-
1
-
-
78751524102
-
Bioreactors in tissue engineering
-
Plunkett N, O'Brien FJ. Bioreactors in tissue engineering. Technol Health Care. 2011;19:55-69. doi: 10.3233/THC-2011-0605.
-
(2011)
Technol Health Care
, vol.19
, pp. 55-69
-
-
Plunkett, N.1
O'Brien, F.J.2
-
2
-
-
84893749436
-
The infuence of a spatiotempo-ral 3D environment on endothelial cell differentiation of human induced pluripotent stem cells
-
Zhang S, Dutton JR, Su L, Zhang J, Ye L. The infuence of a spatiotempo-ral 3D environment on endothelial cell differentiation of human induced pluripotent stem cells. Biomaterials. 2014;35:3786-3793. doi: 10.1016/j. biomaterials.2014.01.037.
-
(2014)
Biomaterials
, vol.35
, pp. 3786-3793
-
-
Zhang, S.1
Dutton, J.R.2
Su, L.3
Zhang, J.4
Ye, L.5
-
3
-
-
34548847271
-
The outgrowth of the nerve fber as a mode of protoplasmic movement
-
Harrison RG. The outgrowth of the nerve fber as a mode of protoplasmic movement. J Exp Zool. 1959;142:5-73.
-
(1959)
J Exp Zool
, vol.142
, pp. 5-73
-
-
Harrison, R.G.1
-
4
-
-
84895473350
-
Cardiac tissue engineering: State of the art
-
Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114:354-367. doi: 10.1161/ CIRCRESAHA.114.300522.
-
(2014)
Circ Res
, vol.114
, pp. 354-367
-
-
Hirt, M.N.1
Hansen, A.2
Eschenhagen, T.3
-
5
-
-
70649097097
-
A non-invasive thin flm sensor for monitoring oxygen tension during in vitro cell culture
-
Thomas PC, Halter M, Tona A, Raghavan SR, Plant AL, Forry SP. A non-invasive thin flm sensor for monitoring oxygen tension during in vitro cell culture. Anal Chem. 2009;81:9239-9246. doi: 10.1021/ac9013379.
-
(2009)
Anal Chem
, vol.81
, pp. 9239-9246
-
-
Thomas, P.C.1
Halter, M.2
Tona, A.3
Raghavan, S.R.4
Plant, A.L.5
Forry, S.P.6
-
6
-
-
84876704168
-
Engineering of functional, perfusable 3D microvascular networks on a chip
-
Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489-1500. doi: 10.1039/c3lc41320a.
-
(2013)
Lab Chip
, vol.13
, pp. 1489-1500
-
-
Kim, S.1
Lee, H.2
Chung, M.3
Jeon, N.L.4
-
7
-
-
82755189086
-
A simple elastic membrane-based microfuidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress
-
Gao X, Zhang X, Tong H, Lin B, Qin J. A simple elastic membrane-based microfuidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis. 2011;32:3431-3436. doi: 10.1002/elps.201100237.
-
(2011)
Electrophoresis
, vol.32
, pp. 3431-3436
-
-
Gao, X.1
Zhang, X.2
Tong, H.3
Lin, B.4
Qin, J.5
-
8
-
-
84922608523
-
Microfuidic devices for construction of contractile skeletal muscle microtis-sues
-
Shimizu K, Araki H, Sakata K, Tonomura W, Hashida M, Konishi S. Microfuidic devices for construction of contractile skeletal muscle microtis-sues. J Biosci Bioeng. 2015;119:212-216. doi: 10.1016/j.jbiosc.2014.07.003.
-
(2015)
J Biosci Bioeng
, vol.119
, pp. 212-216
-
-
Shimizu, K.1
Araki, H.2
Sakata, K.3
Tonomura, W.4
Hashida, M.5
Konishi, S.6
-
9
-
-
84857944649
-
Engineers are from PDMS-land, Biologists are from Polystyrenia
-
Berthier E, Young EW, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip. 2012;12:1224-1237. doi: 10.1039/c2lc20982a.
-
(2012)
Lab Chip
, vol.12
, pp. 1224-1237
-
-
Berthier, E.1
Young, E.W.2
Beebe, D.3
-
10
-
-
84882240631
-
Microfuidic heart on a chip for higher throughput pharmacological studies
-
Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfuidic heart on a chip for higher throughput pharmacological studies. Lab Chip. 2013;13:3599-3608. doi: 10.1039/c3lc50350j.
-
(2013)
Lab Chip
, vol.13
, pp. 3599-3608
-
-
Agarwal, A.1
Goss, J.A.2
Cho, A.3
McCain, M.L.4
Parker, K.K.5
-
11
-
-
77951884924
-
A multi-layer microfuidic device for effcient culture and analysis of renal tubular cells
-
Jang KJ, Suh KY. A multi-layer microfuidic device for effcient culture and analysis of renal tubular cells. Lab Chip. 2010;10:36-42. doi: 10.1039/b907515a.
-
(2010)
Lab Chip
, vol.10
, pp. 36-42
-
-
Jang, K.J.1
Suh, K.Y.2
-
12
-
-
35348827791
-
Development of a renal microchip for in vitro distal tubule models
-
Baudoin R, Griscom L, Monge M, Legallais C, Leclerc E. Development of a renal microchip for in vitro distal tubule models. Biotechnol Prog. 2007;23:1245-1253. doi: 10.1021/bp0603513.
-
(2007)
Biotechnol Prog
, vol.23
, pp. 1245-1253
-
-
Baudoin, R.1
Griscom, L.2
Monge, M.3
Legallais, C.4
Leclerc, E.5
-
13
-
-
84859635020
-
Analysis of transcriptomic and proteomic profles demonstrates improved Madin-Darby canine kidney cell function in a renal microfuidic biochip
-
Snouber LC, Letourneur F, Chafey P, Broussard C, Monge M, Legallais C, Leclerc E. Analysis of transcriptomic and proteomic profles demonstrates improved Madin-Darby canine kidney cell function in a renal microfuidic biochip. Biotechnol Prog. 2012;28:474-484. doi: 10.1002/btpr.743.
-
(2012)
Biotechnol Prog
, vol.28
, pp. 474-484
-
-
Snouber, L.C.1
Letourneur, F.2
Chafey, P.3
Broussard, C.4
Monge, M.5
Legallais, C.6
Leclerc, E.7
-
14
-
-
84882590738
-
Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
-
Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5:1119-1129. doi: 10.1039/c3ib40049b.
-
(2013)
Integr Biol (Camb)
, vol.5
, pp. 1119-1129
-
-
Jang, K.J.1
Mehr, A.P.2
Hamilton, G.A.3
McPartlin, L.A.4
Chung, S.5
Suh, K.Y.6
Ingber, D.E.7
-
15
-
-
69249095795
-
Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity
-
Mahler GJ, Esch MB, Glahn RP, Shuler ML. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng. 2009;104:193-205. doi: 10.1002/bit.22366.
-
(2009)
Biotechnol Bioeng
, vol.104
, pp. 193-205
-
-
Mahler, G.J.1
Esch, M.B.2
Glahn, R.P.3
Shuler, M.L.4
-
16
-
-
84882627623
-
Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation
-
Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb). 2013;5:1130-1140. doi: 10.1039/c3ib40126j.
-
(2013)
Integr Biol (Camb)
, vol.5
, pp. 1130-1140
-
-
Kim, H.J.1
Ingber, D.E.2
-
17
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662-1668. doi: 10.1126/science.1188302.
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
Matthews, B.D.2
Mammoto, A.3
Montoya-Zavala, M.4
Hsin, H.Y.5
Ingber, D.E.6
-
18
-
-
71449092208
-
Pulmonary tissue engineering using dual-compartment polymer scaffolds with integrated vascular tree
-
Fritsche CS, Simsch O, Weinberg EJ, Orrick B, Stamm C, Kaazempur-Mofrad MR, Borenstein JT, Hetzer R, Vacanti JP. Pulmonary tissue engineering using dual-compartment polymer scaffolds with integrated vascular tree. Int J Artif Organs. 2009;32:701-710.
