97
-
-
84958212639
-
Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation
-
Mitsouras, D., Lee, T.C., Liacouras, P., et al. Three-dimensional printing of MRI-visible phantoms and MR image-guided therapy simulation. Magn Reson Med 77 (2017), 613–622, 10.1002/mrm.26136.
-
(2017)
Magn Reson Med
, vol.77
, pp. 613-622
-
-
Mitsouras, D.1
Lee, T.C.2
Liacouras, P.3
-
98
-
-
79960631568
-
Getting in touch—3D printing in forensic imaging
-
Ebert, L.C., Thali, M.J., Ross, S., Getting in touch—3D printing in forensic imaging. Forensic Sci Int 211 (2011), e1–e6, 10.1016/j.forsciint.2011.04.022.
-
(2011)
Forensic Sci Int
, vol.211
, pp. e1-e6
-
-
Ebert, L.C.1
Thali, M.J.2
Ross, S.3
-
99
-
-
84865643794
-
Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling—a report in a case of blunt force head injury
-
Woźniak, K., Rzepecka-Woźniak, E., Moskała, A., et al. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling—a report in a case of blunt force head injury. Forensic Sci Int 222 (2012), e29–e32, 10.1016/j.forsciint.2012.06.012.
-
(2012)
Forensic Sci Int
, vol.222
, pp. e29-e32
-
-
Woźniak, K.1
Rzepecka-Woźniak, E.2
Moskała, A.3
-
100
-
-
79960050093
-
Reverse engineering—rapid prototyping of the skull in forensic trauma analysis
-
Kettner, M., Schmidt, P., Potente, S., et al. Reverse engineering—rapid prototyping of the skull in forensic trauma analysis. J Forensic Sci 56 (2011), 1015–1017, 10.1111/j.1556-4029.2011.01764.
-
(2011)
J Forensic Sci
, vol.56
, pp. 1015-1017
-
-
Kettner, M.1
Schmidt, P.2
Potente, S.3
-
101
-
-
85019578855
-
A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
-
Laronda, M.M., Rutz, A.L., Xiao, S., et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun, 8, 2017, 15261.
-
(2017)
Nat Commun
, vol.8
, pp. 15261
-
-
Laronda, M.M.1
Rutz, A.L.2
Xiao, S.3
-
102
-
-
84960905071
-
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
-
Kang, H.-W., Lee, S.J., Ko, I.K., et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34 (2016), 312–319.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 312-319
-
-
Kang, H.-W.1
Lee, S.J.2
Ko, I.K.3
-
103
-
-
79960720836
-
Highlights of prescribing information—spritam
-
Available at: (Accessed 30 August 2017)
-
United States Food and Drug Administration, Highlights of prescribing information—spritam. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207958s000lbl.pdf. (Accessed 30 August 2017)
-
-
-
United States Food and Drug Administration1
-
104
-
-
84975885806
-
3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems
-
Goyanes, A., Det-Amornrat, U., Wang, J., et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 234 (2016), 41–48, 10.1016/j.jconrel.2016.05.034.
-
(2016)
J Control Release
, vol.234
, pp. 41-48
-
-
Goyanes, A.1
Det-Amornrat, U.2
Wang, J.3
-
105
-
-
84991208169
-
Bioprinting of 3D convoluted renal proximal tubules on perfusable chips
-
Homan, K.A., Kolesky, D.B., Skylar-Scott, M.A., et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep, 6, 2016, 34845, 10.1038/srep34845.
-
(2016)
Sci Rep
, vol.6
, pp. 34845
-
-
Homan, K.A.1
Kolesky, D.B.2
Skylar-Scott, M.A.3
-
106
-
-
85006725013
-
Human skin 3D bioprinting using scaffold-free approach
-
Pourchet, L.J., Thepot, A., Albouy, M., et al. Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater, 6, 2017, 10.1002/adhm.201601101.
-
(2017)
Adv Healthc Mater
, vol.6
-
-
Pourchet, L.J.1
Thepot, A.2
Albouy, M.3
-
107
-
-
85009110405
-
From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues
-
Borovjagin, A.V., Ogle, B.M., Berry, J.L., et al. From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues. Circ Res 120 (2017), 150–165, 10.1161/CIRCRESAHA.116.308538.
-
(2017)
Circ Res
, vol.120
, pp. 150-165
-
-
Borovjagin, A.V.1
Ogle, B.M.2
Berry, J.L.3
-
108
-
-
84991550909
-
Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
-
Sawkins, M.J., Mistry, P., Brown, B.N., et al. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication, 7, 2015, 035004, 10.1088/1758-5090/7/3/035004.
