메뉴 건너뛰기




Volumn , Issue , 2012, Pages 406-413

The Shape Boltzmann Machine: A strong model of object shape

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND CLUTTER; BOLTZMANN MACHINES; GLOBAL CONSTRAINTS; INPAINTING; LOCAL CONSTRAINTS; OBJECT BOUNDARIES; OBJECT DETECTION; OBJECT SHAPE; TRAINING EXAMPLE;

EID: 84866707640     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247702     Document Type: Conference Paper
Times cited : (63)

References (24)
  • 1
    • 78149337063 scopus 로고    scopus 로고
    • ClassCut for unsupervised segmentation
    • 1
    • B. Alexe, T. Deselaers, and V. Ferrari. ClassCut for unsupervised segmentation. In ECCV, pages 380-393, 2010. 1
    • (2010) ECCV , pp. 380-393
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 4
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
    • 1
    • Y. Boykov and M.-P. Jolly. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D images. In ICCV, pages 105-112, 2001. 1
    • (2001) ICCV , pp. 105-112
    • Boykov, Y.1    Jolly, M.-P.2
  • 5
    • 33745138215 scopus 로고    scopus 로고
    • A hybrid graphical model for robust feature extraction from video
    • 1, 2, 4
    • T. Cemgil, W. Zajdel, and B. Krose. A Hybrid Graphical Model for Robust Feature Extraction from Video. In CVPR, pages 1158-1165, 2005. 1, 2, 4
    • (2005) CVPR , pp. 1158-1165
    • Cemgil, T.1    Zajdel, W.2    Krose, B.3
  • 6
    • 0035691608 scopus 로고    scopus 로고
    • Nontexture inpainting by curvature-driven diffusions
    • 1
    • T. F. Chan and J. Shen. Nontexture Inpainting by Curvature-Driven Diffusions. JVCI, 12(4):436-449, 2001. 1
    • (2001) JVCI , vol.12 , Issue.4 , pp. 436-449
    • Chan, T.F.1    Shen, J.2
  • 8
    • 84898425579 scopus 로고    scopus 로고
    • Factored shapes and appearances for parts-based object understanding
    • 1, 2
    • S. M. A. Eslami and C. K. I. Williams. Factored Shapes and Appearances for Parts-based Object Understanding. In BMVC, pages 18.1-18.12, 2011. 1, 2
    • (2011) BMVC , pp. 1801-1812
    • Eslami, S.M.A.1    Williams, C.K.I.2
  • 10
    • 56449085852 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks
    • 2, 3
    • Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using two layer networks. Technical Report UCSC-CRL-94-25, UCSC, 1994. 2, 3
    • (1994) Technical Report UCSC-CRL-94-25 UCSC
    • Freund, Y.1    Haussler, D.2
  • 11
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • 7
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. JSS, 33(1):1-22, 2010. 7
    • (2010) JSS , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 34447258877 scopus 로고    scopus 로고
    • An exemplar-based approach to hierarchical shape matching
    • 1, 2
    • D. Gavrila. An Exemplar-Based Approach to Hierarchical Shape Matching. PAMI, 29:1408-1421, 2007. 1, 2
    • (2007) PAMI , vol.29 , pp. 1408-1421
    • Gavrila, D.1
  • 13
    • 5044229906 scopus 로고    scopus 로고
    • Capturing image structure with probabilistic index maps
    • 1
    • N. Jojic and Y. Caspi. Capturing Image Structure with Probabilistic Index Maps. In CVPR, pages 212-219, 2004. 1
    • (2004) CVPR , pp. 212-219
    • Jojic, N.1    Caspi, Y.2
  • 14
    • 70450189258 scopus 로고    scopus 로고
    • Stel component analysis: Modeling spatial correlations in image class structure
    • 1
    • N. Jojic, A. Perina, M. Cristani, V. Murino, and B. Frey. Stel component analysis: Modeling spatial correlations in image class structure. In CVPR, pages 2044-2051, 2009. 1
    • (2009) CVPR , pp. 2044-2051
    • Jojic, N.1    Perina, A.2    Cristani, M.3    Murino, V.4    Frey, B.5
  • 16
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional DBNs for scalable unsupervised learning of hierarchical representations
    • 3
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional DBNs for Scalable Unsupervised Learning of Hierarchical Representations. In ICML, pages 609-616, 2009. 3
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 17
    • 70450184098 scopus 로고    scopus 로고
    • Global connectivity potentials for random field models
    • 1
    • S. Nowozin and C. Lampert. Global connectivity potentials for random field models. In CVPR, pages 818-825, 2009. 1
    • (2009) CVPR , pp. 818-825
    • Nowozin, S.1    Lampert, C.2
  • 18
    • 84866705159 scopus 로고    scopus 로고
    • How to generate realistic images using gated MRFs
    • 3
    • M. Ranzato, V. Mnih, and G. E. Hinton. How to Generate Realistic Images Using Gated MRFs. In NIPS, 2010. 3
    • (2010) NIPS
    • Ranzato, M.1    Mnih, V.2    Hinton, G.E.3
  • 19
    • 70450213193 scopus 로고    scopus 로고
    • Minimizing sparse higher order energy functions of discrete variables
    • 1, 2
    • C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse higher order energy functions of discrete variables. In CVPR, pages 1382-1389, 2009. 1, 2
    • (2009) CVPR , pp. 1382-1389
    • Rother, C.1    Kohli, P.2    Feng, W.3    Jia, J.4
  • 20
    • 12844262766 scopus 로고    scopus 로고
    • "GrabCut": Interactive foreground extraction using iterated graph cuts
    • 1
    • C. Rother, V. Kolmogorov, and A. Blake. "GrabCut": interactive foreground extraction using iterated graph cuts. SIGGRAPH, 23:309-314, 2004. 1
    • (2004) SIGGRAPH , vol.23 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 21
    • 79951571992 scopus 로고    scopus 로고
    • Learning a generative model of images by factoring appearance and shape
    • 1, 8
    • N. L. Roux, N. Heess, J. Shotton, and J. Winn. Learning a Generative Model of Images by Factoring Appearance and Shape. Neural Computation, 23(3):593-650, 2011. 1, 8
    • (2011) Neural Computation , vol.23 , Issue.3 , pp. 593-650
    • Roux, N.L.1    Heess, N.2    Shotton, J.3    Winn, J.4
  • 22
    • 84862286946 scopus 로고    scopus 로고
    • Deep Boltzmann machines
    • 1, 2, 3, 4
    • R. Salakhutdinov and G. Hinton. Deep Boltzmann Machines. In AISTATS, volume 5, pages 448-455, 2009. 1, 2, 3, 4
    • (2009) AISTATS , vol.5 , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.2
  • 23
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • 3, 4
    • T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In ICML, pages 1064-1071, 2008. 3, 4
    • (2008) ICML , pp. 1064-1071
    • Tieleman, T.1
  • 24
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • 1
    • J. Winn and N. Jojic. LOCUS: Learning object classes with unsupervised segmentation. In ICCV, 2005. 1
    • (2005) ICCV
    • Winn, J.1    Jojic, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.