메뉴 건너뛰기




Volumn 46, Issue 5, 2014, Pages 767-778

Bioprinting of artificial blood vessels: Current approaches towards a demanding goal

Author keywords

Artificial blood vessels; Bioprinting; Tissue engineering

Indexed keywords

POLYMER;

EID: 84907332980     PISSN: 10107940     EISSN: 1873734X     Source Type: Journal    
DOI: 10.1093/ejcts/ezu242     Document Type: Review
Times cited : (160)

References (78)
  • 1
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti J. Tissue engineering. Science 1993;260:920-6.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.2
  • 4
    • 0036680533 scopus 로고    scopus 로고
    • Tissue engineering: advances in in vitro cartilage generation
    • Risbud MV, Sittinger M. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 2002;20:351-6.
    • (2002) Trends Biotechnol , vol.20 , pp. 351-356
    • Risbud, M.V.1    Sittinger, M.2
  • 5
    • 84984985433 scopus 로고    scopus 로고
    • Tissue-engineered trachea using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model
    • Hou N. Tissue-engineered trachea using perfusion-decellularized technique and mesenchymal stem cells in a rabbit model. J Neurol Surg B 2012;73:438-43.
    • (2012) J Neurol Surg B , vol.73 , pp. 438-443
    • Hou, N.1
  • 6
    • 38949168818 scopus 로고    scopus 로고
    • Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart
    • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008;14:213-21.
    • (2008) Nat Med , vol.14 , pp. 213-221
    • Ott, H.C.1    Matthiesen, T.S.2    Goh, S.-K.3    Black, L.D.4    Kren, S.M.5    Netoff, T.I.6
  • 7
    • 77954533642 scopus 로고    scopus 로고
    • Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix
    • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16: 814-20.
    • (2010) Nat Med , vol.16 , pp. 814-820
    • Uygun, B.E.1    Soto-Gutierrez, A.2    Yagi, H.3    Izamis, M.-L.4    Guzzardi, M.A.5    Shulman, C.6
  • 8
    • 77956081242 scopus 로고    scopus 로고
    • Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded
    • Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 2010;16:2581-91.
    • (2010) Tissue Eng Part A , vol.16 , pp. 2581-2591
    • Price, A.P.1    England, K.A.2    Matson, A.M.3    Blazar, B.R.4    Panoskaltsis-Mortari, A.5
  • 9
    • 0034744711 scopus 로고    scopus 로고
    • Cellular materials as porous scaffolds for tissue engineering
    • Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 2001;46:273-82.
    • (2001) Prog Mater Sci , vol.46 , pp. 273-282
    • Freyman, T.M.1    Yannas, I.V.2    Gibson, L.J.3
  • 10
    • 2042542831 scopus 로고    scopus 로고
    • Formation of highly porous biodegradable scaffolds for tissue engineering
    • Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 2000;3:1-6.
    • (2000) Electron J Biotechnol , vol.3 , pp. 1-6
    • Mikos, A.G.1    Temenoff, J.S.2
  • 12
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29-39.
    • (2003) Eur Cell Mater , vol.5 , pp. 29-39
    • Sachlos, E.1    Czernuszka, J.T.2
  • 13
    • 84870253512 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012;64:18-23.
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 18-23
    • Hoffman, A.S.1
  • 14
    • 77952134687 scopus 로고    scopus 로고
    • Cell encapsulation using biopolymer gels for regenerative medicine
    • Hunt N, Grover L. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 2010;32:733-42.
    • (2010) Biotechnol Lett , vol.32 , pp. 733-742
    • Hunt, N.1    Grover, L.2
  • 15
    • 45249104205 scopus 로고    scopus 로고
    • Cell encapsulation in biodegradable hydrogels for tissue engineering applications
    • Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng 2008;14:149-65.
    • (2008) Tissue Eng , vol.14 , pp. 149-165
    • Nicodemus, G.D.1    Bryant, S.J.2
  • 16
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30:1587-95.
