메뉴 건너뛰기




Volumn 37, Issue 2, 2018, Pages 384-395

Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation

Author keywords

convolutional neural network; image super resolution; medical image segmentation; Shape prior

Indexed keywords

IMAGE ANALYSIS; IMAGE RESOLUTION; IMAGE SEGMENTATION; MEDICAL IMAGING; NEURAL NETWORKS;

EID: 85030790219     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2017.2743464     Document Type: Article
Times cited : (674)

References (49)
  • 1
    • 84919754597 scopus 로고    scopus 로고
    • What regularized auto-encoders learn from the data-generating distribution
    • G. Alain and Y. Bengio, "What regularized auto-encoders learn from the data-generating distribution, " J. Mach. Learn. Res., vol. 15, no. 1, pp. 3563-3593, 2014.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 3563-3593
    • Alain, G.1    Bengio, Y.2
  • 2
    • 84958955334 scopus 로고    scopus 로고
    • A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    • May
    • M. R. Avendi, A. Kheradvar, and H. Jafarkhani, "A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, " MedIA Image Anal., vol. 30, pp. 108-119, May 2016.
    • (2016) MedIA Image Anal. , vol.30 , pp. 108-119
    • Avendi, M.R.1    Kheradvar, A.2    Jafarkhani, H.3
  • 3
    • 85013271835 scopus 로고    scopus 로고
    • Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach
    • New York, NY, USA: Wiley, Feb.
    • M. R. Avendi, A. Kheradvar, and H. Jafarkhani, "Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach, " in Magnetic Resonance in Medicine. New York, NY, USA: Wiley, Feb. 2017, doi: 10. 1002/mrm. 26631.
    • (2017) Magnetic Resonance in Medicine
    • Avendi, M.R.1    Kheradvar, A.2    Jafarkhani, H.3
  • 4
    • 84942051259 scopus 로고    scopus 로고
    • A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
    • W. Bai et al., "A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion, " MedIA Image Anal., vol. 26, no. 1, pp. 133-145, 2015.
    • (2015) MedIA Image Anal. , vol.26 , Issue.1 , pp. 133-145
    • Bai, W.1
  • 5
    • 84880225856 scopus 로고    scopus 로고
    • A probabilistic patch-based label fusion model for multiatlas segmentation with registration refinement: Application to cardiac MR images
    • Jul.
    • W. Bai et al., "A probabilistic patch-based label fusion model for multiatlas segmentation with registration refinement: Application to cardiac MR images, " IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1302-1315, Jul. 2013.
    • (2013) IEEE Trans. Med. Imag. , vol.32 , Issue.7 , pp. 1302-1315
    • Bai, W.1
  • 6
    • 84870341707 scopus 로고    scopus 로고
    • Fast and fully automatic 3-D echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting
    • D. Barbosa et al., "Fast and fully automatic 3-D echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting, " Ultrasound Med. Biol., vol. 39, no. 1, pp. 89-101, 2013.
    • (2013) Ultrasound Med. Biol. , vol.39 , Issue.1 , pp. 89-101
    • Barbosa, D.1
  • 7
    • 84996552025 scopus 로고    scopus 로고
    • Topology aware fully convolutional networks for histology gland segmentation
    • A. BenTaieb and G. Hamarneh, "Topology aware fully convolutional networks for histology gland segmentation, " in Proc. Int. Conf. MICCAI, 2016, pp. 460-468.
    • (2016) Proc. Int. Conf. MICCAI , pp. 460-468
    • BenTaieb, A.1    Hamarneh, G.2
  • 8
    • 84963805370 scopus 로고    scopus 로고
    • Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography
    • Apr.
    • O. Bernard et al., "Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography, " IEEE Trans. Med. Imag., vol. 35, no. 4, pp. 967-977, Apr. 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.4 , pp. 967-977
    • Bernard, O.1
  • 9
    • 84887344821 scopus 로고    scopus 로고
    • Deep learning shape priors for object segmentation
    • Jun.
    • F. Chen, H. Yu, R. Hu, and X. Zeng, "Deep learning shape priors for object segmentation, " in Proc. IEEE CVPR, Jun. 2013, pp. 1870-1877.
    • (2013) Proc. IEEE CVPR , pp. 1870-1877
    • Chen, F.1    Yu, H.2    Hu, R.3    Zeng, X.4
  • 10
    • 84997796752 scopus 로고    scopus 로고
    • DCAN: Deep contour-aware networks for object instance segmentation from histology images
    • Feb.
    • H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P.-A. Heng, "DCAN: Deep contour-aware networks for object instance segmentation from histology images, " MedIA Image Anal., vol. 36, pp. 135-146, Feb. 2017.