-
(2009)
Int J Artif Organs
, vol.32
, pp. 701-710
-
-
Fritsche, C.S.1
Simsch, O.2
Weinberg, E.J.3
Orrick, B.4
Stamm, C.5
Kaazempur-Mofrad, M.R.6
Borenstein, J.T.7
Hetzer, R.8
Vacanti, J.P.9
-
19
-
-
80053895684
-
Epithelium damage and protection during reopening of occluded airways in a physiologic microfuidic pulmonary airway model
-
Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama S. Epithelium damage and protection during reopening of occluded airways in a physiologic microfuidic pulmonary airway model. Biomed Microdevices. 2011;13:731-742. doi: 10.1007/s10544-011-9543-5.
-
(2011)
Biomed Microdevices
, vol.13
, pp. 731-742
-
-
Tavana, H.1
Zamankhan, P.2
Christensen, P.J.3
Grotberg, J.B.4
Takayama, S.5
-
20
-
-
67749115964
-
Evaluation of a microfuidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human
-
Chao P, Maguire T, Novik E, Cheng KC, Yarmush ML. Evaluation of a microfuidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol. 2009;78:625-632. doi: 10.1016/j.bcp.2009.05.013.
-
(2009)
Biochem Pharmacol
, vol.78
, pp. 625-632
-
-
Chao, P.1
Maguire, T.2
Novik, E.3
Cheng, K.C.4
Yarmush, M.L.5
-
21
-
-
84881563382
-
Metabolic characterization of primary rat hepatocytes cultivated in parallel microfuidic biochips
-
Legendre A, Baudoin R, Alberto G, Paullier P, Naudot M, Bricks T, Brocheton J, Jacques S, Cotton J, Leclerc E. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfuidic biochips. J Pharm Sci. 2013;102:3264-3276. doi: 10.1002/jps.23466.
-
(2013)
J Pharm Sci
, vol.102
, pp. 3264-3276
-
-
Legendre, A.1
Baudoin, R.2
Alberto, G.3
Paullier, P.4
Naudot, M.5
Bricks, T.6
Brocheton, J.7
Jacques, S.8
Cotton, J.9
Leclerc, E.10
-
22
-
-
84856376823
-
Zonation related function and ubiquitination regulation in human hepatocellular carcinoma cells in dynamic vs. Static culture conditions
-
Cheng S, Prot JM, Leclerc E, Bois FY. Zonation related function and ubiquitination regulation in human hepatocellular carcinoma cells in dynamic vs. static culture conditions. BMC Genomics. 2012;13:54. doi: 10.1186/1471-2164-13-54.
-
(2012)
BMC Genomics
, vol.13
, pp. 54
-
-
Cheng, S.1
Prot, J.M.2
Leclerc, E.3
Bois, F.Y.4
-
23
-
-
0037420747
-
Formation of steady-state oxygen gradients in vitro: Application to liver zonation
-
Allen JW, Bhatia SN. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng. 2003;82:253-262. doi: 10.1002/bit.10569.
-
(2003)
Biotechnol Bioeng
, vol.82
, pp. 253-262
-
-
Allen, J.W.1
Bhatia, S.N.2
-
24
-
-
34547581758
-
An artifcial liver sinusoid with a microfuidic endothelial-like barrier for primary hepatocyte culture
-
Lee PJ, Hung PJ, Lee LP. An artifcial liver sinusoid with a microfuidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97:1340-1346. doi: 10.1002/bit.21360.
-
(2007)
Biotechnol Bioeng
, vol.97
, pp. 1340-1346
-
-
Lee, P.J.1
Hung, P.J.2
Lee, L.P.3
-
25
-
-
80051623004
-
Ischemia/re-perfusion injury of primary porcine cardiomyocytes in a low-shear mi-crofuidic culture and analysis device
-
Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D. Ischemia/re-perfusion injury of primary porcine cardiomyocytes in a low-shear mi-crofuidic culture and analysis device. Analyst. 2011;136:3519-3526. doi: 10.1039/c0an00845a.
-
(2011)
Analyst
, vol.136
, pp. 3519-3526
-
-
Khanal, G.1
Chung, K.2
Solis-Wever, X.3
Johnson, B.4
Pappas, D.5
-
26
-
-
77956575158
-
Microfuidic cardiac cell culture model (μCCCM)
-
Giridharan GA, Nguyen MD, Estrada R, Parichehreh V, Hamid T, Ismahil MA, Prabhu SD, Sethu P. Microfuidic cardiac cell culture model (μCCCM). Anal Chem. 2010;82:7581-7587. doi: 10.1021/ac1012893.
-
(2010)
Anal Chem
, vol.82
, pp. 7581-7587
-
-
Giridharan, G.A.1
Nguyen, M.D.2
Estrada, R.3
Parichehreh, V.4
Hamid, T.5
Ismahil, M.A.6
Prabhu, S.D.7
Sethu, P.8
-
27
-
-
84861482079
-
Muscle on a chip: In vitro contractility assays for smooth and striated muscle
-
Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods. 2012;65:126-135. doi: 10.1016/j. vascn.2012.04.001.
-
(2012)
J Pharmacol Toxicol Methods
, vol.65
, pp. 126-135
-
-
Grosberg, A.1
Nesmith, A.P.2
Goss, J.A.3
Brigham, M.D.4
McCain, M.L.5
Parker, K.K.6
-
28
-
-
1142293800
-
The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors
-
Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog. 2004;20:338-345. doi: 10.1021/bp034077d.
-
(2004)
Biotechnol Prog
, vol.20
, pp. 338-345
-
-
Sin, A.1
Chin, K.C.2
Jamil, M.F.3
Kostov, Y.4
Rao, G.5
Shuler, M.L.6
-
29
-
-
1842814047
-
Incorporation of 3T3-L1 cells to mimic bioac-cumulation in a microscale cell culture analog device for toxicity studies
-
Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioac-cumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog. 2004;20:590-597. doi: 10.1021/bp034238d.
-
(2004)
Biotechnol Prog
, vol.20
, pp. 590-597
-
-
Viravaidya, K.1
Shuler, M.L.2
-
30
-
-
84866975219
-
Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation
-
Park SH, Sim W Y, Min BH, Yang SS, Khademhosseini A, Kaplan DL. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One. 2012;7:e46689. doi: 10.1371/journal.pone.0046689.
-
(2012)
PLoS One
, vol.7
, pp. e46689
-
-
Park, S.H.1
Sim, W.Y.2
Min, B.H.3
Yang, S.S.4
Khademhosseini, A.5
Kaplan, D.L.6
-
31
-
-
78651406874
-
Patterning os-teogenesis by inducible gene expression in microfuidic culture systems
-
Zhang Y, Gazit Z, Pelled G, Gazit D, Vunjak-Novakovic G. Patterning os-teogenesis by inducible gene expression in microfuidic culture systems. Integr Biol (Camb). 2011;3:39-47. doi: 10.1039/c0ib00053a.
-
(2011)
Integr Biol (Camb)
, vol.3
, pp. 39-47
-
-
Zhang, Y.1
Gazit, Z.2
Pelled, G.3
Gazit, D.4
Vunjak-Novakovic, G.5
-
32
-
-
84901823942
-
Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro
-
Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, Collins JJ, Ingber DE. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11:663-669. doi: 10.1038/ nmeth.2938.