-
(2015)
Biofabrication
, vol.7
, pp. 035004
-
-
Sawkins, M.J.1
Mistry, P.2
Brown, B.N.3
-
109
-
-
84866055893
-
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
-
Hockaday, L.A., Kang, K.H., Colangelo, N.W., et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4, 2012, 035005, 10.1088/1758-5082/4/3/035005.
-
(2012)
Biofabrication
, vol.4
, pp. 035005
-
-
Hockaday, L.A.1
Kang, K.H.2
Colangelo, N.W.3
-
110
-
-
85010818996
-
3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment
-
Zhang, K., Fu, Q., Yoo, J., et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater 50 (2017), 154–164, 10.1016/j.actbio.2016.12.008.
-
(2017)
Acta Biomater
, vol.50
, pp. 154-164
-
-
Zhang, K.1
Fu, Q.2
Yoo, J.3
-
111
-
-
84879103253
-
3D printed bionic ears
-
Mannoor, M.S., Jiang, Z., James, T., et al. 3D printed bionic ears. Nano Lett 13 (2013), 2634–2639, 10.1021/nl4007744.
-
(2013)
Nano Lett
, vol.13
, pp. 2634-2639
-
-
Mannoor, M.S.1
Jiang, Z.2
James, T.3
-
112
-
-
84961288580
-
Cyborg beast: a low-cost 3D-printed prosthetic hand for children with upper-limb differences
-
Zuniga, J., Katsavelis, D., Peck, J., et al. Cyborg beast: a low-cost 3D-printed prosthetic hand for children with upper-limb differences. BMC Res Notes, 8, 2015, 10, 10.1186/s13104-015-0971-9.
-
(2015)
BMC Res Notes
, vol.8
, pp. 10
-
-
Zuniga, J.1
Katsavelis, D.2
Peck, J.3
-
113
-
-
85006054060
-
3D printing from MRI data: harnessing strengths and minimizing weaknesses
-
Ripley, B., Levin, D., Kelil, T., et al. 3D printing from MRI data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 45 (2017), 635–645, 10.1002/jmri.25526.
-
(2017)
J Magn Reson Imaging
, vol.45
, pp. 635-645
-
-
Ripley, B.1
Levin, D.2
Kelil, T.3
-
114
-
-
84983218993
-
Three-dimensional physical modeling: applications and experience at Mayo Clinic
-
Matsumoto, J.S., Morris, J.M., Foley, T.A., et al. Three-dimensional physical modeling: applications and experience at Mayo Clinic. Radiographics 35 (2015), 1989–2006, 10.1148/rg.2015140260.
-
(2015)
Radiographics
, vol.35
, pp. 1989-2006
-
-
Matsumoto, J.S.1
Morris, J.M.2
Foley, T.A.3
-
115
-
-
0038511945
-
Outcome analysis in adult-to-adult living donor liver transplantation using the left lobe
-
Soejima, Y., Shimada, M., Suehiro, T., et al. Outcome analysis in adult-to-adult living donor liver transplantation using the left lobe. Liver Transpl 9 (2003), 581–586, 10.1053/jlts.2003.50114.
-
(2003)
Liver Transpl
, vol.9
, pp. 581-586
-
-
Soejima, Y.1
Shimada, M.2
Suehiro, T.3
-
116
-
-
33646052556
-
Tissue-engineered autologous bladders for patients needing cystoplasty
-
Atala, A., Bauer, S.B., Soker, S., et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367 (2006), 1241–1246, 10.1016/S0140-6736(06)68438-9.
-
(2006)
Lancet
, vol.367
, pp. 1241-1246
-
-
Atala, A.1
Bauer, S.B.2
Soker, S.3
-
117
-
-
79953283872
-
Tissue-engineered autologous urethras for patients who need reconstruction: an observational study
-
Raya-Rivera, A., Esquiliano, D.R., Yoo, J.J., et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377 (2011), 1175–1182, 10.1016/S0140-6736(10)62354-9.
-
(2011)
Lancet
, vol.377
, pp. 1175-1182
-
-
Raya-Rivera, A.1
Esquiliano, D.R.2
Yoo, J.J.3
-
118
-
-
85061875781
-
Medical 3D printing: methods to standardize terminology and report trends
-
Chepelev, L., Giannopoulos, A., Tang, A., et al. Medical 3D printing: methods to standardize terminology and report trends. 3D Printing in Med, 3, 2017, 4, 10.1186/s41205-017-0012-5.
-
(2017)
3D Printing in Med
, vol.3
, pp. 4
-
-
Chepelev, L.1
Giannopoulos, A.2
Tang, A.3
-
119
-
-
84971607426
-
Understanding spatially complex segmental and branch anatomy using 3D printing
-
Javan, R., Herrin, D., Tangestanipoor, A., Understanding spatially complex segmental and branch anatomy using 3D printing. Acad Radiol 23 (2016), 1183–1189, 10.1016/j.acra.2016.04.010.
