메뉴 건너뛰기




Volumn 9906 LNCS, Issue , 2016, Pages 694-711

Perceptual losses for real-time style transfer and super-resolution

Author keywords

Deep learning; Style transfer; Super resolution

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS; OPTICAL RESOLVING POWER; OPTIMIZATION; PIXELS;

EID: 84990854047     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46475-6_43     Document Type: Conference Paper
Times cited : (9333)

References (66)
  • 1
    • 84977918054 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI 32, 295-307 (2016)
    • (2016) IEEE TPAMI , vol.32 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 4
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 5
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 6
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
    • (2015) ICCV
    • Eigen, D.1    Fergus, R.2
  • 7
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR (2015)
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 8
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:visualising image classification models and saliency maps. In: ICLR Workshop (2014)
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 10
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS (2015)
    • (2015) NIPS
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 12
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 13
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 184-199. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part IV. LNCS , vol.8692 , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 14
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE TPAMI 35(8), 1915-1929 (2013)
    • (2013) IEEE TPAMI , vol.35 , Issue.8 , pp. 1915-1929
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 15
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • Pinheiro, P.H., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: ICML (2014)
    • (2014) ICML
    • Pinheiro, P.H.1    Collobert, R.2
  • 16
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 18
    • 84959229072 scopus 로고    scopus 로고
    • Deep convolutional neural fields for depth estimation from a single image
    • Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: CVPR (2015)
    • (2015) CVPR
    • Liu, F.1    Shen, C.2    Lin, G.3
  • 19
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)
    • (2015) CVPR
    • Wang, X.1    Fouhey, D.2    Gupta, A.3
  • 21
    • 84946206172 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
    • Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: CVPR (2015)
    • (2015) CVPR
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 22
    • 84874567065 scopus 로고    scopus 로고
    • Beyond bits: Reconstructing images from local binary descriptors
    • d’Angelo, E., Alahi, A., Vandergheynst, P.: Beyond bits: Reconstructing images from local binary descriptors. In: ICPR (2012)
    • (2012) ICPR
    • D’Angelo, E.1    Alahi, A.2    Vandergheynst, P.3
  • 25
    • 84986250533 scopus 로고    scopus 로고
    • Inverting visual representations with convolutional networks
    • Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: CVPR (2016)
    • (2016) CVPR
    • Dosovitskiy, A.1    Brox, T.2
  • 26
    • 84998882079 scopus 로고    scopus 로고
    • Texture networks: Feedforward synthesis of textures and stylized images
    • Ulyanov, D., Lebadev, V., Vedaldi, A., Lempitsky, V.: Texture networks: Feedforward synthesis of textures and stylized images. In: ICML (2016)
    • (2016) ICML
    • Ulyanov, D.1    Lebadev, V.2    Vedaldi, A.3    Lempitsky, V.4
  • 27
    • 84990854650 scopus 로고    scopus 로고
    • Precomputed real-time texture synthesis with markovian generative adversarial networks
    • Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: ECCV (2016)
    • (2016) ECCV
    • Li, C.1    Wand, M.2
  • 28
    • 84906495121 scopus 로고    scopus 로고
    • Single-image super-resolution: A benchmark
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Yang, C.-Y., Ma, C., Yang, M.-H.: Single-image super-resolution: A benchmark. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 372-386. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part IV. LNCS , vol.8692 , pp. 372-386
    • Yang, C.-Y.1    Ma, C.2    Yang, M.-H.3
  • 29
    • 0026359271 scopus 로고
    • Improving resolution by image registration
    • Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53(3), 231-239 (1991)
    • (1991) CVGIP: Graph. Models Image Process. , vol.53 , Issue.3 , pp. 231-239
    • Irani, M.1    Peleg, S.2
  • 30
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local self-examples
    • Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. (TOG) 30(2), 12 (2011)
    • (2011) ACM Trans. Graph. (TOG) , vol.30 , Issue.2 , pp. 12
    • Freedman, G.1    Fattal, R.2
  • 31
    • 51949110386 scopus 로고    scopus 로고
    • Image super-resolution using gradient profile prior
    • Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: CVPR (2008)
    • (2008) CVPR
    • Sun, J.1    Sun, J.2    Xu, Z.3    Shum, H.Y.4
  • 33
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE TPAMI 32(6), 1127-1133 (2010)
    • (2010) IEEE TPAMI , vol.32 , Issue.6 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 34
    • 77954737684 scopus 로고    scopus 로고
    • Robust web image/video super-resolution
    • Xiong, Z., Sun, X., Wu, F.: Robust web image/video super-resolution. IEEE Trans. Image Process. 19(8), 2017-2028 (2010)
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.8 , pp. 2017-2028
    • Xiong, Z.1    Sun, X.2    Wu, F.3
  • 36