-
(2014)
Nat Methods
, vol.11
, pp. 663-669
-
-
Torisawa, Y.S.1
Spina, C.S.2
Mammoto, T.3
Mammoto, A.4
Weaver, J.C.5
Tat, T.6
Collins, J.J.7
Ingber, D.E.8
-
33
-
-
72049098211
-
Integration and application of vitrifed collagen in multilayered microfu-idic devices for corneal microtissue culture
-
Puleo CM, McIntosh Ambrose W, Takezawa T, Elisseeff J, Wang TH. Integration and application of vitrifed collagen in multilayered microfu-idic devices for corneal microtissue culture. Lab Chip. 2009;9:3221-3227. doi: 10.1039/b908332d.
-
(2009)
Lab Chip
, vol.9
, pp. 3221-3227
-
-
Puleo, C.M.1
McIntosh Ambrose, W.2
Takezawa, T.3
Elisseeff, J.4
Wang, T.H.5
-
34
-
-
46649087122
-
Characterization of microfuidic human epidermal keratinocyte culture
-
O'Neill AT, Monteiro-Riviere NA, Walker GM. Characterization of microfuidic human epidermal keratinocyte culture. Cytotechnology. 2008;56:197-207. doi: 10.1007/s10616-008-9149-9.
-
(2008)
Cytotechnology
, vol.56
, pp. 197-207
-
-
O'Neill, A.T.1
Monteiro-Riviere, N.A.2
Walker, G.M.3
-
35
-
-
9144257910
-
Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
-
Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices. 2004;6:269-278. doi: 10.1023/B:BMMD.0000048559.29932.27.
-
(2004)
Biomed Microdevices
, vol.6
, pp. 269-278
-
-
Shin, M.1
Matsuda, K.2
Ishii, O.3
Terai, H.4
Kaazempur-Mofrad, M.5
Borenstein, J.6
Detmar, M.7
Vacanti, J.P.8
-
36
-
-
84882249388
-
Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfuidic device
-
van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfuidic device. Lab Chip. 2013;13:3562-3568. doi: 10.1039/c3lc50435b.
-
(2013)
Lab Chip
, vol.13
, pp. 3562-3568
-
-
Van Der Meer, A.D.1
Orlova, V.V.2
Ten Dijke, P.3
Van Den Berg, A.4
Mummery, C.L.5
-
37
-
-
84875765118
-
Electrofuidic pressure sensor embedded microfuidic device: A study of endothelial cells under hydrostatic pressure and shear stress combinations
-
Liu MC, Shih HC, Wu JG, Weng TW, Wu CY, Lu JC, Tung YC. Electrofuidic pressure sensor embedded microfuidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip. 2013;13:1743-1753. doi: 10.1039/c3lc41414k.
-
(2013)
Lab Chip
, vol.13
, pp. 1743-1753
-
-
Liu, M.C.1
Shih, H.C.2
Wu, J.G.3
Weng, T.W.4
Wu, C.Y.5
Lu, J.C.6
Tung, Y.C.7
-
38
-
-
84879892445
-
Glia co-culture with neurons in microfuidic platforms promotes the formation and stabilization of synaptic contacts
-
Shi M, Majumdar D, Gao Y, Brewer BM, Goodwin CR, McLean JA, Li D, Webb DJ. Glia co-culture with neurons in microfuidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip. 2013;13:3008-3021. doi: 10.1039/c3lc50249j.
-
(2013)
Lab Chip
, vol.13
, pp. 3008-3021
-
-
Shi, M.1
Majumdar, D.2
Gao, Y.3
Brewer, B.M.4
Goodwin, C.R.5
McLean, J.A.6
Li, D.7
Webb, D.J.8
-
39
-
-
84886523472
-
Neuromuscular junction in a microfuidic device
-
Park HS, Liu S, McDonald J, Thakor N, Yang IH. Neuromuscular junction in a microfuidic device. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2833-2835. doi: 10.1109/EMBC.2013.6610130.
-
(2013)
Conf Proc IEEE Eng Med Biol Soc
, vol.2013
, pp. 2833-2835
-
-
Park, H.S.1
Liu, S.2
McDonald, J.3
Thakor, N.4
Yang, I.H.5
-
40
-
-
79961022877
-
The effect of astrocytes on the induction of barrier properties in aortic endothelial cells
-
Shayan G, Shuler ML, Lee KH. The effect of astrocytes on the induction of barrier properties in aortic endothelial cells. Biotechnol Prog. 2011;27:1137-1145. doi: 10.1002/btpr.620.
-
(2011)
Biotechnol Prog
, vol.27
, pp. 1137-1145
-
-
Shayan, G.1
Shuler, M.L.2
Lee, K.H.3
-
41
-
-
84860366574
-
Characterization of a microfuidic in vitro model of the blood-brain barrier (μBBB)
-
Booth R, Kim H. Characterization of a microfuidic in vitro model of the blood-brain barrier (μBBB). Lab Chip. 2012;12:1784-1792. doi: 10.1039/ c2lc40094d.
-
(2012)
Lab Chip
, vol.12
, pp. 1784-1792
-
-
Booth, R.1
Kim, H.2
-
42
-
-
84857696896
-
A biophysical indicator of vaso-occlusive risk in sickle cell disease
-
Wood DK, Soriano A, Mahadevan L, Higgins JM, Bhatia SN. A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci Transl Med. 2012;4:123ra26. doi: 10.1126/scitranslmed.3002738.
-
(2012)
Sci Transl Med
, vol.4
, pp. 123ra26
-
-
Wood, D.K.1
Soriano, A.2
Mahadevan, L.3
Higgins, J.M.4
Bhatia, S.N.5
-
43
-
-
84905754409
-
Microfuidic organs-on-chips
-
Bhatia SN, Ingber DE. Microfuidic organs-on-chips. Nat Biotechnol. 2014;32:760-772. doi: 10.1038/nbt.2989.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 760-772
-
-
Bhatia, S.N.1
Ingber, D.E.2
-
44
-
-
77957672244
-
Microfuidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species
-
Cheah LT, Dou YH, Seymour AM, Dyer CE, Haswell SJ, Wadhawan JD, Greenman J. Microfuidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species. Lab Chip. 2010;10:2720-2726. doi: 10.1039/c004910g.
-
(2010)
Lab Chip
, vol.10
, pp. 2720-2726
-
-
Cheah, L.T.1
Dou, Y.H.2
Seymour, A.M.3
Dyer, C.E.4
Haswell, S.J.5
Wadhawan, J.D.6
Greenman, J.7
-
45
-
-
84880346720
-
Microfuidics embedded within extracellular matrix to defne vascular architectures and pattern diffusive gradients
-
Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfuidics embedded within extracellular matrix to defne vascular architectures and pattern diffusive gradients. Lab Chip. 2013;13:3246-3252. doi: 10.1039/ c3lc50493j.
-
(2013)
Lab Chip
, vol.13
, pp. 3246-3252
-
-
Baker, B.M.1
Trappmann, B.2
Stapleton, S.C.3
Toro, E.4
Chen, C.S.5
-
46
-
-
84876872941
-
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro
-
Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A. 2013;110:6712-6717. doi: 10.1073/ pnas.1221526110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 6712-6717
-
-
Nguyen, D.H.1
Stapleton, S.C.2
Yang, M.T.3
Cha, S.S.4
Choi, C.K.5
Galie, P.A.6
Chen, C.S.7
-
47
-
-
84870672834
-
Tubeless microfu-idic angiogenesis assay with three-dimensional endothelial-lined microvessels
-
Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless microfu-idic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34:1471-1477. doi: 10.1016/j. biomaterials.2012.11.005.
-
(2013)
Biomaterials
, vol.34
, pp. 1471-1477
-
-
Bischel, L.L.1
Young, E.W.2
Mader, B.R.3
Beebe, D.J.4
-
48
-
-
84879896556
-
A microfuidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays
-
Hsu YH, Moya ML, Hughes CC, George SC, Lee AP. A microfuidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip. 2013;13:2990-2998. doi: 10.1039/ c3lc50424g.