    • (2009) Biomaterials , vol.30 , pp. 1587-1595
    • Lee, W.1    Debasitis, J.C.2    Lee, V.K.3    Lee, J.-H.4    Fischer, K.5    Edminster, K.6
  • 19
    • 0033983594 scopus 로고    scopus 로고
    • Review: tissue engineering for regeneration of articular cartilage
    • Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21:431-40.
    • (2000) Biomaterials , vol.21 , pp. 431-440
    • Temenoff, J.S.1    Mikos, A.G.2
  • 22
    • 34247360061 scopus 로고    scopus 로고
    • Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes
    • Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 2007;36: 539-68.
    • (2007) Eur Biophys J , vol.36 , pp. 539-568
    • Schulz, R.M.1    Bader, A.2
  • 23
    • 79957713859 scopus 로고    scopus 로고
    • Vascularization is the key challenge in tissue engineering
    • Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011;63:300-11.
    • (2011) Adv Drug Deliv Rev , vol.63 , pp. 300-311
    • Novosel, E.C.1    Kleinhans, C.2    Kluger, P.J.3
  • 25
    • 0015444264 scopus 로고
    • Optimal branching structure of the vascular tree
    • Kamiya A, Togawa T. Optimal branching structure of the vascular tree. Bull Math Biophys 1972;34:431-8.
    • (1972) Bull Math Biophys , vol.34 , pp. 431-438
    • Kamiya, A.1    Togawa, T.2
  • 27
    • 17644392452 scopus 로고    scopus 로고
    • Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice
    • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 2005;5:1002.
    • (2005) Am J Transplant , vol.5 , pp. 1002
    • Tremblay, P.L.1    Hudon, V.2    Berthod, F.3    Germain, L.4    Auger, F.A.5
  • 28
    • 78649424873 scopus 로고    scopus 로고
    • Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants
    • Nunes SS, Krishnan L, Gerard CS, Dale JR, Maddie MA, Benton RL et al. Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 2010;17:557-67.
    • (2010) Microcirculation , vol.17 , pp. 557-567
    • Nunes, S.S.1    Krishnan, L.2    Gerard, C.S.3    Dale, J.R.4    Maddie, M.A.5    Benton, R.L.6
  • 29
    • 9644255525 scopus 로고    scopus 로고
    • The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review
    • Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 2005;26:1857-75.
    • (2005) Biomaterials , vol.26 , pp. 1857-1875
    • Kannan, R.Y.1    Salacinski, H.J.2    Sales, K.3    Butler, P.4    Seifalian, A.M.5
  • 30
    • 84870974621 scopus 로고    scopus 로고
    • Upcyte(R) microvascular endothelial cells repopulate decellularized scaffold
    • Scheller K. Upcyte(R) microvascular endothelial cells repopulate decellularized scaffold. Tissue Eng Part C Methods 2013;19:57-67.
    • (2013) Tissue Eng Part C Methods , vol.19 , pp. 57-67
    • Scheller, K.1
  • 31
    • 83455223684 scopus 로고    scopus 로고
    • Evaluation of cell-material interactions on newly designed, printable polymers for tissue engineering applications
    • Novosel EC, Meyer W, Klechowitz N, Krüger H, Wegener M, Walles H et al. Evaluation of cell-material interactions on newly designed, printable polymers for tissue engineering applications. Adv Eng Mater 2011;13: B467-75.
    • (2011) Adv Eng Mater , vol.13 , pp. B467-B475
    • Novosel, E.C.1    Meyer, W.2    Klechowitz, N.3    Krüger, H.4    Wegener, M.5    Walles, H.6
  • 32
    • 4444314207 scopus 로고    scopus 로고
    • Three-dimensional tissue fabrication
    • Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev 2004;56:1635-47.
    • (2004) Adv Drug Deliv Rev , vol.56 , pp. 1635-1647
    • Tsang, V.L.1    Bhatia, S.N.2
  • 33
    • 78650267994 scopus 로고    scopus 로고
    • Bioprinting is coming of age: report from International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
    • Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication 2010;2:1-7.
