-
1
-
-
84977918054
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI 32, 295-307 (2016)
-
(2016)
IEEE TPAMI
, vol.32
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
4
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
5
-
-
84937943470
-
Depth map prediction from a single image using a multi-scale deep network
-
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)
-
(2014)
NIPS
-
-
Eigen, D.1
Puhrsch, C.2
Fergus, R.3
-
6
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
7
-
-
84959213675
-
Understanding deep image representations by inverting them
-
Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR (2015)
-
(2015)
CVPR
-
-
Mahendran, A.1
Vedaldi, A.2
-
8
-
-
85083953896
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:visualising image classification models and saliency maps. In: ICLR Workshop (2014)
-
(2014)
ICLR Workshop
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
9
-
-
84959091021
-
Understanding neural networks through deep visualization
-
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. In: ICML Deep Learning Workshop (2015)
-
(2015)
ICML Deep Learning Workshop
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
10
-
-
84965135705
-
Texture synthesis using convolutional neural networks
-
Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS (2015)
-
(2015)
NIPS
-
-
Gatys, L.A.1
Ecker, A.S.2
Bethge, M.3
-
12
-
-
84986325538
-
Image style transfer using convolutional neural networks
-
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)
-
(2016)
CVPR
-
-
Gatys, L.A.1
Ecker, A.S.2
Bethge, M.3
-
13
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 184-199. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part IV. LNCS
, vol.8692
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
14
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE TPAMI 35(8), 1915-1929 (2013)
-
(2013)
IEEE TPAMI
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
15
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling
-
Pinheiro, P.H., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: ICML (2014)
-
(2014)
ICML
-
-
Pinheiro, P.H.1
Collobert, R.2
-
16
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)
-
(2015)
ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
17
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: ICCV (2015)
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.8
-
18
-
-
84959229072
-
Deep convolutional neural fields for depth estimation from a single image
-
Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: CVPR (2015)
-
(2015)
CVPR
-
-
Liu, F.1
Shen, C.2
Lin, G.3
-
19
-
-
84959234840
-
Designing deep networks for surface normal estimation
-
Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)
-
(2015)
CVPR
-
-
Wang, X.1
Fouhey, D.2
Gupta, A.3
-
20
-
-
85083953343
-
Intriguing properties of neural networks
-
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: ICLR (2014)
-
(2014)
ICLR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.6
Fergus, R.7
-
21
-
-
84946206172
-
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
-
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: CVPR (2015)
-
(2015)
CVPR
-
-
Nguyen, A.1
Yosinski, J.2
Clune, J.3
-
22
-
-
84874567065
-
Beyond bits: Reconstructing images from local binary descriptors
-
d’Angelo, E., Alahi, A., Vandergheynst, P.: Beyond bits: Reconstructing images from local binary descriptors. In: ICPR (2012)
-
(2012)
ICPR
-
-
D’Angelo, E.1
Alahi, A.2
Vandergheynst, P.3
-
23
-
-
84900541093
-
From bits to images: Inversion of local binary descriptors
-
d’Angelo, E., Jacques, L., Alahi, A., Vandergheynst, P.: From bits to images: Inversion of local binary descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 874-887 (2014)
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.5
, pp. 874-887
-
-
D’Angelo, E.1
Jacques, L.2
Alahi, A.3
Vandergheynst, P.4
-
24
-
-
84898772394
-
Hoggles: Visualizing object detection features
-
Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: Hoggles: Visualizing object detection features. In: ICCV (2013)
-
(2013)
ICCV
-
-
Vondrick, C.1
Khosla, A.2
Malisiewicz, T.3
Torralba, A.4
-
25
-
-
84986250533
-
Inverting visual representations with convolutional networks
-
Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: CVPR (2016)
-
(2016)
CVPR
-
-
Dosovitskiy, A.1
Brox, T.2
-
26
-
-
84998882079
-
Texture networks: Feedforward synthesis of textures and stylized images
-
Ulyanov, D., Lebadev, V., Vedaldi, A., Lempitsky, V.: Texture networks: Feedforward synthesis of textures and stylized images. In: ICML (2016)
-
(2016)
ICML
-
-
Ulyanov, D.1
Lebadev, V.2
Vedaldi, A.3
Lempitsky, V.4
-
27
-
-
84990854650
-
Precomputed real-time texture synthesis with markovian generative adversarial networks
-
Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: ECCV (2016)
-
(2016)
ECCV
-
-
Li, C.1
Wand, M.2
-
28
-
-
84906495121
-
Single-image super-resolution: A benchmark
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Yang, C.-Y., Ma, C., Yang, M.-H.: Single-image super-resolution: A benchmark. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 372-386. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part IV. LNCS
, vol.8692
, pp. 372-386
-
-
Yang, C.-Y.1
Ma, C.2
Yang, M.-H.3
-
29
-
-
0026359271
-
Improving resolution by image registration
-
Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231-239 (1991)
-
(1991)
CVGIP: Graph. Models Image Process.