    • (2017) MedIA Image Anal. , vol.36 , pp. 135-146
    • Chen, H.1    Qi, X.2    Yu, L.3    Dou, Q.4    Qin, J.5    Heng, P.-A.6
  • 11
    • 84996520815 scopus 로고    scopus 로고
    • Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images
    • H. Chen, Y. Zheng, J.-H. Park, P.-A. Heng, and S. K. Zhou, "Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images, " in Proc. Int. Conf. MICCAI, 2016, pp. 487-495.
    • (2016) Proc. Int. Conf. MICCAI , pp. 487-495
    • Chen, H.1    Zheng, Y.2    Park, J.-H.3    Heng, P.-A.4    Zhou, S.K.5
  • 12
  • 13
    • 0029326386 scopus 로고
    • Combining point distribution models with shape models based on finite element analysis
    • T. F. Cootes and C. J. Taylor, "Combining point distribution models with shape models based on finite element analysis, " Image Vis. Comput., vol. 13, no. 5, pp. 403-409, 1995.
    • (1995) Image Vis. Comput. , vol.13 , Issue.5 , pp. 403-409
    • Cootes, T.F.1    Taylor, C.J.2
  • 14
    • 0038321577 scopus 로고    scopus 로고
    • Hierarchical active shape models, using the wavelet transform
    • Mar.
    • C. Davatzikos, X. Tao, and D. Shen, "Hierarchical active shape models, using the wavelet transform, " IEEE Trans. Med. Imag., vol. 22, no. 3, pp. 414-423, Mar. 2003.
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.3 , pp. 414-423
    • Davatzikos, C.1    Tao, X.2    Shen, D.3
  • 15
    • 84893850283 scopus 로고    scopus 로고
    • Population-based studies of myocardial hypertrophy: High resolution cardiovascular magnetic resonance atlases improve statistical power
    • A. de Marvao et al., "Population-based studies of myocardial hypertrophy: High resolution cardiovascular magnetic resonance atlases improve statistical power, " J. Cardiovascular Magn. Reson., vol. 16, no. 1, p. 16, 2014.
    • (2014) J. Cardiovascular Magn. Reson. , vol.16 , Issue.1 , pp. 16
    • De Marvao, A.1
  • 16
    • 84990837045 scopus 로고    scopus 로고
    • Accelerating the super-resolution convolutional neural network
    • C. Dong, C. C. Loy, and X. Tang, "Accelerating the super-resolution convolutional neural network, " in Proc. ECCV, 2016, pp. 391-407.
    • (2016) Proc. ECCV , pp. 391-407
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 17
    • 84877746977 scopus 로고    scopus 로고
    • A generative model for parts-based object segmentation
    • S. Eslami and C. Williams, "A generative model for parts-based object segmentation, " in Proc. NIPS, 2012, pp. 100-107.
    • (2012) Proc. NIPS , pp. 100-107
    • Eslami, S.1    Williams, C.2
  • 19
    • 84990019747 scopus 로고    scopus 로고
    • Learning a predictable and generative vector representation for objects
    • R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, "Learning a predictable and generative vector representation for objects, " in Proc. ECCV, 2016, pp. 484-499.
    • (2016) Proc. ECCV , pp. 484-499
    • Girdhar, R.1    Fouhey, D.F.2    Rodriguez, M.3    Gupta, A.4
  • 20
    • 60649091348 scopus 로고    scopus 로고
    • Super-resolution in medical imaging
    • H. Greenspan, "Super-resolution in medical imaging, " Comput. J., vol. 52, no. 1, pp. 43-63, 2009.
    • (2009) Comput. J. , vol.52 , Issue.1 , pp. 43-63
    • Greenspan, H.1
  • 21
    • 84990854047 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution, " in Proc. ECCV, 2016, pp. 694-711.
    • (2016) Proc. ECCV , pp. 694-711
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 22
    • 84995784237 scopus 로고    scopus 로고
    • Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
    • Feb.
    • K. Kamnitsas et al., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, " MedIA Image Anal., vol. 36, pp. 61-78, Feb. 2017.
    • (2017) MedIA Image Anal. , vol.36 , pp. 61-78
    • Kamnitsas, K.1
  • 24
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. C. N. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data, " in Proc. ICML, vol. 1. 2001, pp. 282-289.
    • (2001) Proc. ICML , vol.1 , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 25
    • 84055198661 scopus 로고    scopus 로고
    • EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography
    • R. M. Lang et al., "EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography, " J. Amer. Soc. Echocardiogr., vol. 25, no. 1, pp. 1-46, 2012.
    • (2012) J. Amer. Soc. Echocardiogr. , vol.25 , Issue.1 , pp. 1-46
    • Lang, R.M.1
  • 27
    • 84986322564 scopus 로고    scopus 로고