-
(2013)
Lab Chip
, vol.13
, pp. 2990-2998
-
-
Hsu, Y.H.1
Moya, M.L.2
Hughes, C.C.3
George, S.C.4
Lee, A.P.5
-
49
-
-
84875775289
-
A modular approach to create a neurovascular unit-on-a-chip
-
Achyuta AK, Conway AJ, Crouse RB, Bannister EC, Lee RN, Katnik CP, Behensky AA, Cuevas J, Sundaram SS. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 2013;13:542-553. doi: 10.1039/ c2lc41033h.
-
(2013)
Lab Chip
, vol.13
, pp. 542-553
-
-
Achyuta, A.K.1
Conway, A.J.2
Crouse, R.B.3
Bannister, E.C.4
Lee, R.N.5
Katnik, C.P.6
Behensky, A.A.7
Cuevas, J.8
Sundaram, S.S.9
-
50
-
-
84874235737
-
High-fdelity tissue engineering of patient-specifc auricles for reconstruction of pediatric microtia and other auricular deformities
-
Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, Pramanik S, Brown BN, Ryu WS, Bonassar LJ, Spector JA. High-fdelity tissue engineering of patient-specifc auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8:e56506. doi: 10.1371/journal.pone.0056506.
-
(2013)
PLoS One
, vol.8
, pp. e56506
-
-
Reiffel, A.J.1
Kafka, C.2
Hernandez, K.A.3
Popa, S.4
Perez, J.L.5
Zhou, S.6
Pramanik, S.7
Brown, B.N.8
Ryu, W.S.9
Bonassar, L.J.10
Spector, J.A.11
-
51
-
-
33745786636
-
Direct freeform fabrication of seeded hydrogels in arbitrary geometries
-
Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12:1325-1335. doi: 10.1089/ten.2006.12.1325.
-
(2006)
Tissue Eng
, vol.12
, pp. 1325-1335
-
-
Cohen, D.L.1
Malone, E.2
Lipson, H.3
Bonassar, L.J.4
-
52
-
-
60549108145
-
Organ printing: Tissue spheroids as building blocks
-
Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164-2174. doi: 10.1016/j.biomaterials.2008.12.084.
-
(2009)
Biomaterials
, vol.30
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
Forgacs, G.4
Drake, C.J.5
Markwald, R.R.6
-
53
-
-
84879103253
-
3D printed bionic ears
-
Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. 3D printed bionic ears. Nano Lett. 2013;13:2634-2639. doi: 10.1021/nl4007744.
-
(2013)
Nano Lett
, vol.13
, pp. 2634-2639
-
-
Mannoor, M.S.1
Jiang, Z.2
James, T.3
Kong, Y.L.4
Malatesta, K.A.5
Soboyejo, W.O.6
Verma, N.7
Gracias, D.H.8
McAlpine, M.C.9
-
54
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910-5917. doi: 10.1016/j.biomaterials.2009.06.034.
-
(2009)
Biomaterials
, vol.30
, pp. 5910-5917
-
-
Norotte, C.1
Marga, F.S.2
Niklason, L.E.3
Forgacs, G.4
-
55
-
-
0003422388
-
-
4th ed. New York: W. H. Freeman
-
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. 4th ed. New York: W. H. Freeman; 2000.
-
(2000)
Molecular Cell Biology
-
-
Lodish, H.1
Berk, A.2
Zipursky, S.L.3
Matsudaira, P.4
Baltimore, D.5
Darnell, J.6
-
56
-
-
84958836208
-
3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement
-
Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ, Steigner M, Mitsouras D, Blankstein R. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2016;10:28-36. doi: 10.1016/j.jcct.2015.12.004.
-
(2016)
J Cardiovasc Comput Tomogr
, vol.10
, pp. 28-36
-
-
Ripley, B.1
Kelil, T.2
Cheezum, M.K.3
Goncalves, A.4
Di Carli, M.F.5
Rybicki, F.J.6
Steigner, M.7
Mitsouras, D.8
Blankstein, R.9
-
57
-
-
84875008763
-
Bio-ink for on-demand printing of living cells
-
Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG; Marc in het Panhuis. Bio-ink for on-demand printing of living cells. Biomater. Sci. 2013;1:224-230.
-
(2013)
Biomater. Sci
, vol.1
, pp. 224-230
-
-
Ferris, C.J.1
Gilmore, K.J.2
Beirne, S.3
McCallum, D.4
Wallace, G.G.5
-
58
-
-
84885332219
-
Bio-ink properties and printability for extrusion printing living cells
-
Chung JHY, Nafcy S, Yue Z, Kapsa R, Quigley A, Moulton SE, Wallace GG. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 2013;1:763-773.
-
(2013)
Biomater. Sci
, vol.1
, pp. 763-773
-
-
Chung, J.H.Y.1
Nafcy, S.2
Yue, Z.3
Kapsa, R.4
Quigley, A.5
Moulton, S.E.6
Wallace, G.G.7
-
59
-
-
77956633477
-
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering
-
Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028-2034. doi: 10.1016/j.actbio.2009.12.033.
-
(2010)
Acta Biomater
, vol.6
, pp. 2028-2034
-
-
Yeong, W.Y.1
Sudarmadji, N.2
Yu, H.Y.3
Chua, C.K.4
Leong, K.F.5
Venkatraman, S.S.6
Boey, Y.C.7
Tan, L.P.8
-
60
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121-6130. doi: 10.1016/j.biomaterials.2010.04.050.
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
61
-
-
84926622049
-
Recent advances in 3D printing of biomaterials
-
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4.
-
(2015)
J Biol Eng
, vol.9
, pp. 4
-
-
Chia, H.N.1
Wu, B.M.2
-
62
-
-
84901049672
-
3D-printed biopolymers for tissue engineering application
-
Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F. 3D-printed biopolymers for tissue engineering application. Int J Polym Sci. 2014;2014:13.
-
(2014)
Int J Polym Sci
, vol.2014
, pp. 13
-
-
Li, X.1
Cui, R.2
Sun, L.3
Aifantis, K.E.4
Fan, Y.5
Feng, Q.6
Cui, F.7
Watari, F.8
-
63
-
-
84894629998
-
3D Printing for Tissue Engineering
-
Richards DJ, Tan Y, Jia J, Yao H, Mei Y. 3D Printing for Tissue Engineering. Isr J Chem. 2013;53:805-814.
-
(2013)
Isr J Chem
, vol.53
, pp. 805-814
-
-
Richards, D.J.1
Tan, Y.2
Jia, J.3
Yao, H.4
Mei, Y.5
-
64
-
-
84894620937
-
Bioprinting and tissue engineering: Recent advances and future perspectives
-
Seliktar D, Dikovsky D, Napadensky E. Bioprinting and tissue engineering: recent advances and future perspectives. Isr J Chem. 2013;53:795-804.
-
(2013)
Isr J Chem
, vol.53
, pp. 795-804
-
-
Seliktar, D.1
Dikovsky, D.2
Napadensky, E.3
-
65
-
-
84933049575
-
Current progress in 3D printing for cardiovascular tissue engineering
-
Mosadegh B, Xiong G, Dunham S, Min JK. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015;10:034002. doi: 10.1088/1748-6041/10/3/034002.
-
(2015)
Biomed Mater
, vol.10
, pp. 034002
-
-
Mosadegh, B.1
Xiong, G.2
Dunham, S.3
Min, J.K.4
-
67
-
-
84866103813
-
Piezoelectric nanoribbons for monitoring cellular deformations
-
Nguyen TD, Deshmukh N, Nagarah JM, Kramer T, Purohit PK, Berry MJ, McAlpine MC. Piezoelectric nanoribbons for monitoring cellular deformations. Nat Nanotechnol. 2012;7:587-593. doi: 10.1038/nnano.2012.112.
