메뉴 건너뛰기




Volumn 78, Issue 6, 2017, Pages 2439-2448

Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach

Author keywords

cardiac MRI; deep learning; deformable models; right ventricle; segmentation

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; DEEP LEARNING; DEFORMATION; HEART; IMAGE SEGMENTATION; LEARNING SYSTEMS; MAGNETIC RESONANCE;

EID: 85013271835     PISSN: 07403194     EISSN: 15222594     Source Type: Journal    
DOI: 10.1002/mrm.26631     Document Type: Article
Times cited : (123)

References (47)
  • 1
    • 41649100266 scopus 로고    scopus 로고
    • Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure
    • Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008;117:1717–1731.
    • (2008) Circulation , vol.117 , pp. 1717-1731
    • Haddad, F.1    Doyle, R.2    Murphy, D.J.3    Hunt, S.A.4
  • 2
    • 84860384179 scopus 로고    scopus 로고
    • Imaging of the right ventricle
    • Sanz J, Conroy J, Narula J. Imaging of the right ventricle. Cardiol Clin 2012;30:189–203.
    • (2012) Cardiol Clin , vol.30 , pp. 189-203
    • Sanz, J.1    Conroy, J.2    Narula, J.3
  • 3
    • 0035160618 scopus 로고    scopus 로고
    • Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction1
    • Mehta SR, Eikelboom JW, Natarajan MK, Diaz R, Yi C, Gibbons RJ, Yusuf SH. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction1. J Am Coll Cardiol 2001;37:37–43.
    • (2001) J Am Coll Cardiol , vol.37 , pp. 37-43
    • Mehta, S.R.1    Eikelboom, J.W.2    Natarajan, M.K.3    Diaz, R.4    Yi, C.5    Gibbons, R.J.6    Yusuf, S.H.7
  • 5
    • 77950365420 scopus 로고    scopus 로고
    • Do we have two hearts?. new insights in right ventricular function supported by myocardial imaging echocardiography
    • Vitarelli A, Terzano C. Do we have two hearts?. new insights in right ventricular function supported by myocardial imaging echocardiography. Heart Fail Rev 2010;15:39–61.
    • (2010) Heart Fail Rev , vol.15 , pp. 39-61
    • Vitarelli, A.1    Terzano, C.2
  • 8
    • 4444315937 scopus 로고    scopus 로고
    • Cardiovascular magnetic resonance imaging: current and emerging applications
    • Lima JC, Desai MY. Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 2004;44:1164–1171.
    • (2004) J Am Coll Cardiol , vol.44 , pp. 1164-1171
    • Lima, J.C.1    Desai, M.Y.2
  • 9
    • 0034744995 scopus 로고    scopus 로고
    • Three-dimensional modeling for functional analysis of cardiac images, a review
    • Frangi AF, Niessen WJ, Viergever MA. Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans Med Imaging 2001;20:2–5.
    • (2001) IEEE Trans Med Imaging , vol.20 , pp. 2-5
    • Frangi, A.F.1    Niessen, W.J.2    Viergever, M.A.3
  • 10
    • 84885381579 scopus 로고    scopus 로고
    • A survey of shaped-based registration and segmentation techniques for cardiac images
    • Tavakoli V, Amini AA. A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 2013;117:966–989.
    • (2013) Comput Vis Image Underst , vol.117 , pp. 966-989
    • Tavakoli, V.1    Amini, A.A.2
  • 11
    • 70349090032 scopus 로고    scopus 로고
    • Statistical shape models for 3D medical image segmentation: a review
    • Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 2009;13:543–563.
    • (2009) Med Image Anal , vol.13 , pp. 543-563
    • Heimann, T.1    Meinzer, H.-P.2
  • 12
    • 84897019541 scopus 로고    scopus 로고
    • MRI is the preferred method for evaluating right ventricular size and function in patients with congenital heart disease
    • Geva T. MRI is the preferred method for evaluating right ventricular size and function in patients with congenital heart disease. Circ Cardiovasc Imaging 2014;7:190–197.
    • (2014) Circ Cardiovasc Imaging , vol.7 , pp. 190-197
    • Geva, T.1
  • 13
    • 80053919225 scopus 로고    scopus 로고
    • Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease
    • Caudron J, Fares J, Vivier PH, Lefebvre V, Petitjean C, Dacher JN. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease. Eur Radiol 2011;21:2111–2120.
    • (2011) Eur Radiol , vol.21 , pp. 2111-2120
    • Caudron, J.1    Fares, J.2    Vivier, P.H.3    Lefebvre, V.4    Petitjean, C.5    Dacher, J.N.6
  • 14
    • 84861231901 scopus 로고    scopus 로고
    • Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability
    • Bonnemains L, Mandry D, Marie PY, Micard E, Chen B, Vuissoz PA. Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability. Magn Reson Med 2012;67:1740–1746.
    • (2012) Magn Reson Med , vol.67 , pp. 1740-1746
    • Bonnemains, L.1    Mandry, D.2    Marie, P.Y.3    Micard, E.4    Chen, B.5    Vuissoz, P.A.6
  • 15
    • 84879815698 scopus 로고    scopus 로고
    • Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion
    • Zuluaga MA, Cardoso MJ, Modat M, Ourselin S. Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. Funct Imaging Model Heart 2013;7945:174–181.