, vol.53
, Issue.3
, pp. 231-239
-
-
Irani, M.1
Peleg, S.2
-
30
-
-
79955668981
-
Image and video upscaling from local self-examples
-
Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (TOG) 30(2), 12 (2011)
-
(2011)
ACM Trans. Graph. (TOG)
, vol.30
, Issue.2
, pp. 12
-
-
Freedman, G.1
Fattal, R.2
-
31
-
-
51949110386
-
Image super-resolution using gradient profile prior
-
Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: CVPR (2008)
-
(2008)
CVPR
-
-
Sun, J.1
Sun, J.2
Xu, Z.3
Shum, H.Y.4
-
32
-
-
84869218422
-
Fast image/video upsampli
-
Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampli. ACM Trans. Graph. (TOG) 27, 153 (2008). ACM
-
(2008)
ACM Trans. Graph. (TOG)
, vol.27
, pp. 153
-
-
Shan, Q.1
Li, Z.2
Jia, J.3
Tang, C.K.4
-
33
-
-
77951623771
-
Single-image super-resolution using sparse regression and natural image prior
-
Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE TPAMI 32(6), 1127-1133 (2010)
-
(2010)
IEEE TPAMI
, vol.32
, Issue.6
, pp. 1127-1133
-
-
Kim, K.I.1
Kwon, Y.2
-
34
-
-
77954737684
-
Robust web image/video super-resolution
-
Xiong, Z., Sun, X., Wu, F.: Robust web image/video super-resolution. IEEE Trans. Image Process. 19(8), 2017-2028 (2010)
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.8
, pp. 2017-2028
-
-
Xiong, Z.1
Sun, X.2
Wu, F.3
-
35
-
-
0036500772
-
Example-based super-resolution
-
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56-65 (2002)
-
(2002)
IEEE Comput. Graph. Appl.
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
36
-
-
5044219639
-
Super-resolution through neighbor embedding
-
Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.Y.2
Xiong, Y.3
-
37
-
-
77953187337
-
Super-resolution from a single image
-
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)
-
(2009)
ICCV
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
38
-
-
84887347938
-
Fast image super-resolution based on in-place example regression
-
Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: CVPR (2013)
-
(2013)
CVPR
-
-
Yang, J.1
Lin, Z.2
Cohen, S.3
-
39
-
-
0041939956
-
Image hallucination with primal sketch priors
-
Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. In: CVPR (2003)
-
(2003)
CVPR
-
-
Sun, J.1
Zheng, N.N.2
Tao, H.3
Shum, H.Y.4
-
40
-
-
34249018832
-
Image superresolution using support vector regression
-
Ni, K.S., Nguyen, T.Q.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16(6), 1596-1610 (2007)
-
(2007)
IEEE Trans. Image Process.