    • (2010) Biofabrication , vol.2 , pp. 1-7
    • Guillemot, F.1    Mironov, V.2    Nakamura, M.3
  • 35
    • 85065220413 scopus 로고    scopus 로고
    • Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing
    • Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2011;2:119-54.
    • (2011) J Funct Biomater , vol.2 , pp. 119-154
    • Wüst, S.1    Müller, R.2    Hofmann, S.3
  • 36
    • 79958074853 scopus 로고    scopus 로고
    • Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
    • Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 2011;98B:160-70.
    • (2011) J Biomed Mater Res B Appl Biomater , vol.98B , pp. 160-170
    • Chang, C.C.1    Boland, E.D.2    Williams, S.K.3    Hoying, J.B.4
  • 37
    • 84885114334 scopus 로고    scopus 로고
    • Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting
    • Hoch E, Hirth T, Tovar GEM, Borchers K. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B 2013;1:5675-85.
    • (2013) J Mater Chem B , vol.1 , pp. 5675-5685
    • Hoch, E.1    Hirth, T.2    Tovar, G.E.M.3    Borchers, K.4
  • 38
    • 80053467532 scopus 로고    scopus 로고
    • Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering
    • Baudis S, Nehl F, Ligon SC, Nigisch A, Bergmeister H, Bernhard D et al. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomed Mater 2011;6:055003.
    • (2011) Biomed Mater , vol.6
    • Baudis, S.1    Nehl, F.2    Ligon, S.C.3    Nigisch, A.4    Bergmeister, H.5    Bernhard, D.6
  • 39
    • 82055185824 scopus 로고    scopus 로고
    • Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization
    • Engelhardt S, Hoch E, Borchers K, Meyer W, Krüger H, Tovar G et al. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization. Biofabrication 2011;3:025003.
    • (2011) Biofabrication , vol.3
    • Engelhardt, S.1    Hoch, E.2    Borchers, K.3    Meyer, W.4    Krüger, H.5    Tovar, G.6
  • 40
    • 84867069655 scopus 로고    scopus 로고
    • A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers
    • Bellan LM, Pearsall M, Cropek DM, Langer R. A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv Mater 2012;24:5187-91.
    • (2012) Adv Mater , vol.24 , pp. 5187-5191
    • Bellan, L.M.1    Pearsall, M.2    Cropek, D.M.3    Langer, R.4
  • 41
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11:768-74.
    • (2012) Nat Mater , vol.11 , pp. 768-774
    • Miller, J.S.1    Stevens, K.R.2    Yang, M.T.3    Baker, B.M.4    Nguyen, D.-H.T.5    Cohen, D.M.6
  • 42
    • 79959731599 scopus 로고    scopus 로고
    • Omnidirectional printing of 3D microvascular networks
    • Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater 2011;23:H178-83.
    • (2011) Adv Mater , vol.23 , pp. H178-H183
    • Wu, W.1    DeConinck, A.2    Lewis, J.A.3
  • 43
    • 77951604536 scopus 로고    scopus 로고
    • On-demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels
    • Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K et al. On-demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 2010;105:1178-86.
    • (2010) Biotechnol Bioeng , vol.105 , pp. 1178-1186
    • Lee, W.1    Lee, V.2    Polio, S.3    Keegan, P.4    Lee, J.H.5    Fischer, K.6
  • 44
    • 65649152928 scopus 로고    scopus 로고
    • Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology
    • Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang J. Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym 2009;24:249-65.
    • (2009) J Bioact Compat Polym , vol.24 , pp. 249-265
    • Li, S.1    Xiong, Z.2    Wang, X.3    Yan, Y.4    Liu, H.5    Zhang, J.6
  • 45
    • 77955280239 scopus 로고    scopus 로고
    • Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)
    • Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2010;2:014111-119.