-
(2016)
Acad Radiol
, vol.23
, pp. 1183-1189
-
-
Javan, R.1
Herrin, D.2
Tangestanipoor, A.3
-
120
-
-
85037816745
-
Anatomic modeling using 3D printing: quality assurance and optimization
-
Leng, S., McGee, K., Morris, J., et al. Anatomic modeling using 3D printing: quality assurance and optimization. 3D Printing in Med, 3, 2017, 6, 10.1186/s41205-017-0014-3.
-
(2017)
3D Printing in Med
, vol.3
, pp. 6
-
-
Leng, S.1
McGee, K.2
Morris, J.3
-
121
-
-
85014578219
-
Additively manufactured medical products—the FDA perspective
-
Di Prima, M., Coburn, J., Hwang, D., et al. Additively manufactured medical products—the FDA perspective. 3D Printing in Med, 2, 2015, 1, 10.1186/s41205-016-0005-9.
-
(2015)
3D Printing in Med
, vol.2
, pp. 1
-
-
Di Prima, M.1
Coburn, J.2
Hwang, D.3
-
122
-
-
84929483920
-
Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients
-
285ra64
-
Morrison, R.J., Hollister, S.J., Niedner, M.F., et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med, 7, 2015, 10.1126/scitranslmed.3010825 285ra64.
-
(2015)
Sci Transl Med
, vol.7
-
-
Morrison, R.J.1
Hollister, S.J.2
Niedner, M.F.3
-
123
-
-
84920841858
-
On-demand three-dimensional printing of surgical supplies in conflict zones
-
Yu, A.W., Khan, M., On-demand three-dimensional printing of surgical supplies in conflict zones. J Trauma Acute Care Surg 78 (2015), 201–203, 10.1097/TA.0000000000000481.
-
(2015)
J Trauma Acute Care Surg
, vol.78
, pp. 201-203
-
-
Yu, A.W.1
Khan, M.2
-
124
-
-
84966539217
-
Three-dimensional printing and 3D slicer: powerful tools in understanding and treating structural lung disease
-
Cheng, G.Z., San Jose Estepar, R., Folch, E., et al. Three-dimensional printing and 3D slicer: powerful tools in understanding and treating structural lung disease. Chest 149 (2016), 1136–1142, 10.1016/j.chest.2016.03.001.
-
(2016)
Chest
, vol.149
, pp. 1136-1142
-
-
Cheng, G.Z.1
San Jose Estepar, R.2
Folch, E.3
-
125
-
-
85037845097
-
Medical Imaging and Technology Alliance website
-
Available at: (Accessed 30 August 2017)
-
DICOM approves new working group to address 3D printing. Medical Imaging and Technology Alliance website. Available at: http://bit.ly/2wIFTzm. (Accessed 30 August 2017)
-
-
-
-
126
-
-
84876991976
-
Process Validation: General Principles and Practices
-
United States Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation Research, Center for Veterinary Medicine; Available at: (Accessed 30 August 2017)
-
Process Validation: General Principles and Practices. United States Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation Research, Center for Veterinary Medicine; Available at: http://www.fda.gov/downloads/drugs/guidances/ucm070336.pdf. (Accessed 30 August 2017)
-
-
-
-
127
-
-
84880045776
-
“Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy
-
Preece, D., Williams, S.B., Lam, R., et al. “Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ 6 (2013), 216–224, 10.1002/ase.1345.
-
(2013)
Anat Sci Educ
, vol.6
, pp. 216-224
-
-
Preece, D.1
Williams, S.B.2
Lam, R.3
-
128
-
-
85027097921
-
Cost-benefit analysis of three-dimensional craniofacial models for midfacial distraction: a pilot study
-
Rogers-Vizena, C.R., Sporn, S.F., Daniels, K.M., et al. Cost-benefit analysis of three-dimensional craniofacial models for midfacial distraction: a pilot study. Cleft Palate Craniofac J 54 (2016), 612–617, 10.1597/15-281.
-
(2016)
Cleft Palate Craniofac J
, vol.54
, pp. 612-617
-
-
Rogers-Vizena, C.R.1
Sporn, S.F.2
Daniels, K.M.3
-
129
-
-
84960184183
-
3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability
-
Biglino, G., Capelli, C., Wray, J., et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open, 5, 2015, e007165, 10.1136/bmjopen-2014-007165.
-
(2015)
BMJ Open
, vol.5
, pp. e007165
-
-
Biglino, G.1
Capelli, C.2
Wray, J.3
-
130
-
-
84946947258
-
NIH 3D Print Exchange
-
National Institutes of Health; Available at: (Accessed 30 August 2017)
-
NIH 3D Print Exchange. National Institutes of Health; Available at: http://3dprint.nih.gov. (Accessed 30 August 2017)
-
-
-
|