-
1
-
-
85020553157
-
-
The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
-
The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
-
-
-
-
2
-
-
84996552025
-
Topology aware fully convolutional networks for histology gland segmentation
-
Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.), Springer, Cham
-
BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460-468. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_53
-
(2016)
MICCAI 2016. LNCS
, vol.9901
, pp. 460-468
-
-
BenTaieb, A.1
Hamarneh, G.2
-
3
-
-
84902082791
-
Traditional and recent approaches in background modeling for foreground detection: An overview
-
Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31-66 (2014)
-
(2014)
Comput. Sci. Rev.
, vol.11
, pp. 31-66
-
-
Bouwmans, T.1
-
4
-
-
84978831998
-
Deep background subtraction with scenespecific convolutional neural networks
-
23-25 May 2016, Bratislava. IEEE
-
Braham, M., Van Droogenbroeck, M.: Deep background subtraction with scenespecific convolutional neural networks. In: International Conference on Systems, Signals and Image Processing, 23-25 May 2016, Bratislava. IEEE (2016)
-
(2016)
International Conference on Systems, Signals and Image Processing
-
-
Braham, M.1
Van Droogenbroeck, M.2
-
6
-
-
85020547612
-
-
CoRR abs/1608.04117
-
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. CoRR abs/1608.04117 (2016). http://arxiv.org/abs/1608.04117
-
(2016)
The importance of skip connections in biomedical image segmentation
-
-
Drozdzal, M.1
Vorontsov, E.2
Chartrand, G.3
Kadoury, S.4
Pal, C.5
-
7
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915-1929 (2013)
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
8
-
-
84980003519
-
-
arXiv preprint arXiv:1504.06852
-
Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: FlowNet: Learning optical flow with convolutional networks. arXiv preprint arXiv:1504.06852 (2015)
-
(2015)
FlowNet: Learning optical flow with convolutional networks
-
-
Fischer, P.1
Dosovitskiy, A.2
Ilg, E.3
Häusser, P.4
Hazırbaş, C.5
Golkov, V.6
van der Smagt, P.7
Cremers, D.8
Brox, T.9
-
9
-
-
84958589374
-
-
CoRR abs/1512.03385
-
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
-
(2015)
Deep residual learning for image recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
84948743135
-
-
arXiv preprint arXiv:1502.06796
-
Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. arXiv preprint arXiv:1502.06796 (2015)
-
(2015)
Online tracking by learning discriminative saliency map with convolutional neural network
-
-
Hong, S.1
You, T.2
Kwak, S.3
Han, B.4
-
11
-
-
84897808098
-
Multi-task deep neural network for multi-label learning
-
IEEE
-
Huang, Y., Wang, W., Wang, L., Tan, T.: Multi-task deep neural network for multi-label learning. In: 2013 IEEE International Conference on Image Processing, pp. 2897-2900. IEEE (2013)
-
(2013)
2013 IEEE International Conference on Image Processing
, pp. 2897-2900
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
Tan, T.4
-
12
-
-
85020493340
-
-
CoRR abs/1611.03679
-
Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. CoRR abs/1611.03679 (2016). http://arxiv. org/abs/1611.03679
-
(2016)
Deep convolutional neural network for inverse problems in imaging
-
-
Jin, K.H.1
McCann, M.T.2
Froustey, E.3
Unser, M.4
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in NIPS, pp. 1106-1114 (2012)
-
(2012)
Proceedings of the Advances in NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
84988324571
-
-
CoRR abs/1510.05484
-
Li, X., Zhao, L., Wei, L., Yang, M., Wu, F., Zhuang, Y., Ling, H., Wang, J.:DeepSaliency: multi-task deep neural network model for salient object detection. CoRR abs/1510.05484 (2015). http://arxiv.org/abs/1510.05484
-
(2015)
DeepSaliency: Multi-task deep neural network model for salient object detection
-
-
Li, X.1
Zhao, L.2
Wei, L.3
Yang, M.4
Wu, F.5
Zhuang, Y.6
Ling, H.7
Wang, J.8
-
16
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440 (2015)
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
17
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.), Springer, Cham
-
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234-241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28
-
(2015)
MICCAI 2015. LNCS
, vol.9351
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
|