-
1
-
-
84919754597
-
What regularized auto-encoders learn from the data-generating distribution
-
G. Alain and Y. Bengio, "What regularized auto-encoders learn from the data-generating distribution, " J. Mach. Learn. Res., vol. 15, no. 1, pp. 3563-3593, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 3563-3593
-
-
Alain, G.1
Bengio, Y.2
-
2
-
-
84958955334
-
A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
-
May
-
M. R. Avendi, A. Kheradvar, and H. Jafarkhani, "A combined deeplearning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, " MedIA Image Anal., vol. 30, pp. 108-119, May 2016.
-
(2016)
MedIA Image Anal.
, vol.30
, pp. 108-119
-
-
Avendi, M.R.1
Kheradvar, A.2
Jafarkhani, H.3
-
3
-
-
85013271835
-
Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach
-
New York, NY, USA: Wiley, Feb.
-
M. R. Avendi, A. Kheradvar, and H. Jafarkhani, "Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach, " in Magnetic Resonance in Medicine. New York, NY, USA: Wiley, Feb. 2017, doi: 10. 1002/mrm. 26631.
-
(2017)
Magnetic Resonance in Medicine
-
-
Avendi, M.R.1
Kheradvar, A.2
Jafarkhani, H.3
-
4
-
-
84942051259
-
A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
-
W. Bai et al., "A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion, " MedIA Image Anal., vol. 26, no. 1, pp. 133-145, 2015.
-
(2015)
MedIA Image Anal.
, vol.26
, Issue.1
, pp. 133-145
-
-
Bai, W.1
-
5
-
-
84880225856
-
A probabilistic patch-based label fusion model for multiatlas segmentation with registration refinement: Application to cardiac MR images
-
Jul.
-
W. Bai et al., "A probabilistic patch-based label fusion model for multiatlas segmentation with registration refinement: Application to cardiac MR images, " IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1302-1315, Jul. 2013.
-
(2013)
IEEE Trans. Med. Imag.
, vol.32
, Issue.7
, pp. 1302-1315
-
-
Bai, W.1
-
6
-
-
84870341707
-
Fast and fully automatic 3-D echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting
-
D. Barbosa et al., "Fast and fully automatic 3-D echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting, " Ultrasound Med. Biol., vol. 39, no. 1, pp. 89-101, 2013.
-
(2013)
Ultrasound Med. Biol.
, vol.39
, Issue.1
, pp. 89-101
-
-
Barbosa, D.1
-
7
-
-
84996552025
-
Topology aware fully convolutional networks for histology gland segmentation
-
A. BenTaieb and G. Hamarneh, "Topology aware fully convolutional networks for histology gland segmentation, " in Proc. Int. Conf. MICCAI, 2016, pp. 460-468.
-
(2016)
Proc. Int. Conf. MICCAI
, pp. 460-468
-
-
BenTaieb, A.1
Hamarneh, G.2
-
8
-
-
84963805370
-
Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography
-
Apr.
-
O. Bernard et al., "Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography, " IEEE Trans. Med. Imag., vol. 35, no. 4, pp. 967-977, Apr. 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.4
, pp. 967-977
-
-
Bernard, O.1
-
9
-
-
84887344821
-
Deep learning shape priors for object segmentation
-
Jun.
-
F. Chen, H. Yu, R. Hu, and X. Zeng, "Deep learning shape priors for object segmentation, " in Proc. IEEE CVPR, Jun. 2013, pp. 1870-1877.
-
(2013)
Proc. IEEE CVPR
, pp. 1870-1877
-
-
Chen, F.1
Yu, H.2
Hu, R.3
Zeng, X.4
-
10
-
-
84997796752
-
DCAN: Deep contour-aware networks for object instance segmentation from histology images
-
Feb.
-
H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P.-A. Heng, "DCAN: Deep contour-aware networks for object instance segmentation from histology images, " MedIA Image Anal., vol. 36, pp. 135-146, Feb. 2017.
