-
1
-
-
0029182228
-
Active shape models-their training and application
-
T. Cootes, C. Taylor, D. Cooper and J. Graham, Active shape models-their training and application, Comput. Vision Image Understanding, 61 (1):38-59, 1995.
-
(1995)
Comput. Vision Image Understanding
, vol.61
, Issue.1
, pp. 38-59
-
-
Cootes, T.1
Taylor, C.2
Cooper, D.3
Graham, J.4
-
2
-
-
0033682441
-
Statistical shape influence in geodesic active contours
-
M. Leventon, W. Grimson, and O. Faugeras, Statistical shape influence in geodesic active contours, in CVPR, 2000.
-
(2000)
CVPR
-
-
Leventon, M.1
Grimson, W.2
Faugeras, O.3
-
3
-
-
0011709476
-
Shape priors for level set representations
-
M. Rousson and N. Paragios, Shape priors for level set representations, in ECCV, 2002.
-
(2002)
ECCV
-
-
Rousson, M.1
Paragios, N.2
-
4
-
-
0038736725
-
A shape-based approach to the segmentation of medical imagery using level sets
-
A. Tsai, et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Trans. medical imaging, 22(2):137-154, 2003.
-
(2003)
IEEE Trans. Medical Imaging
, vol.22
, Issue.2
, pp. 137-154
-
-
Tsai, A.1
-
5
-
-
33744920320
-
Kernel density estimation and intrinsic alignment for shape priors in level set segmentation
-
D. Cremers, S. Osher, and S. Soatto, Kernel density estimation and intrinsic alignment for shape priors in level set segmentation, Int'l J. Computer Vision, 69:335-351, 2006.
-
(2006)
Int'l J. Computer Vision
, vol.69
, pp. 335-351
-
-
Cremers, D.1
Osher, S.2
Soatto, S.3
-
6
-
-
33744813022
-
Efficient kernel density estimation of shape and intensity priors for level set segmentation
-
M. Rousson and D. Cremers, Efficient kernel density estimation of shape and intensity priors for level set segmentation, MICCAI, 3750:757-764, 2005.
-
(2005)
MICCAI
, vol.3750
, pp. 757-764
-
-
Rousson, M.1
Cremers, D.2
-
7
-
-
52449104061
-
Variational segmentation of image sequences using region-based active contours and deformable shape priors
-
K. Fundana, N. Overgaard, and A. Heyden, Variational segmentation of image sequences using region-based active contours and deformable shape priors, Int'l J. Computer Vision, 80:289-299, 2008.
-
(2008)
Int'l J. Computer Vision
, vol.80
, pp. 289-299
-
-
Fundana, K.1
Overgaard, N.2
Heyden, A.3
-
8
-
-
51949103544
-
Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions
-
D. Cremers, F. Schmidt, and F. Barthel, Shape priors in variational image segmentation: convexity, lipschitz continuity and globally optimal solutions, in CVPR, 2008.
-
(2008)
CVPR
-
-
Cremers, D.1
Schmidt, F.2
Barthel, F.3
-
9
-
-
34247392339
-
A generic framework for tracking using particle filter with dynamic shape prior
-
Y. Rathi, N. Vaswani, and A. Tannenbaum, A generic framework for tracking using particle filter with dynamic shape prior, IEEE Trans. image processing, 16(5):1370-1382, 2007.
-
(2007)
IEEE Trans. Image Processing
, vol.16
, Issue.5
, pp. 1370-1382
-
-
Rathi, Y.1
Vaswani, N.2
Tannenbaum, A.3
-
10
-
-
80052896484
-
Nonlinear shape manifolds as shape priors in level set segmentation and tracking
-
V. Prisacariu and I. Reid, Nonlinear shape manifolds as shape priors in level set segmentation and tracking, in CVPR, 2011.
-
(2011)
CVPR
-
-
Prisacariu, V.1
Reid, I.2
-
11
-
-
84873289474
-
Shape sparse representation for joint object classification and segmentation
-
F. Chen, H. Yu and R. Hu, Shape sparse representation for joint object classification and segmentation, IEEE Trans. image processing, 22(3):992-1004, 2013.
-
(2013)
IEEE Trans. Image Processing
, vol.22
, Issue.3
, pp. 992-1004
-
-
Chen, F.1
Yu, H.2
Hu, R.3
-
12
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313(28):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.28
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. Hinton, S. Osindero and Y. Teh, A fast learning algorithm for deep belief nets, Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.3
-
16
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
17
-
-
85162069624
-
Phone recognition with the mean-covariance restricted boltzmann machine
-
A. Mohamed G. Dahl, M. Ranzato and G. Hinton, Phone recognition with the mean-covariance restricted boltzmann machine, in NIPS, 2010
-
(2010)
NIPS
-
-
Mohamed G Dahl, A.1
Ranzato, M.2
Hinton, G.3
-
18
-
-
84866707640
-
The shape Boltzmann machine: A strong model of object shape
-
S. Ali Eslami, N. Heess, and J. Winn, The shape Boltzmann machine: a strong model of object shape, in CVPR, 2012.
-
(2012)
CVPR
-
-
Ali Eslami, S.1
Heess, N.2
Winn, J.3
-
20
-
-
84969334819
-
The split bregman method for l1-regularized problems
-
T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM J. Image Sciences, 2(2):323-343, 2009.
-
(2009)
SIAM J. Image Sciences
, vol.2
, Issue.2
, pp. 323-343
-
-
Goldstein, T.1
Osher, S.2
-
21
-
-
77956186438
-
Geometric applications of the split Bregman method: Segmentation and surface reconstruction
-
T. Goldstein, X. Bresson, and S. Osher, Geometric applications of the split Bregman method: segmentation and surface reconstruction, J Sci Comput,45: 272-293, 2010.
-
(2010)
J Sci Comput
, vol.45
, pp. 272-293
-
-
Goldstein, T.1
Bresson, X.2
Osher, S.3
-
22
-
-
0033700279
-
Shape descriptors for non-rigid shapes with a single closed contour
-
L. Latecki, R. Lakamper, and U. Eckhardt, Shape descriptors for non-rigid shapes with a single closed contour, in CVPR, 2000.
-
(2000)
CVPR
-
-
Latecki, L.1
Lakamper, R.2
Eckhardt, U.3
|