-
(2012)
Nat Nanotechnol
, vol.7
, pp. 587-593
-
-
Nguyen, T.D.1
Deshmukh, N.2
Nagarah, J.M.3
Kramer, T.4
Purohit, P.K.5
Berry, M.J.6
McAlpine, M.C.7
-
68
-
-
84978325992
-
Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function
-
Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater. 2016;15:679-685. doi: 10.1038/nmat4590.
-
(2016)
Nat Mater
, vol.15
, pp. 679-685
-
-
Feiner, R.1
Engel, L.2
Fleischer, S.3
Malki, M.4
Gal, I.5
Shapira, A.6
Shacham-Diamand, Y.7
Dvir, T.8
-
69
-
-
0000762972
-
Metal deposition from a supported metal flm using an excimer laser
-
Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal flm using an excimer laser. J Appl Phys. 1986;60:1538-1539.
-
(1986)
J Appl Phys
, vol.60
, pp. 1538-1539
-
-
Bohandy, J.1
Kim, B.F.2
Adrian, F.J.3
-
70
-
-
1542741004
-
Application of laser printing to mammalian cells
-
Barron JA, Ringeisen BR, Kim H, Spargo BJ and Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453-454:383-387.
-
(2004)
Thin Solid Films
, vol.453-454
, pp. 383-387
-
-
Barron, J.A.1
Ringeisen, B.R.2
Kim, H.3
Spargo, B.J.4
Chrisey, D.B.5
-
71
-
-
0033885899
-
3-Dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes
-
Campagnola PJ, Delguidice DM, Epling GA, Hoffacker KD, Howell AR, Pitts JD, Goodman SL. 3-Dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes. Macromolecules. 2000;33:1511-1513.
-
(2000)
Macromolecules
, vol.33
, pp. 1511-1513
-
-
Campagnola, P.J.1
Delguidice, D.M.2
Epling, G.A.3
Hoffacker, K.D.4
Howell, A.R.5
Pitts, J.D.6
Goodman, S.L.7
-
72
-
-
47049105930
-
High-throughput production of single-cell microparticles using an inkjet printing technology
-
Xu T, Kincaid H, Atala A, Yoo JJ. High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng. 2008;130:021017-021017.
-
(2008)
J Manuf Sci Eng
, vol.130
, pp. 21017
-
-
Xu, T.1
Kincaid, H.2
Atala, A.3
Yoo, J.J.4
-
73
-
-
0033956139
-
DNA-printing: Utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports
-
Goldmann T, Gonzalez JS. DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods. 2000;42:105-110.
-
(2000)
J Biochem Biophys Methods
, vol.42
, pp. 105-110
-
-
Goldmann, T.1
Gonzalez, J.S.2
-
74
-
-
33645883539
-
Viability and electrophysiology of neural cell structures generated by the inkjet printing method
-
Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580-3588. doi: 10.1016/j. biomaterials.2006.01.048.
-
(2006)
Biomaterials
, vol.27
, pp. 3580-3588
-
-
Xu, T.1
Gregory, C.A.2
Molnar, P.3
Cui, X.4
Jalota, S.5
Bhaduri, S.B.6
Boland, T.7
-
75
-
-
77955689253
-
Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
-
Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106:963-969. doi: 10.1002/bit.22762.
-
(2010)
Biotechnol Bioeng
, vol.106
, pp. 963-969
-
-
Cui, X.1
Dean, D.2
Ruggeri, Z.M.3
Boland, T.4
-
76
-
-
84929224464
-
M. in het Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing
-
Kirchmajer DM, Gorkin III R; M. in het Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B. 2015;3:4105-4117.
-
(2015)
J Mater Chem B.
, vol.3
, pp. 4105-4117
-
-
Kirchmajer, D.M.1
Gorkin, R.2
-
77
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-785. doi: 10.1038/nbt.2958.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
78
-
-
0033902564
-
Submicron multi-photon free-form fabrication of proteins and polymers: Studies of reaction effciencies and applications in sustained release
-
Pitts JD, Campagnola PJ, Epling GA, Goodman SL. Submicron multi-photon free-form fabrication of proteins and polymers: studies of reaction effciencies and applications in sustained release. Macromolecules. 2000;33:1514-1523.
-
(2000)
Macromolecules
, vol.33
, pp. 1514-1523
-
-
Pitts, J.D.1
Campagnola, P.J.2
Epling, G.A.3
Goodman, S.L.4
-
79
-
-
42749097087
-
Three-dimensional micropatterning of bioac-tive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration
-
Lee SH, Moon JJ, West JL. Three-dimensional micropatterning of bioac-tive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials. 2008;29:2962-2968. doi: 10.1016/j. biomaterials.2008.04.004.
-
(2008)
Biomaterials
, vol.29
, pp. 2962-2968
-
-
Lee, S.H.1
Moon, J.J.2
West, J.L.3
-
80
-
-
0030736545
-
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
-
Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22:132-134.
-
(1997)
Opt Lett
, vol.22
, pp. 132-134
-
-
Maruo, S.1
Nakamura, O.2
Kawata, S.3
-
81
-
-
4143102416
-
Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs
-
LaFratta CN, Baldacchini T, Farrer RA, Fourkas JT, Teich MC, Saleh BEA, Naughton MJ. Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs. J Phys Chem B. 2004;108:11256-11258.
-
(2004)
J Phys Chem B
, vol.108
, pp. 11256-11258
-
-
LaFratta, C.N.1
Baldacchini, T.2
Farrer, R.A.3
Fourkas, J.T.4
Teich, M.C.5
Saleh, B.E.A.6
Naughton, M.J.7
-
82
-
-
23744447254
-
Catalytic three-dimensional protein architectures
-
Allen R, Nielson R, Wise DD, Shear JB. Catalytic three-dimensional protein architectures. Anal Chem. 2005;77:5089-5095. doi: 10.1021/ac0507892.
-
(2005)
Anal Chem
, vol.77
, pp. 5089-5095
-
-
Allen, R.1
Nielson, R.2
Wise, D.D.3
Shear, J.B.4
-
83
-
-
77957714394
-
Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels
-
Hoffmann JC, West JL. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter. 2010;6:5056-5063.
-
(2010)
Soft Matter
, vol.6
, pp. 5056-5063
-
-
Hoffmann, J.C.1
West, J.L.2
-
84
-
-
79251599292
-
Controlled architectural and chemotac-tic studies of 3D cell migration
-
Tayalia P, Mazur E, Mooney DJ. Controlled architectural and chemotac-tic studies of 3D cell migration. Biomaterials. 2011;32:2634-2641. doi: 10.1016/j.biomaterials.2010.12.019.
-
(2011)
Biomaterials
, vol.32
, pp. 2634-2641
-
-
Tayalia, P.1
Mazur, E.2
Mooney, D.J.3
-
85
-
-
80053052185
-
Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels
-
Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater. 2011;10:799-806. doi: 10.1038/ nmat3101.
-
(2011)
Nat Mater
, vol.10
, pp. 799-806
-
-
Wylie, R.G.1
Ahsan, S.2
Aizawa, Y.3
Maxwell, K.L.4
Morshead, C.M.5
Shoichet, M.S.6
-
86
-
-
0036674246
-
New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen
-
Pitts JD, Howell AR, Taboada R, Banerjee I, Wang J, Goodman SL, Campagnola PJ. New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen. Photochem Photobiol. 2002;76:135-144.
-
(2002)
Photochem Photobiol
, vol.76
, pp. 135-144
-
-
Pitts, J.D.1
Howell, A.R.2
Taboada, R.3
Banerjee, I.4
Wang, J.5
Goodman, S.L.6
Campagnola, P.J.7
-
87
-
-
20144383177
-
Multiphoton excited fabrication of collagen matrixes cross-linked by a modifed benzophenone dimer: Bioactiv-ity and enzymatic degradation
-
Basu S, Cunningham LP, Pins GD, Bush KA, Taboada R, Howell AR, Wang J, Campagnola PJ. Multiphoton excited fabrication of collagen matrixes cross-linked by a modifed benzophenone dimer: bioactiv-ity and enzymatic degradation. Biomacromolecules. 2005;6:1465-1474. doi: 10.1021/bm049258y.
