메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1870-1877

Deep learning shape priors for object segmentation

Author keywords

Boltzmann machine; Deep learning; segmentation; shape priors; variational methods

Indexed keywords

BOLTZMANN MACHINES; DEEP BOLTZMANN MACHINES; DEEP LEARNING; GLOBAL AND LOCAL STRUCTURES; HIERARCHICAL ARCHITECTURES; PROBABILISTIC REPRESENTATION; SHAPE PRIORS; VARIATIONAL METHODS;

EID: 84887344821     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.244     Document Type: Conference Paper
Times cited : (84)

References (22)
  • 2
    • 0033682441 scopus 로고    scopus 로고
    • Statistical shape influence in geodesic active contours
    • M. Leventon, W. Grimson, and O. Faugeras, Statistical shape influence in geodesic active contours, in CVPR, 2000.
    • (2000) CVPR
    • Leventon, M.1    Grimson, W.2    Faugeras, O.3
  • 3
    • 0011709476 scopus 로고    scopus 로고
    • Shape priors for level set representations
    • M. Rousson and N. Paragios, Shape priors for level set representations, in ECCV, 2002.
    • (2002) ECCV
    • Rousson, M.1    Paragios, N.2
  • 4
    • 0038736725 scopus 로고    scopus 로고
    • A shape-based approach to the segmentation of medical imagery using level sets
    • A. Tsai, et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Trans. medical imaging, 22(2):137-154, 2003.
    • (2003) IEEE Trans. Medical Imaging , vol.22 , Issue.2 , pp. 137-154
    • Tsai, A.1
  • 5
    • 33744920320 scopus 로고    scopus 로고
    • Kernel density estimation and intrinsic alignment for shape priors in level set segmentation
    • D. Cremers, S. Osher, and S. Soatto, Kernel density estimation and intrinsic alignment for shape priors in level set segmentation, Int'l J. Computer Vision, 69:335-351, 2006.
    • (2006) Int'l J. Computer Vision , vol.69 , pp. 335-351
    • Cremers, D.1    Osher, S.2    Soatto, S.3
  • 6
    • 33744813022 scopus 로고    scopus 로고
    • Efficient kernel density estimation of shape and intensity priors for level set segmentation
    • M. Rousson and D. Cremers, Efficient kernel density estimation of shape and intensity priors for level set segmentation, MICCAI, 3750:757-764, 2005.
    • (2005) MICCAI , vol.3750 , pp. 757-764
    • Rousson, M.1    Cremers, D.2
  • 7
    • 52449104061 scopus 로고    scopus 로고
    • Variational segmentation of image sequences using region-based active contours and deformable shape priors
    • K. Fundana, N. Overgaard, and A. Heyden, Variational segmentation of image sequences using region-based active contours and deformable shape priors, Int'l J. Computer Vision, 80:289-299, 2008.
    • (2008) Int'l J. Computer Vision , vol.80 , pp. 289-299
    • Fundana, K.1    Overgaard, N.2    Heyden, A.3
  • 8
    • 51949103544 scopus 로고    scopus 로고
    • Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions
    • D. Cremers, F. Schmidt, and F. Barthel, Shape priors in variational image segmentation: convexity, lipschitz continuity and globally optimal solutions, in CVPR, 2008.
    • (2008) CVPR
    • Cremers, D.1    Schmidt, F.2    Barthel, F.3
  • 9
    • 34247392339 scopus 로고    scopus 로고
    • A generic framework for tracking using particle filter with dynamic shape prior
    • Y. Rathi, N. Vaswani, and A. Tannenbaum, A generic framework for tracking using particle filter with dynamic shape prior, IEEE Trans. image processing, 16(5):1370-1382, 2007.
    • (2007) IEEE Trans. Image Processing , vol.16 , Issue.5 , pp. 1370-1382
    • Rathi, Y.1    Vaswani, N.2    Tannenbaum, A.3
  • 10
    • 80052896484 scopus 로고    scopus 로고
    • Nonlinear shape manifolds as shape priors in level set segmentation and tracking
    • V. Prisacariu and I. Reid, Nonlinear shape manifolds as shape priors in level set segmentation and tracking, in CVPR, 2011.
    • (2011) CVPR
    • Prisacariu, V.1    Reid, I.2
  • 11
    • 84873289474 scopus 로고    scopus 로고
    • Shape sparse representation for joint object classification and segmentation
    • F. Chen, H. Yu and R. Hu, Shape sparse representation for joint object classification and segmentation, IEEE Trans. image processing, 22(3):992-1004, 2013.
    • (2013) IEEE Trans. Image Processing , vol.22 , Issue.3 , pp. 992-1004
    • Chen, F.1    Yu, H.2    Hu, R.3
  • 12
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313(28):504-507, 2006.
    • (2006) Science , vol.313 , Issue.28 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero and Y. Teh, A fast learning algorithm for deep belief nets, Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 16
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 17
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted boltzmann machine
    • A. Mohamed G. Dahl, M. Ranzato and G. Hinton, Phone recognition with the mean-covariance restricted boltzmann machine, in NIPS, 2010
    • (2010) NIPS
    • Mohamed G Dahl, A.1    Ranzato, M.2    Hinton, G.3
  • 18
    • 84866707640 scopus 로고    scopus 로고
    • The shape Boltzmann machine: A strong model of object shape
    • S. Ali Eslami, N. Heess, and J. Winn, The shape Boltzmann machine: a strong model of object shape, in CVPR, 2012.
    • (2012) CVPR
    • Ali Eslami, S.1    Heess, N.2    Winn, J.3
  • 20
    • 84969334819 scopus 로고    scopus 로고
    • The split bregman method for l1-regularized problems
    • T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM J. Image Sciences, 2(2):323-343, 2009.
    • (2009) SIAM J. Image Sciences , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 21
    • 77956186438 scopus 로고    scopus 로고
    • Geometric applications of the split Bregman method: Segmentation and surface reconstruction
    • T. Goldstein, X. Bresson, and S. Osher, Geometric applications of the split Bregman method: segmentation and surface reconstruction, J Sci Comput,45: 272-293, 2010.
    • (2010) J Sci Comput , vol.45 , pp. 272-293
    • Goldstein, T.1    Bresson, X.2    Osher, S.3
  • 22
    • 0033700279 scopus 로고    scopus 로고
    • Shape descriptors for non-rigid shapes with a single closed contour
    • L. Latecki, R. Lakamper, and U. Eckhardt, Shape descriptors for non-rigid shapes with a single closed contour, in CVPR, 2000.
    • (2000) CVPR
    • Latecki, L.1    Lakamper, R.2    Eckhardt, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.