, vol.16
, Issue.6
, pp. 1596-1610
-
-
Ni, K.S.1
Nguyen, T.Q.2
-
41
-
-
84887371128
-
Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution
-
He, L., Qi, H., Zaretzki, R.: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. In: CVPR (2013)
-
(2013)
CVPR
-
-
He, L.1
Qi, H.2
Zaretzki, R.3
-
42
-
-
51949105499
-
Image super-resolution as sparse representation of raw image patches
-
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)
-
(2008)
CVPR
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
43
-
-
78049312324
-
Image super-resolution via sparse representation
-
Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861-2873 (2010)
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
44
-
-
84983684720
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.), Springer, Heidelberg
-
Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111-126. Springer, Heidelberg (2015)
-
(2015)
ACCV 2014. LNCS
, vol.9006
, pp. 111-126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
45
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: CVPR (2015)
-
(2015)
CVPR
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
46
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)
-
(2015)
CVPR
-
-
Huang, J.B.1
Singh, A.2
Ahuja, N.3
-
47
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
48
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
50
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
51
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
52
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211-252 (2015)
-
(2015)
Int. J. Comput. Vis. (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
53
-
-
27744520250
-
Image up-sampling using total-variation regularization with a new observation model
-
Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647-1659 (2005)
-
(2005)
IEEE Trans. Image Process.
, vol.14
, Issue.10
, pp. 1647-1659
-
-
Aly, H.A.1
Dubois, E.2
-
54
-
-
78149289957
-
Non-local kernel regression for image and video restoration
-
Maragos, P., Paragios, N., Daniilidis, K. (eds.), Springer, Heidelberg
-
Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Non-local kernel regression for image and video restoration. In: Maragos, P., Paragios, N., Daniilidis, K. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 566-579. Springer, Heidelberg (2010)
-
(2010)
ECCV 2010, Part III. LNCS
, vol.6313
, pp. 566-579
-
-
Zhang, H.1
Yang, J.2
Zhang, Y.3
Huang, T.S.4
-
55
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740-755. Springer, Heidelberg (2014)
-
(2014)
ECCV 2014, Part V. LNCS
, vol.8693
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
56
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
58
-
-
84944081816
-
-
arXiv preprint arXiv:1410.0759
-
Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: CuDNN: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)
-
(2014)
cuDNN: Efficient primitives for deep learning
-
-
Chetlur, S.1
Woolley, C.2
Vandermersch, P.3
Cohen, J.4
Tran, J.5
Catanzaro, B.6
Shelhamer, E.7
-
59
-
-
1942436689
-
Image Quality Assessment:From error visibility to structural similarity
-
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600-612 (2004)
-
(2004)
IEEE Trans. Image Process.
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
60
-
-
84888881853
-
Benchmarking of quality metrics on ultra-high definition video sequences
-
IEEE
-
Hanhart, P., Korshunov, P., Ebrahimi, T.: Benchmarking of quality metrics on ultra-high definition video sequences. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp. 1-8. IEEE (2013)
-
(2013)
2013 18th International Conference on Digital Signal Processing (DSP)
, pp. 1-8
-
-
Hanhart, P.1
Korshunov, P.2
Ebrahimi, T.3
-
61
-
-
45749130181
-
Scope of validity of PSNR in image/video quality assessment
-
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800-801 (2008)
-
(2008)
Electron. Lett.
, vol.44
, Issue.13
, pp. 800-801
-
-
Huynh-Thu, Q.1
Ghanbari, M.2
-
63
-
-
79960509746
-
Fsim: A feature similarity index for image quality assessment
-
Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378-2386 (2011)
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.8
, pp. 2378-2386
-
-
Zhang, L.1
Zhang, L.2
Mou, X.3
Zhang, D.4
-
64
-
-
31144478351
-
Image information and visual quality
-
Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430-444 (2006)
-
(2006)
IEEE Trans. Image Process.
, vol.15
, Issue.2
, pp. 430-444
-
-
Sheikh, H.R.1
Bovik, A.C.2
-
65
-
-
84888880337
-
-
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)
-
(2012)
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Alberi-Morel, M.L.4
-
66
-
-
84855655878
-
On single image scale-up using sparserepresentations
-
Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.), Springer, Heidelberg, Revised Selected Papers
-
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparserepresentations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711-730. Springer, Heidelberg (2012). Revised Selected Papers
-
(2012)
Curves and Surfaces 2011. LNCS
, vol.6920
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
|