    • (2010) Biofabrication , vol.2
    • Wu, P.K.1    Ringeisen, B.R.2
  • 46
    • 77955275038 scopus 로고    scopus 로고
    • Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
    • Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010;31:7250-6.
    • (2010) Biomaterials , vol.31 , pp. 7250-7256
    • Guillotin, B.1    Souquet, A.2    Catros, S.3    Duocastella, M.4    Pippenger, B.5    Bellance, S.6
  • 47
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30:6221-7.
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 49
    • 84872579892 scopus 로고    scopus 로고
    • Soft Polymers for building up small and smallest blood supplying systems by stereolithography
    • Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H. Soft Polymers for building up small and smallest blood supplying systems by stereolithography. J Funct Biomater 2012;3:257-68.
    • (2012) J Funct Biomater , vol.3 , pp. 257-268
    • Meyer, W.1    Engelhardt, S.2    Novosel, E.3    Elling, B.4    Wegener, M.5    Krüger, H.6
  • 51
    • 59549085365 scopus 로고    scopus 로고
    • Ink jet three-dimensional digital fabrication for biological tissue manufacturing: analysis of alginate microgel beads produced by ink jet droplets for three dimensional tissue fabrication
    • Nakamura M, Nishiyama Y, Henmi C, Iwanaga S, Nakagawa H. Ink jet three-dimensional digital fabrication for biological tissue manufacturing: analysis of alginate microgel beads produced by ink jet droplets for three dimensional tissue fabrication. J Imaging Sci Technol 2008;52:1-16.
    • (2008) J Imaging Sci Technol , vol.52 , pp. 1-16
    • Nakamura, M.1    Nishiyama, Y.2    Henmi, C.3    Iwanaga, S.4    Nakagawa, H.5
  • 52
    • 65549089737 scopus 로고    scopus 로고
    • Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology
    • Nishiyama Y, Nakamura M, Henmi C, Yamaguchi K, Mochizuki S, Nakagawa H et al. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J Biomech Eng 2009;131:1-6.
    • (2009) J Biomech Eng , vol.131 , pp. 1-6
    • Nishiyama, Y.1    Nakamura, M.2    Henmi, C.3    Yamaguchi, K.4    Mochizuki, S.5    Nakagawa, H.6
  • 53
    • 20344367770 scopus 로고    scopus 로고
    • Layer-by-layer printing of cells and its application to tissue engineering
    • Kesari P, Xu T, Boland T. Layer-by-layer printing of cells and its application to tissue engineering. Nanoscale Mater Sci Biol Med 2005;845:111-7.
    • (2005) Nanoscale Mater Sci Biol Med , vol.845 , pp. 111-117
    • Kesari, P.1    Xu, T.2    Boland, T.3
  • 54
    • 84868158132 scopus 로고    scopus 로고
    • Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes
    • Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 2012;109: 3152-60.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 3152-3160
    • Xu, C.1    Chai, W.2    Huang, Y.3    Markwald, R.R.4
  • 59
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010;31:6173-81.
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 61
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30:5910-7.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 62
    • 84880908737 scopus 로고    scopus 로고
    • Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels
    • Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 2013;135:91011.
    • (2013) J Biomech Eng , vol.135 , pp. 91011
    • Yu, Y.1    Zhang, Y.2    Martin, J.A.3    Ozbolat, I.T.4
  • 63
    • 84877736127 scopus 로고    scopus 로고
    • Characterization of printable cellular micro-fluidic channels for tissue engineering
    • Zhang Y, Yu Y, Chen H, Ozbolat IT. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 2013;5:025004.
    • (2013) Biofabrication , vol.5
    • Zhang, Y.1    Yu, Y.2    Chen, H.3    Ozbolat, I.T.4
  • 64
    • 84938066460 scopus 로고    scopus 로고
    • Direct bioprinting of vessel-like tubular microfluidic channels
    • Zhang Y, Yu Y, Ozbolat IT. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 2013;4:021001-1-021001-7.