-
(2017)
MedIA Image Anal.
, vol.36
, pp. 135-146
-
-
Chen, H.1
Qi, X.2
Yu, L.3
Dou, Q.4
Qin, J.5
Heng, P.-A.6
-
11
-
-
84996520815
-
Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images
-
H. Chen, Y. Zheng, J.-H. Park, P.-A. Heng, and S. K. Zhou, "Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images, " in Proc. Int. Conf. MICCAI, 2016, pp. 487-495.
-
(2016)
Proc. Int. Conf. MICCAI
, pp. 487-495
-
-
Chen, H.1
Zheng, Y.2
Park, J.-H.3
Heng, P.-A.4
Zhou, S.K.5
-
12
-
-
84996483314
-
3D U-Net: Learning dense volumetric segmentation from sparse annotation
-
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, "3D U-Net: Learning dense volumetric segmentation from sparse annotation, " in Proc. MICCAI, 2016, pp. 424-432.
-
(2016)
Proc. MICCAI
, pp. 424-432
-
-
Çiçek, O.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
13
-
-
0029326386
-
Combining point distribution models with shape models based on finite element analysis
-
T. F. Cootes and C. J. Taylor, "Combining point distribution models with shape models based on finite element analysis, " Image Vis. Comput., vol. 13, no. 5, pp. 403-409, 1995.
-
(1995)
Image Vis. Comput.
, vol.13
, Issue.5
, pp. 403-409
-
-
Cootes, T.F.1
Taylor, C.J.2
-
14
-
-
0038321577
-
Hierarchical active shape models, using the wavelet transform
-
Mar.
-
C. Davatzikos, X. Tao, and D. Shen, "Hierarchical active shape models, using the wavelet transform, " IEEE Trans. Med. Imag., vol. 22, no. 3, pp. 414-423, Mar. 2003.
-
(2003)
IEEE Trans. Med. Imag.
, vol.22
, Issue.3
, pp. 414-423
-
-
Davatzikos, C.1
Tao, X.2
Shen, D.3
-
15
-
-
84893850283
-
Population-based studies of myocardial hypertrophy: High resolution cardiovascular magnetic resonance atlases improve statistical power
-
A. de Marvao et al., "Population-based studies of myocardial hypertrophy: High resolution cardiovascular magnetic resonance atlases improve statistical power, " J. Cardiovascular Magn. Reson., vol. 16, no. 1, p. 16, 2014.
-
(2014)
J. Cardiovascular Magn. Reson.
, vol.16
, Issue.1
, pp. 16
-
-
De Marvao, A.1
-
16
-
-
84990837045
-
Accelerating the super-resolution convolutional neural network
-
C. Dong, C. C. Loy, and X. Tang, "Accelerating the super-resolution convolutional neural network, " in Proc. ECCV, 2016, pp. 391-407.
-
(2016)
Proc. ECCV
, pp. 391-407
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
17
-
-
84877746977
-
A generative model for parts-based object segmentation
-
S. Eslami and C. Williams, "A generative model for parts-based object segmentation, " in Proc. NIPS, 2012, pp. 100-107.
-
(2012)
Proc. NIPS
, pp. 100-107
-
-
Eslami, S.1
Williams, C.2
-
18
-
-
84866707640
-
The shape Boltzmann machine: A strong model of object shape
-
Jun.
-
S. M. A. Eslami, N. Heess, and J. Winn, "The shape Boltzmann machine: A strong model of object shape, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 406-413.
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 406-413
-
-
Eslami, S.M.A.1
Heess, N.2
Winn, J.3
-
19
-
-
84990019747
-
Learning a predictable and generative vector representation for objects
-
R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, "Learning a predictable and generative vector representation for objects, " in Proc. ECCV, 2016, pp. 484-499.