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)
    • (2004) CVPR
    • Chang, H.1    Yeung, D.Y.2    Xiong, Y.3
  • 37
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)
    • (2009) ICCV
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 38
    • 84887347938 scopus 로고    scopus 로고
    • Fast image super-resolution based on in-place example regression
    • Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: CVPR (2013)
    • (2013) CVPR
    • Yang, J.1    Lin, Z.2    Cohen, S.3
  • 39
    • 0041939956 scopus 로고    scopus 로고
    • Image hallucination with primal sketch priors
    • Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. In: CVPR (2003)
    • (2003) CVPR
    • Sun, J.1    Zheng, N.N.2    Tao, H.3    Shum, H.Y.4
  • 40
    • 34249018832 scopus 로고    scopus 로고
    • Image superresolution using support vector regression
    • Ni, K.S., Nguyen, T.Q.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16(6), 1596-1610 (2007)
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.6 , pp. 1596-1610
    • Ni, K.S.1    Nguyen, T.Q.2
  • 41
    • 84887371128 scopus 로고    scopus 로고
    • Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution
    • He, L., Qi, H., Zaretzki, R.: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. In: CVPR (2013)
    • (2013) CVPR
    • He, L.1    Qi, H.2    Zaretzki, R.3
  • 42
    • 51949105499 scopus 로고    scopus 로고
    • Image super-resolution as sparse representation of raw image patches
    • Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)
    • (2008) CVPR
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 43
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861-2873 (2010)
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 44
    • 84983684720 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.), Springer, Heidelberg
    • Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111-126. Springer, Heidelberg (2015)
    • (2015) ACCV 2014. LNCS , vol.9006 , pp. 111-126
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 45
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: CVPR (2015)
    • (2015) CVPR
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 46
    • 84959188745 scopus 로고    scopus 로고
    • Single image super-resolution from transformed self-exemplars
    • Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)
    • (2015) CVPR
    • Huang, J.B.1    Singh, A.2    Ahuja, N.3
  • 47
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 48
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 50
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 51
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 53
    • 27744520250 scopus 로고    scopus 로고
    • Image up-sampling using total-variation regularization with a new observation model
    • Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647-1659 (2005)
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.10 , pp. 1647-1659
    • Aly, H.A.1    Dubois, E.2
  • 54
    • 78149289957 scopus 로고    scopus 로고
    • Non-local kernel regression for image and video restoration
    • Maragos, P., Paragios, N., Daniilidis, K. (eds.), Springer, Heidelberg
    • Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Non-local kernel regression for image and video restoration. In: Maragos, P., Paragios, N., Daniilidis, K. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 566-579. Springer, Heidelberg (2010)
    • (2010) ECCV 2010, Part III. LNCS , vol.6313 , pp. 566-579
    • Zhang, H.1    Yang, J.2    Zhang, Y.3    Huang, T.S.4
  • 55
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740-755. Springer, Heidelberg (2014)
    • (2014) ECCV 2014, Part V. LNCS , vol.8693 , pp. 740-755
    • Lin, T.-Y.1    Maire, M.2    Belongie, S.3    Hays, J.4    Perona, P.5    Ramanan, D.6    Dollár, P.7    Zitnick, C.L.8
  • 56
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 59
    • 1942436689 scopus 로고    scopus 로고
    • Image Quality Assessment:From error visibility to structural similarity
    • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600-612 (2004)
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 61
    • 45749130181 scopus 로고    scopus 로고
    • Scope of validity of PSNR in image/video quality assessment
    • Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800-801 (2008)
    • (2008) Electron. Lett. , vol.44 , Issue.13 , pp. 800-801
    • Huynh-Thu, Q.1    Ghanbari, M.2
  • 63
    • 79960509746 scopus 로고    scopus 로고
    • Fsim: A feature similarity index for image quality assessment
    • Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378-2386 (2011)
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.8 , pp. 2378-2386
    • Zhang, L.1    Zhang, L.2    Mou, X.3    Zhang, D.4
  • 64
    • 31144478351 scopus 로고    scopus 로고
    • Image information and visual quality
    • Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430-444 (2006)
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.2 , pp. 430-444
    • Sheikh, H.R.1    Bovik, A.C.2
  • 66
    • 84855655878 scopus 로고    scopus 로고
    • On single image scale-up using sparserepresentations
    • Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.), Springer, Heidelberg, Revised Selected Papers
    • Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparserepresentations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711-730. Springer, Heidelberg (2012). Revised Selected Papers
    • (2012) Curves and Surfaces 2011. LNCS , vol.6920 , pp. 711-730
    • Zeyde, R.1    Elad, M.2    Protter, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.