-
(2005)
Biomacromolecules
, vol.6
, pp. 1465-1474
-
-
Basu, S.1
Cunningham, L.P.2
Pins, G.D.3
Bush, K.A.4
Taboada, R.5
Howell, A.R.6
Wang, J.7
Campagnola, P.J.8
-
88
-
-
9744262435
-
Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via mul-tiphoton excited cross-linking
-
Basu S, Wolgemuth CW, Campagnola PJ. Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via mul-tiphoton excited cross-linking. Biomacromolecules. 2004;5:2347-2357. doi: 10.1021/bm049707u.
-
(2004)
Biomacromolecules
, vol.5
, pp. 2347-2357
-
-
Basu, S.1
Wolgemuth, C.W.2
Campagnola, P.J.3
-
89
-
-
5444272528
-
Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation
-
Basu S, Campagnola PJ. Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J Biomed Mater Res A. 2004;71:359-368. doi: 10.1002/jbm.a.30175.
-
(2004)
J Biomed Mater Res A
, vol.71
, pp. 359-368
-
-
Basu, S.1
Campagnola, P.J.2
-
90
-
-
33745588338
-
Multiphoton excited fabricated nano and micro patterned extracellular matrix proteins direct cellular morphology
-
Pins GD, Bush KA, Cunningham LP, Campagnola PJ. Multiphoton excited fabricated nano and micro patterned extracellular matrix proteins direct cellular morphology. J Biomed Mater Res A. 2006;78:194-204. doi: 10.1002/jbm.a.30680.
-
(2006)
J Biomed Mater Res A
, vol.78
, pp. 194-204
-
-
Pins, G.D.1
Bush, K.A.2
Cunningham, L.P.3
Campagnola, P.J.4
-
91
-
-
33748936511
-
Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach
-
Cunningham LP, Veilleux MP, Campagnola PJ. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt Express. 2006;14:8613-8621.
-
(2006)
Opt Express
, vol.14
, pp. 8613-8621
-
-
Cunningham, L.P.1
Veilleux, M.P.2
Campagnola, P.J.3
-
92
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
Peltola SM, Melchels FP, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268-280. doi: 10.1080/07853890701881788.
-
(2008)
Ann Med
, vol.40
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.2
Grijpma, D.W.3
Kellomäki, M.4
-
93
-
-
84923364223
-
Cryogel-PCL combination scaffolds for bone tissue repair
-
Van Rie J, Declercq H, Van Hoorick J, Dierick M, Van Hoorebeke L, Cornelissen R, Thienpont H, Dubruel P, Van Vlierberghe S. Cryogel-PCL combination scaffolds for bone tissue repair. J Mater Sci Mater Med. 2015;26:123. doi: 10.1007/s10856-015-5465-8.
-
(2015)
J Mater Sci Mater Med
, vol.26
, pp. 123
-
-
Van Rie, J.1
Declercq, H.2
Van Hoorick, J.3
Dierick, M.4
Van Hoorebeke, L.5
Cornelissen, R.6
Thienpont, H.7
Dubruel, P.8
Van Vlierberghe, S.9
-
94
-
-
84876231038
-
Three-dimensional printing of soy protein scaffolds for tissue regeneration
-
Chien KB, Makridakis E, Shah RN. Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods. 2013;19:417-426. doi: 10.1089/ten.TEC.2012.0383.
-
(2013)
Tissue Eng Part C Methods
, vol.19
, pp. 417-426
-
-
Chien, K.B.1
Makridakis, E.2
Shah, R.N.3
-
95
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124-3130. doi: 10.1002/adma. 201305506.
-
(2014)
Adv Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
96
-
-
84902312015
-
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
-
Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273-277. doi: 10.1038/nature13233.
-
(2014)
Nature
, vol.510
, pp. 273-277
-
-
Chong, J.J.1
Yang, X.2
Don, C.W.3
-
97
-
-
84874323190
-
In vitro engineering of vascularized tissue surrogates
-
Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, Okano T. In vitro engineering of vascularized tissue surrogates. Sci Rep. 2013;3:1316. doi: 10.1038/srep01316.
-
(2013)
Sci Rep
, vol.3
, pp. 1316
-
-
Sakaguchi, K.1
Shimizu, T.2
Horaguchi, S.3
Sekine, H.4
Yamato, M.5
Umezu, M.6
Okano, T.7
-
98
-
-
84899520611
-
Direct-write bioprinting of cell-laden meth-acrylated gelatin hydrogels
-
Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A. Direct-write bioprinting of cell-laden meth-acrylated gelatin hydrogels. Biofabrication. 2014;6:024105. doi: 10.1088/1758-5082/6/2/024105.
-
(2014)
Biofabrication
, vol.6
, pp. 024105
-
-
Bertassoni, L.E.1
Cardoso, J.C.2
Manoharan, V.3
Cristino, A.L.4
Bhise, N.S.5
Araujo, W.A.6
Zorlutuna, P.7
Vrana, N.E.8
Ghaemmaghami, A.M.9
Dokmeci, M.R.10
Khademhosseini, A.11
-
99
-
-
84887016191
-
The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
-
Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35:49-62. doi: 10.1016/j.biomaterials.2013.09.078.
-
(2014)
Biomaterials
, vol.35
, pp. 49-62
-
-
Billiet, T.1
Gevaert, E.2
De Schryver, T.3
Cornelissen, M.4
Dubruel, P.5
-
100
-
-
84944406931
-
Peptide bioink: Self-assembling nanofbrous scaffolds for three-dimensional or-ganotypic cultures
-
Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA. Peptide bioink: self-assembling nanofbrous scaffolds for three-dimensional or-ganotypic cultures. Nano Lett. 2015;15:6919-6925. doi: 10.1021/acs. nanolett.5b02859.
-
(2015)
Nano Lett
, vol.15
, pp. 6919-6925
-
-
Loo, Y.1
Lakshmanan, A.2
Ni, M.3
Toh, L.L.4
Wang, S.5
Hauser, C.A.6
-
101
-
-
84922185482
-
Biofabrication of tissue constructs by 3D bioprint-ing of cell-laden microcarriers
-
Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA. Biofabrication of tissue constructs by 3D bioprint-ing of cell-laden microcarriers. Biofabrication. 2014;6:035020. doi: 10.1088/1758-5082/6/3/035020.
-
(2014)
Biofabrication
, vol.6
, pp. 035020
-
-
Levato, R.1
Visser, J.2
Planell, J.A.3
Engel, E.4
Malda, J.5
Mateos-Timoneda, M.A.6
-
102
-
-
84875634407
-
Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: A blueprint for regeneration
-
Hanson KP, Jung JP, Tran QA, Hsu SP, Iida R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE, Ogle BM. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2013;19:1132-1143. doi: 10.1089/ten.TEA.2012.0316.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 1132-1143
-
-
Hanson, K.P.1
Jung, J.P.2
Tran, Q.A.3
Hsu, S.P.4
Iida, R.5
Ajeti, V.6
Campagnola, P.J.7
Eliceiri, K.W.8
Squirrell, J.M.9
Lyons, G.E.10
Ogle, B.M.11
-
103
-
-
84951299075
-
An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices
-
Jung JP, Hu D, Domian IJ, Ogle BM. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep. 2015;5:18705. doi: 10.1038/ srep18705.
-
(2015)
Sci Rep
, vol.5
, pp. 18705
-
-
Jung, J.P.1
Hu, D.2
Domian, I.J.3
Ogle, B.M.4
-
104
-
-
84901923061
-
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
-
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ ncomms4935.