-
(2016)
Proc. ECCV
, pp. 484-499
-
-
Girdhar, R.1
Fouhey, D.F.2
Rodriguez, M.3
Gupta, A.4
-
20
-
-
60649091348
-
Super-resolution in medical imaging
-
H. Greenspan, "Super-resolution in medical imaging, " Comput. J., vol. 52, no. 1, pp. 43-63, 2009.
-
(2009)
Comput. J.
, vol.52
, Issue.1
, pp. 43-63
-
-
Greenspan, H.1
-
21
-
-
84990854047
-
Perceptual losses for real-time style transfer and super-resolution
-
J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution, " in Proc. ECCV, 2016, pp. 694-711.
-
(2016)
Proc. ECCV
, pp. 694-711
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
22
-
-
84995784237
-
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
-
Feb.
-
K. Kamnitsas et al., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, " MedIA Image Anal., vol. 36, pp. 61-78, Feb. 2017.
-
(2017)
MedIA Image Anal.
, vol.36
, pp. 61-78
-
-
Kamnitsas, K.1
-
23
-
-
70349498995
-
The role of cardiovascular magnetic resonance imaging in heart failure
-
T. D. Karamitsos, J. M. Francis, S. Myerson, J. B. Selvanayagam, and S. Neubauer, "The role of cardiovascular magnetic resonance imaging in heart failure, " J. Amer. College Cardiol., vol. 54, no. 15, pp. 1407-1424, 2009.
-
(2009)
J. Amer. College Cardiol.
, vol.54
, Issue.15
, pp. 1407-1424
-
-
Karamitsos, T.D.1
Francis, J.M.2
Myerson, S.3
Selvanayagam, J.B.4
Neubauer, S.5
-
24
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. C. N. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data, " in Proc. ICML, vol. 1. 2001, pp. 282-289.
-
(2001)
Proc. ICML
, vol.1
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.N.3
-
25
-
-
84055198661
-
EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography
-
R. M. Lang et al., "EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography, " J. Amer. Soc. Echocardiogr., vol. 25, no. 1, pp. 1-46, 2012.
-
(2012)
J. Amer. Soc. Echocardiogr.
, vol.25
, Issue.1
, pp. 1-46
-
-
Lang, R.M.1
-
27
-
-
84986322564
-
Iterative instance segmentation
-
K. Li, B. Hariharan, and J. Malik, "Iterative instance segmentation, " in Proc. CVPR, 2016, pp. 3659-3667.
-
(2016)
Proc. CVPR
, pp. 3659-3667
-
-
Li, K.1
Hariharan, B.2
Malik, J.3
-
29
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. CVPR, 2015, pp. 3431-3440.
-
(2015)
Proc. CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
31
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction, " in Proc. Int. Conf. Artif. Neural Netw., 2011, pp. 52-59.
-
(2011)
Proc. Int. Conf. Artif. Neural Netw.
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
33
-
-
85013178225
-
Stratified decision forests for accurate anatomical landmark localization in cardiac images
-
Jan.
-
O. Oktay et al., "Stratified decision forests for accurate anatomical landmark localization in cardiac images, " IEEE Trans. Med. Imag., vol. 36, no. 1, pp. 332-342, Jan. 2017.
-
(2017)
IEEE Trans. Med. Imag.
, vol.36
, Issue.1
, pp. 332-342
-
-
Oktay, O.1
-
34
-
-
84996536677
-
Multi-input cardiac image super-resolution using convolutional neural networks
-
O. Oktay et al., "Multi-input cardiac image super-resolution using convolutional neural networks, " in Proc. Int. Conf. MICCAI, 2016, pp. 246-254.
-
(2016)
Proc. Int. Conf. MICCAI
, pp. 246-254
-
-
Oktay, O.1
-
35
-
-
84958106591
-
UK Biobank's cardiovascular magnetic resonance protocol
-
S. E. Petersen et al., "UK Biobank's cardiovascular magnetic resonance protocol, " J. Cardiovascular Magn. Reson., vol. 18, no. 1, p. 8, 2016.