    • (2013) J Nanotechnol Eng Med , vol.4
    • Zhang, Y.1    Yu, Y.2    Ozbolat, I.T.3
  • 65
    • 34249806021 scopus 로고    scopus 로고
    • Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
    • Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 2007;7:720-5.
    • (2007) Lab Chip , vol.7 , pp. 720-725
    • Golden, A.P.1    Tien, J.2
  • 68
    • 84879108124 scopus 로고    scopus 로고
    • In vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application
    • Abdi S, Choi J, Lee J, Lim H, Lee C, Kim J et al. In vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application. Tissue Eng Regen Med 2012;9:1-9.
    • (2012) Tissue Eng Regen Med , vol.9 , pp. 1-9
    • Abdi, S.1    Choi, J.2    Lee, J.3    Lim, H.4    Lee, C.5    Kim, J.6
  • 69
    • 21844454450 scopus 로고    scopus 로고
    • Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents
    • Khattak SF, Bhatia SR, Roberts SC. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng 2005;11:974-83.
    • (2005) Tissue Eng , vol.11 , pp. 974-983
    • Khattak, S.F.1    Bhatia, S.R.2    Roberts, S.C.3
  • 70
    • 36549084987 scopus 로고    scopus 로고
    • Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro
    • Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 2008; 1187:42-51.
    • (2008) Brain Res , vol.1187 , pp. 42-51
    • Thonhoff, J.R.1    Lou, D.I.2    Jordan, P.M.3    Zhao, X.4    Wu, P.5
  • 72
    • 0347379846 scopus 로고    scopus 로고
    • Temporal and spatial modulation of Rho GTPases during in vitro formation of capillary vascular network: adherens junctions and myosin light chain as targets of Rac1 and RhoA
    • Cascone I, Giraudo E, Caccavari F, Napione L, Bertotti E, Collard JG et al. Temporal and spatial modulation of Rho GTPases during in vitro formation of capillary vascular network: adherens junctions and myosin light chain as targets of Rac1 and RhoA. J Biol Chem 2003;278:50702-13.
    • (2003) J Biol Chem , vol.278 , pp. 50702-50713
    • Cascone, I.1    Giraudo, E.2    Caccavari, F.3    Napione, L.4    Bertotti, E.5    Collard, J.G.6
  • 73
    • 0035121532 scopus 로고    scopus 로고
    • Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness
    • Korff T, Kimmina S, Martiny-Baron G, Augustin HG. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 2001;15:447-57.
    • (2001) FASEB J , vol.15 , pp. 447-457
    • Korff, T.1    Kimmina, S.2    Martiny-Baron, G.3    Augustin, H.G.4
  • 74
    • 0242456268 scopus 로고    scopus 로고
    • Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival
    • Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D'Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 2003;264:275-88.
    • (2003) Dev Biol , vol.264 , pp. 275-288
    • Darland, D.C.1    Massingham, L.J.2    Smith, S.R.3    Piek, E.4    Saint-Geniez, M.5    D'Amore, P.A.6
  • 75
    • 33947198867 scopus 로고    scopus 로고
    • Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents
    • Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F. Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents. J Macromol Sci Part A 2007;44:547-57.
    • (2007) J Macromol Sci Part A , vol.44 , pp. 547-557
    • Schuster, M.1    Turecek, C.2    Kaiser, B.3    Stampfl, J.4    Liska, R.5    Varga, F.6
  • 76
    • 78650301445 scopus 로고    scopus 로고
    • Biomatrices and biomaterials for future developments of bioprinting and biofabrication
    • Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2010;2:014110-116.
    • (2010) Biofabrication , vol.2
    • Nakamura, M.1    Iwanaga, S.2    Henmi, C.3    Arai, K.4    Nishiyama, Y.5
  • 78
    • 84877140172 scopus 로고    scopus 로고
    • Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering
    • Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthcare Mater 2013;2:777-83.
    • (2013) Adv Healthcare Mater , vol.2 , pp. 777-783
    • Luo, Y.1    Lode, A.2    Gelinsky, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.