-
(2014)
Nat Commun
, vol.5
, pp. 3935
-
-
Pati, F.1
Jang, J.2
Ha, D.H.3
Won Kim, S.4
Rhie, J.W.5
Shim, J.H.6
Kim, D.H.7
Cho, D.W.8
-
106
-
-
84962886228
-
State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering [published online ahead of print April 11, 2016]
-
Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering [published online ahead of print April 11, 2016]. Ann Biomed Eng. doi: 10.1007/s10439-016-1607-5. http://link.springer.com/ article/10.1007%2Fs10439-016-1607-5.
-
Ann Biomed Eng
-
-
Duan, B.1
-
107
-
-
84924527252
-
3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells
-
Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, Taralp A, Koc B. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng. 2015;112:811-821. doi: 10.1002/ bit.25493.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 811-821
-
-
Kucukgul, C.1
Ozler, S.B.2
Inci, I.3
Karakas, E.4
Irmak, S.5
Gozuacik, D.6
Taralp, A.7
Koc, B.8
-
108
-
-
69649100202
-
Human microvasculature fabrication using thermal inkjet printing technology
-
Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30:6221-6227. doi: 10.1016/j.biomaterials.2009.07.056.
-
(2009)
Biomaterials
, vol.30
, pp. 6221-6227
-
-
Cui, X.1
Boland, T.2
-
109
-
-
84939125652
-
Coaxial nozzle-assisted 3D bioprint-ing with built-in microchannels for nutrients delivery
-
Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprint-ing with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203-215. doi: 10.1016/j.biomaterials.2015.05.031.
-
(2015)
Biomaterials
, vol.61
, pp. 203-215
-
-
Gao, Q.1
He, Y.2
Fu, J.Z.3
Liu, A.4
Ma, L.5
-
110
-
-
84924351834
-
A hybrid bioprinting approach for scale-up tissue fabrication
-
Yu Y, Zhang Y, Ozbolat IT. A hybrid bioprinting approach for scale-up tissue fabrication. J Manuf Sci Eng. 2014;136:061013-061013.
-
(2014)
J Manuf Sci Eng
, vol.136
, pp. 61013
-
-
Yu, Y.1
Zhang, Y.2
Ozbolat, I.T.3
-
111
-
-
84893651437
-
Heart disease and stroke statistics-2014 update: A report from the American Heart Association
-
Go AS, Mozaffarian D, Roger VL, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 2014;129:e28-e292. doi: 10.1161/01. cir.0000441139.02102.80.
-
(2014)
Circulation
, vol.129
, pp. e28-e292
-
-
Go, A.S.1
Mozaffarian, D.2
Roger, V.L.3
-
112
-
-
0019127308
-
Study of non-muscle cells of the adult mammalian heart: A fne structural analysis and distribution
-
Nag AC. Study of non-muscle cells of the adult mammalian heart: a fne structural analysis and distribution. Cytobios. 1980;28:41-61.
-
(1980)
Cytobios
, vol.28
, pp. 41-61
-
-
Nag, A.C.1
-
114
-
-
84979680830
-
Bmi1 (+) cardiac progenitor cells contribute to myocardial repair following acute injury
-
Valiente-Alandi I, Albo-Castellanos C, Herrero D, Sanchez I, Bernad A. Bmi1 (+) cardiac progenitor cells contribute to myocardial repair following acute injury. Stem Cell Res Ther. 2016;7:100. doi: 10.1186/ s13287-016-0355-7.
-
(2016)
Stem Cell Res Ther
, vol.7
, pp. 100
-
-
Valiente-Alandi, I.1
Albo-Castellanos, C.2
Herrero, D.3
Sanchez, I.4
Bernad, A.5
-
115
-
-
82255175382
-
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial
-
Bolli R, Chugh AR, D'Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847-1857. doi: 10.1016/ S0140-6736(11)61590-0.
-
(2011)
Lancet
, vol.378
, pp. 1847-1857
-
-
Bolli, R.1
Chugh, A.R.2
D'Amario, D.3
-
116
-
-
84858019974
-
Intracoronary car-diosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial
-
Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E. Intracoronary car-diosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895-904. doi: 10.1016/S0140-6736(12)60195-0.
-
(2012)
Lancet
, vol.379
, pp. 895-904
-
-
Makkar, R.R.1
Smith, R.R.2
Cheng, K.3
Malliaras, K.4
Thomson, L.E.5
Berman, D.6
Czer, L.S.7
Marbán, L.8
Mendizabal, A.9
Johnston, P.V.10
Russell, S.D.11
Schuleri, K.H.12
Lardo, A.C.13
Gerstenblith, G.14
Marbán, E.15
-
117
-
-
84897052480
-
Cell therapy for cardiac repair-lessons from clinical trials
-
Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair-lessons from clinical trials. Nat Rev Cardiol. 2014;11:232-246. doi: 10.1038/nrcardio.2014.9.
-
(2014)
Nat Rev Cardiol
, vol.11
, pp. 232-246
-
-
Behfar, A.1
Crespo-Diaz, R.2
Terzic, A.3
Gersh, B.J.4
-
118
-
-
0038369093
-
Cellular cardiomyoplasty-cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure?
-
Reffelmann T, Kloner RA. Cellular cardiomyoplasty-cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res. 2003;58:358-368.
-
(2003)
Cardiovasc Res.
, vol.58
, pp. 358-368
-
-
Reffelmann, T.1
Kloner, R.A.2
-
119
-
-
84966399407
-
Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction
-
Santoso MR, Yang PC. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int. 2016;2016:4198790. doi: 10.1155/2016/4198790.
-
(2016)
Stem Cells Int
, vol.2016
, pp. 4198790
-
-
Santoso, M.R.1
Yang, P.C.2
-
120
-
-
0030853963
-
Three-dimensional reconstitution of embryonic cardiomyo-cytes in a collagen matrix: A new heart muscle model system
-
Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schäfer H, Bishopric N, Wakatsuki T, Elson EL. Three-dimensional reconstitution of embryonic cardiomyo-cytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11:683-694.
-
(1997)
FASEB J
, vol.11
, pp. 683-694
-
-
Eschenhagen, T.1
Fink, C.2
Remmers, U.3
Scholz, H.4
Wattchow, J.5
Weil, J.6
Zimmermann, W.7
Dohmen, H.H.8
Schäfer, H.9
Bishopric, N.10
Wakatsuki, T.11
Elson, E.L.12
-
121
-
-
84945276149
-
Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat in-farct model
-
Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, Tranquillo RT. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat in-farct model. Stem Cells Transl Med. 2015;4:1324-1332. doi: 10.5966/ sctm.2015-0044.
-
(2015)
Stem Cells Transl Med
, vol.4
, pp. 1324-1332
-
-
Wendel, J.S.1
Ye, L.2
Tao, R.3
Zhang, J.4
Zhang, J.5
Kamp, T.J.6
Tranquillo, R.T.7
-
122
-
-
84898484169
-
Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model
-
Wendel JS, Ye L, Zhang P, Tranquillo RT, Zhang JJ. Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model. Tissue Eng Part A. 2014;20:1325-1335. doi: 10.1089/ ten.TEA.2013.0312.
-
(2014)
Tissue Eng Part A
, vol.20
, pp. 1325-1335
-
-
Wendel, J.S.1
Ye, L.2
Zhang, P.3
Tranquillo, R.T.4
Zhang, J.J.5
-
123
-
-
80053604735
-
Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
-
Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32:9218-9230. doi: 10.1016/j. biomaterials.2011.08.071.
-
(2011)
Biomaterials
, vol.32
, pp. 9218-9230
-
-
Gaebel, R.1
Ma, N.2
Liu, J.3
Guan, J.4
Koch, L.5
Klopsch, C.6
Gruene, M.7
Toelk, A.8
Wang, W.9
Mark, P.10
Wang, F.11
Chichkov, B.12
Li, W.13
Steinhoff, G.14
-
124
-
-
83555177196
-
Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
-
Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter J P. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33:1782-1790. doi: 10.1016/j.biomaterials.2011.11.003.