    • (2013) Funct Imaging Model Heart , vol.7945 , pp. 174-181
    • Zuluaga, M.A.1    Cardoso, M.J.2    Modat, M.3    Ourselin, S.4
  • 17
    • 84880225856 scopus 로고    scopus 로고
    • A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images
    • Bai W, Shi W, O'Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 2013;32:1302–1315.
    • (2013) IEEE Trans Med Imaging , vol.32 , pp. 1302-1315
    • Bai, W.1    Shi, W.2    O'Regan, D.P.3    Tong, T.4    Wang, H.5    Jamil-Copley, S.6    Peters, N.S.7    Rueckert, D.8
  • 18
    • 79851510761 scopus 로고    scopus 로고
    • A review of segmentation methods in short axis cardiac MR images
    • Petitjean C, Dacher J-N. A review of segmentation methods in short axis cardiac MR images. Med Image Anal 2011;15:169–184.
    • (2011) Med Image Anal , vol.15 , pp. 169-184
    • Petitjean, C.1    Dacher, J.-N.2
  • 21
    • 84875676447 scopus 로고    scopus 로고
    • Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts
    • Maier OMO, Jimenez D, Santos A, Ledesma-Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts. Comput Cardiol 2012;2012:697–700.
    • (2012) Comput Cardiol , vol.2012 , pp. 697-700
    • Maier, O.M.O.1    Jimenez, D.2    Santos, A.3    Ledesma-Carbayo, M.J.4
  • 24
    • 79957636525 scopus 로고    scopus 로고
    • Automatic delineation of left and right ventricles in cardiac MRI sequences using a joint ventricular model
    • Lu X, Wang Y, Georgescu B, Littman A, Comaniciu D. Automatic delineation of left and right ventricles in cardiac MRI sequences using a joint ventricular model. Funct Imaging Model Heart 2011;6666:250–258.
    • (2011) Funct Imaging Model Heart , vol.6666 , pp. 250-258
    • Lu, X.1    Wang, Y.2    Georgescu, B.3    Littman, A.4    Comaniciu, D.5
  • 27
    • 84911970438 scopus 로고    scopus 로고
    • Automatic cardiac segmentation using semantic information from random forests
    • Mahapatra D. Automatic cardiac segmentation using semantic information from random forests. J Digit Imaging 2014;27:794–804.
    • (2014) J Digit Imaging , vol.27 , pp. 794-804
    • Mahapatra, D.1
  • 33
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn 2009;2:1–127.
    • (2009) Found Trends Mach Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 35
    • 84868364183 scopus 로고    scopus 로고
    • Autoencoders, unsupervised learning, and deep architectures
    • Baldi P. Autoencoders, unsupervised learning, and deep architectures. ICML Unsupervised and Transfer Learning 2012;27:37–50.
    • (2012) ICML Unsupervised and Transfer Learning , vol.27 , pp. 37-50
    • Baldi, P.1
  • 36
    • 84959022145 scopus 로고    scopus 로고
    • Deep Learning: methods and applications
    • Hanover, MA, Now Publishers Incorporated
    • Deng L, Yu D. Deep Learning: methods and applications. Foundations and trends in signal processing. Hanover, MA: Now Publishers Incorporated; 2014.
    • (2014) Foundations and trends in signal processing
    • Deng, L.1    Yu, D.2
  • 37
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371–3408.
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 39
    • 84958955334 scopus 로고    scopus 로고
    • A combined deep-learning and deformable model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    • Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 2016;30:108–119.
    • (2016) Med Image Anal , vol.30 , pp. 108-119
    • Avendi, M.R.1    Kheradvar, A.2    Jafarkhani, H.3
  • 42
    • 84863501936 scopus 로고    scopus 로고
    • Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability
    • Caudron J, Fares J, Lefebvre V, Vivier PH, Petitjean C, Dacher JN. Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability. Acad Radiol 2012;19:991–1002.
    • (2012) Acad Radiol , vol.19 , pp. 991-1002
    • Caudron, J.1    Fares, J.2    Lefebvre, V.3    Vivier, P.H.4    Petitjean, C.5    Dacher, J.N.6
  • 43
    • 84879815698 scopus 로고    scopus 로고
    • Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalized correlation coefficient criterion
    • In, New York, Springer, p
    • Zuluaga MA, Cardoso MJ, Modat M, Ourselin S. Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalized correlation coefficient criterion. In: Functional imaging and modeling of the heart. New York: Springer; 2013. p 174–181.
    • (2013) Functional imaging and modeling of the heart , pp. 174-181
    • Zuluaga, M.A.1    Cardoso, M.J.2    Modat, M.3    Ourselin, S.4
  • 44
    • 84875676447 scopus 로고    scopus 로고
    • Ledesma-Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts
    • Maier OMO, Jiménez D, Santos A, Ledesma-Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts. Comput Cardiol 2012:697–700.
    • (2012) Comput Cardiol , pp. 697-700
    • Maier, O.M.O.1    Jiménez, D.2    Santos, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.