-
(2016)
J. Cardiovascular Magn. Reson.
, vol.18
, Issue.1
, pp. 8
-
-
Petersen, S.E.1
-
36
-
-
85020532120
-
Joint deep learning of foreground, background and shape for robust contextual segmentation
-
H. Ravishankar, S. Thiruvenkadam, R. Venkataramani, and V. Vaidya, "Joint deep learning of foreground, background and shape for robust contextual segmentation, " in Proc. IPMI, 2017, pp. 622-632.
-
(2017)
Proc. IPMI
, pp. 622-632
-
-
Ravishankar, H.1
Thiruvenkadam, S.2
Venkataramani, R.3
Vaidya, V.4
-
37
-
-
85029348260
-
Learning and incorporating shape models for semantic segmentation
-
H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar, and V. Vaidya, "Learning and incorporating shape models for semantic segmentation, " in Proc. ResearchGate, 2017, pp. 203-211.
-
(2017)
Proc. ResearchGate
, pp. 203-211
-
-
Ravishankar, H.1
Venkataramani, R.2
Thiruvenkadam, S.3
Sudhakar, P.4
Vaidya, V.5
-
38
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation, " in Proc. Int. Conf. MICCAI, 2015, pp. 234-241.
-
(2015)
Proc. Int. Conf. MICCAI
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
39
-
-
85007394364
-
Deep spectralbased shape features for Alzheimer's disease classification
-
M. Shakeri, H. Lombaert, S. Tripathi, and S. Kadoury, "Deep spectralbased shape features for Alzheimer's disease classification, " in Proc. SASHIMI, 2016, pp. 15-24.
-
(2016)
Proc. SASHIMI
, pp. 15-24
-
-
Shakeri, M.1
Lombaert, H.2
Tripathi, S.3
Kadoury, S.4
-
40
-
-
85005943809
-
VConv-DAE: Deep volumetric shape learning without object labels
-
A. Sharma, O. Grau, and M. Fritz, "VConv-DAE: Deep volumetric shape learning without object labels, " in Proc. ECCV Workshops, 2016, pp. 236-250.
-
(2016)
Proc. ECCV Workshops
, pp. 236-250
-
-
Sharma, A.1
Grau, O.2
Fritz, M.3
-
41
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi et al., "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, " in Proc. CVPR, 2016, pp. 1874-1883.
-
(2016)
Proc. CVPR
, pp. 1874-1883
-
-
Shi, W.1
-
43
-
-
51949119257
-
Small codes and large image databases for recognition
-
A. Torralba and Y. Weiss, "Small codes and large image databases for recognition, " in Proc. CVPR, 2008, pp. 1-8.
-
(2008)
Proc. CVPR
, pp. 1-8
-
-
Torralba, A.1
Weiss, Y.2
-
45
-
-
77956051102
-
Auto-context and its application to high-level vision tasks and 3D brain image segmentation
-
Oct.
-
Z. Tu and X. Bai, "Auto-context and its application to high-level vision tasks and 3D brain image segmentation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1744-1757, Oct. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.10
, pp. 1744-1757
-
-
Tu, Z.1
Bai, X.2
-
46
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec.
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Dec. 2010
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
47
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Apr.
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity, " IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
-
(2004)
IEEE Trans. Image Process.
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
48
-
-
84949636429
-
3D shapenets: A deep representation for volumetric shapes
-
Z. Wu et al., "3D shapenets: A deep representation for volumetric shapes, " in Proc. CVPR, 2015, pp. 1912-1920.
-
(2015)
Proc. CVPR
, pp. 1912-1920
-
-
Wu, Z.1
-
49
-
-
77956001004
-
Deconvolutional networks
-
M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks, " in Proc. CVPR, 2010, pp. 2528-2535.
-
(2010)
Proc. CVPR
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
|