-
(2012)
Biomaterials
, vol.33
, pp. 1782-1790
-
-
Gaetani, R.1
Doevendans, P.A.2
Metz, C.H.3
Alblas, J.4
Messina, E.5
Giacomello, A.6
Sluijter, J.P.7
-
125
-
-
84939161281
-
Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction
-
Gaetani R, Feyen DA, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PA, Sluijter JP. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339-348. doi: 10.1016/j.biomaterials.2015.05.005.
-
(2015)
Biomaterials
, vol.61
, pp. 339-348
-
-
Gaetani, R.1
Feyen, D.A.2
Verhage, V.3
Slaats, R.4
Messina, E.5
Christman, K.L.6
Giacomello, A.7
Doevendans, P.A.8
Sluijter, J.P.9
-
126
-
-
84901798498
-
Scaffolds for tissue engineering of cardiac valves
-
Jana S, Tefft BJ, Spoon DB, Simari RD. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014;10:2877-2893. doi: 10.1016/j. actbio.2014.03.014.
-
(2014)
Acta Biomater
, vol.10
, pp. 2877-2893
-
-
Jana, S.1
Tefft, B.J.2
Spoon, D.B.3
Simari, R.D.4
-
127
-
-
80053385791
-
Heart valve tissue engineering: Quo vadis?
-
Schoen FJ. Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol. 2011;22:698-705. doi: 10.1016/j.copbio.2011.01.004.
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 698-705
-
-
Schoen, F.J.1
-
128
-
-
84908247211
-
Prosthetic heart valves
-
Chambers J. Prosthetic heart valves. Int J Clin Pract. 2014;68:1227-1230. doi: 10.1111/ijcp.12309.
-
(2014)
Int J Clin Pract
, vol.68
, pp. 1227-1230
-
-
Chambers, J.1
-
129
-
-
84866055893
-
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
-
Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4:035005. doi: 10.1088/1758-5082/4/3/035005.
-
(2012)
Biofabrication
, vol.4
, pp. 035005
-
-
Hockaday, L.A.1
Kang, K.H.2
Colangelo, N.W.3
Cheung, P.Y.4
Duan, B.5
Malone, E.6
Wu, J.7
Girardi, L.N.8
Bonassar, L.J.9
Lipson, H.10
Chu, C.C.11
Butcher, J.T.12
-
130
-
-
84884211629
-
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255-1264. doi: 10.1002/jbm.a.34420.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
Butcher, J.T.4
-
131
-
-
84958559113
-
Revisiting cardiac cellular composition
-
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD. Revisiting cardiac cellular composition. Circ Res. 2016;118:400-9.
-
(2016)
Circ Res
, vol.118
, pp. 400-409
-
-
Pinto, A.R.1
Ilinykh, A.2
Ivey, M.J.3
Kuwabara, J.T.4
D'Antoni, M.L.5
Debuque, R.6
Chandran, A.7
Wang, L.8
Arora, K.9
Rosenthal, N.A.10
Tallquist, M.D.11
-
132
-
-
84964440193
-
3D bioprinting for tissue and organ fabrication [published online ahead of print April 28, 2016]
-
Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell'Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A. 3D bioprinting for tissue and organ fabrication [published online ahead of print April 28, 2016]. Ann Biomed Eng. doi: 10.1007/s10439-016-1612-8. http://link.springer.com/article/10.1007%2 Fs10439-016-1612-8.
-
Ann Biomed Eng
-
-
Zhang, Y.S.1
Yue, K.2
Aleman, J.3
Mollazadeh-Moghaddam, K.4
Bakht, S.M.5
Yang, J.6
Jia, W.7
Dell'Erba, V.8
Assawes, P.9
Shin, S.R.10
Dokmeci, M.R.11
Oklu, R.12
Khademhosseini, A.13
-
133
-
-
85040290621
-
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
-
Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758. doi: 10.1126/ sciadv.1500758.
-
(2015)
Sci Adv
, vol.1
, pp. e1500758
-
-
Hinton, T.J.1
Jallerat, Q.2
Palchesko, R.N.3
Park, J.H.4
Grodzicki, M.S.5
Shue, H.J.6
Ramadan, M.H.7
Hudson, A.R.8
Feinberg, A.W.9
-
134
-
-
33748929729
-
Tissue fusion and cell sorting in embryonic development and disease: Biomedical implications
-
Pérez-Pomares JM, Foty RA. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays. 2006;28:809-821. doi: 10.1002/bies.20442.
-
(2006)
Bioessays
, vol.28
, pp. 809-821
-
-
Pérez-Pomares, J.M.1
Foty, R.A.2
-
135
-
-
79952011307
-
Tissue engineering by self-assembly and bio-printing of living cells
-
Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication. 2010;2:022001. doi: 10.1088/1758-5082/2/2/022001.
-
(2010)
Biofabrication
, vol.2
, pp. 022001
-
-
Jakab, K.1
Norotte, C.2
Marga, F.3
Murphy, K.4
Vunjak-Novakovic, G.5
Forgacs, G.6
-
136
-
-
84920747271
-
Bioprocessing of tissues using cellular spheroids
-
Olsen TR. Bioprocessing of tissues using cellular spheroids. J Bioprocess Biotech. 2014;4:147.
-
(2014)
J Bioprocess Biotech
, vol.4
, pp. 147
-
-
Olsen, T.R.1
-
137
-
-
84887344291
-
Generation of co-culture spheroids as vascularisation units for bone tissue engineering
-
Walser R, Metzger W, Görg A, Pohlemann T, Menger MD, Laschke MW. Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur Cell Mater. 2013;26:222-233.
-
(2013)
Eur Cell Mater
, vol.26
, pp. 222-233
-
-
Walser, R.1
Metzger, W.2
Görg, A.3
Pohlemann, T.4
Menger, M.D.5
Laschke, M.W.6
-
138
-
-
79951580027
-
Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells
-
Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, Baek SH, Rhie JW, Kim BS. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011;32:2734-2747. doi: 10.1016/j.biomaterials.2010.12.035.
-
(2011)
Biomaterials
, vol.32
, pp. 2734-2747
-
-
Bhang, S.H.1
Cho, S.W.2
La, W.G.3
Lee, T.J.4
Yang, H.S.5
Sun, A.Y.6
Baek, S.H.7
Rhie, J.W.8
Kim, B.S.9
-
139
-
-
0000149372
-
The growth of cells on a transparent gel of reconstituted rat-tail collagen
-
Ehrmann RL, Gey GO. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst. 1956;16:1375-1403.
-
(1956)
J Natl Cancer Inst
, vol.16
, pp. 1375-1403
-
-
Ehrmann, R.L.1
Gey, G.O.2
-
140
-
-
84943327685
-
Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae
-
Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S. Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10:e0136681. doi: 10.1371/journal. pone.0136681.
-
(2015)
PLoS One
, vol.10
, pp. e0136681
-
-
Itoh, M.1
Nakayama, K.2
Noguchi, R.3
Kamohara, K.4
Furukawa, K.5
Uchihashi, K.6
Toda, S.7
Oyama, J.8
Node, K.9
Morita, S.10
-
141
-
-
84954077677
-
Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease
-
Noguchi R, Nakayama K, Itoh M, Kamohara K, Furukawa K, Oyama J, Node K, Morita S. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35:137-145. doi: 10.1016/j. healun.2015.06.001.
-
(2016)
J Heart Lung Transplant
, vol.35
, pp. 137-145
-
-
Noguchi, R.1
Nakayama, K.2
Itoh, M.3
Kamohara, K.4
Furukawa, K.5
Oyama, J.6
Node, K.7
Morita, S.8
|