메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1912-1920

3D ShapeNets: A deep representation for volumetric shapes

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER AIDED DESIGN; OBJECT RECOGNITION; PATTERN RECOGNITION; PROBABILITY DISTRIBUTIONS;

EID: 84949636429     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298801     Document Type: Conference Paper
Times cited : (6568)

References (33)
  • 3
    • 78149407174 scopus 로고    scopus 로고
    • A lightweight approach to repairing digitized polygon meshes
    • M. Attene. A lightweight approach to repairing digitized polygon meshes. The Visual Computer, 2010
    • (2010) The Visual Computer
    • Attene, M.1
  • 4
    • 0026821209 scopus 로고
    • Method for registration of 3-d shapes
    • P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In PAMI, 1992
    • (1992) PAMI
    • Besl, P.J.1    McKay, N.D.2
  • 5
    • 0023322501 scopus 로고
    • Recognition-by-components: A theory of human image understanding
    • I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological review, 1987
    • (1987) Psychological Review
    • Biederman, I.1
  • 6
    • 0035386823 scopus 로고    scopus 로고
    • Active object recognition: Looking for differences
    • F. G. Callari and F. P. Ferrie. Active object recognition: Looking for differences. IJCV, 2001
    • (2001) IJCV
    • Callari, F.G.1    Ferrie, F.P.2
  • 9
    • 0036473286 scopus 로고    scopus 로고
    • Information theoretic sensor data selection for active object recognition and state estimation
    • J. Denzler and C. M. Brown. Information theoretic sensor data selection for active object recognition and state estimation. PAMI, 2002
    • (2002) PAMI
    • Denzler, J.1    Brown, C.M.2
  • 10
    • 84866707640 scopus 로고    scopus 로고
    • The shape boltzmann machine: A strong model of object shape
    • S. M. A. Eslami, N. Heess, and J. Winn. The shape boltzmann machine: a strong model of object shape. In CVPR, 2012
    • (2012) CVPR
    • Eslami, S.M.A.1    Heess, N.2    Winn, J.3
  • 13
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from rgb-d images for object detection and segmentation
    • S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV. 2014
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbeláez, P.3    Malik, J.4
  • 14
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 2002
    • (2002) Neural Computation
    • Hinton, G.E.1
  • 16
    • 77953223756 scopus 로고    scopus 로고
    • Active view selection for object and pose recognition
    • Z. Jia, Y.-J. Chang, and T. Chen. Active view selection for object and pose recognition. In ICCV Workshops, 2009
    • (2009) ICCV Workshops
    • Jia, Z.1    Chang, Y.-J.2    Chen, T.3
  • 18
    • 85089921422 scopus 로고    scopus 로고
    • Rotation invariant spherical harmonic representation of 3d shape descriptors
    • M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape descriptors. In SGP, 2003
    • (2003) SGP
    • Kazhdan, M.1    Funkhouser, T.2    Rusinkiewicz, S.3
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 20
    • 56449086627 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area v2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area v2. In NIPS, 2007
    • (2007) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 21
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 2011
    • (2011) Communications of the ACM
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 23
    • 84886073305 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012
    • (2012) ECCV
    • Nathan Silberman, P.K.1    Hoiem, D.2    Fergus, R.3
  • 24
    • 33644508026 scopus 로고    scopus 로고
    • 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints
    • F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. IJCV, 2006
    • (2006) IJCV
    • Rothganger, F.1    Lazebnik, S.2    Schmid, C.3    Ponce, J.4
  • 25
    • 6344277647 scopus 로고    scopus 로고
    • View planning for automated 3d object reconstruction inspection
    • W. Scott, G. Roth, and J.-F. Rivest. View planning for automated 3d object reconstruction inspection. ACM Computing Surveys, 2003
    • (2003) ACM Computing Surveys
    • Scott, W.1    Roth, G.2    Rivest, J.-F.3
  • 29
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS. 2012
    • (2012) NIPS.
    • Socher, R.1    Huval, B.2    Bhat, B.3    Manning, C.D.4    Ng, A.Y.5
  • 30
    • 84937466025 scopus 로고    scopus 로고
    • Sliding Shapes for 3D object detection in RGB-D images
    • S. Song and J. Xiao. Sliding Shapes for 3D object detection in RGB-D images. In ECCV, 2014
    • (2014) ECCV
    • Song, S.1    Xiao, J.2
  • 31
    • 84864462471 scopus 로고    scopus 로고
    • A textured object recognition pipeline for color and depth image data
    • J. Tang, S. Miller, A. Singh, and P. Abbeel. A textured object recognition pipeline for color and depth image data. In ICRA, 2012
    • (2012) ICRA
    • Tang, J.1    Miller, S.2    Singh, A.3    Abbeel, P.4
  • 32
    • 71149084943 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • T. Tieleman and G. Hinton. Using fast weights to improve persistent contrastive divergence. In ICML, 2009
    • (2009) ICML
    • Tieleman, T.1    Hinton, G.2
  • 33
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.