    • Iterative instance segmentation
    • K. Li, B. Hariharan, and J. Malik, "Iterative instance segmentation, " in Proc. CVPR, 2016, pp. 3659-3667.
    • (2016) Proc. CVPR , pp. 3659-3667
    • Li, K.1    Hariharan, B.2    Malik, J.3
  • 29
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. CVPR, 2015, pp. 3431-3440.
    • (2015) Proc. CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 33
    • 85013178225 scopus 로고    scopus 로고
    • Stratified decision forests for accurate anatomical landmark localization in cardiac images
    • Jan.
    • O. Oktay et al., "Stratified decision forests for accurate anatomical landmark localization in cardiac images, " IEEE Trans. Med. Imag., vol. 36, no. 1, pp. 332-342, Jan. 2017.
    • (2017) IEEE Trans. Med. Imag. , vol.36 , Issue.1 , pp. 332-342
    • Oktay, O.1
  • 34
    • 84996536677 scopus 로고    scopus 로고
    • Multi-input cardiac image super-resolution using convolutional neural networks
    • O. Oktay et al., "Multi-input cardiac image super-resolution using convolutional neural networks, " in Proc. Int. Conf. MICCAI, 2016, pp. 246-254.
    • (2016) Proc. Int. Conf. MICCAI , pp. 246-254
    • Oktay, O.1
  • 35
    • 84958106591 scopus 로고    scopus 로고
    • UK Biobank's cardiovascular magnetic resonance protocol
    • S. E. Petersen et al., "UK Biobank's cardiovascular magnetic resonance protocol, " J. Cardiovascular Magn. Reson., vol. 18, no. 1, p. 8, 2016.
    • (2016) J. Cardiovascular Magn. Reson. , vol.18 , Issue.1 , pp. 8
    • Petersen, S.E.1
  • 36
    • 85020532120 scopus 로고    scopus 로고
    • Joint deep learning of foreground, background and shape for robust contextual segmentation
    • H. Ravishankar, S. Thiruvenkadam, R. Venkataramani, and V. Vaidya, "Joint deep learning of foreground, background and shape for robust contextual segmentation, " in Proc. IPMI, 2017, pp. 622-632.
    • (2017) Proc. IPMI , pp. 622-632
    • Ravishankar, H.1    Thiruvenkadam, S.2    Venkataramani, R.3    Vaidya, V.4
  • 38
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation, " in Proc. Int. Conf. MICCAI, 2015, pp. 234-241.
    • (2015) Proc. Int. Conf. MICCAI , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 39
    • 85007394364 scopus 로고    scopus 로고
    • Deep spectralbased shape features for Alzheimer's disease classification
    • M. Shakeri, H. Lombaert, S. Tripathi, and S. Kadoury, "Deep spectralbased shape features for Alzheimer's disease classification, " in Proc. SASHIMI, 2016, pp. 15-24.
    • (2016) Proc. SASHIMI , pp. 15-24
    • Shakeri, M.1    Lombaert, H.2    Tripathi, S.3    Kadoury, S.4
  • 40
    • 85005943809 scopus 로고    scopus 로고
    • VConv-DAE: Deep volumetric shape learning without object labels
    • A. Sharma, O. Grau, and M. Fritz, "VConv-DAE: Deep volumetric shape learning without object labels, " in Proc. ECCV Workshops, 2016, pp. 236-250.
    • (2016) Proc. ECCV Workshops , pp. 236-250
    • Sharma, A.1    Grau, O.2    Fritz, M.3
  • 41
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi et al., "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, " in Proc. CVPR, 2016, pp. 1874-1883.
    • (2016) Proc. CVPR , pp. 1874-1883
    • Shi, W.1
  • 43
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • A. Torralba and Y. Weiss, "Small codes and large image databases for recognition, " in Proc. CVPR, 2008, pp. 1-8.
    • (2008) Proc. CVPR , pp. 1-8
    • Torralba, A.1    Weiss, Y.2
  • 45
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3D brain image segmentation
    • Oct.
    • Z. Tu and X. Bai, "Auto-context and its application to high-level vision tasks and 3D brain image segmentation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1744-1757, Oct. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.10 , pp. 1744-1757
    • Tu, Z.1    Bai, X.2
  • 46
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Dec. 2010
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 47
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Apr.
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity, " IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 48
    • 84949636429 scopus 로고    scopus 로고
    • 3D shapenets: A deep representation for volumetric shapes
    • Z. Wu et al., "3D shapenets: A deep representation for volumetric shapes, " in Proc. CVPR, 2015, pp. 1912-1920.
    • (2015) Proc. CVPR , pp. 1912-1920
    • Wu, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.