메뉴 건너뛰기




Volumn 15, Issue , 2015, Pages 3563-3593

What regularized auto-encoders learn from the data-generating distribution

Author keywords

Auto encoders; Denoising auto encoders; Generative models; Manifold learning; Markov chains; Score matching; Unsupervised representation learning

Indexed keywords

MARKOV PROCESSES; MAXIMUM LIKELIHOOD;

EID: 84919754597     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (388)

References (28)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio. Learning deep architectures for AI. Foundations & Trends in Mach. Learn., 2 (1):1-127, 2009.
    • (2009) Foundations & Trends in Mach Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 3
    • 84876218939 scopus 로고    scopus 로고
    • On the expressive power of deep architectures
    • Yoshua Bengio and Olivier Delalleau. On the expressive power of deep architectures. In ALT'2011, 2011.
    • (2011) ALT'2011
    • Bengio, Y.1    Delalleau, O.2
  • 4
    • 84872509374 scopus 로고    scopus 로고
    • Implicit density estimation by local moment matching to sample from auto-encoders
    • arXiv:1207.0057
    • Yoshua Bengio, Guillaume Alain, and Salah Rifai. Implicit density estimation by local moment matching to sample from auto-encoders. Technical report, arXiv:1207.0057, 2012a.
    • (2012) Technical Report
    • Bengio, Y.1    Alain, G.2    Rifai, S.3
  • 5
    • 84881233012 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • arXiv:1206.5538
    • Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. Technical report, arXiv:1206.5538, 2012b.
    • (2012) Technical Report
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 6
    • 84894372137 scopus 로고    scopus 로고
    • Generalized denoising autoencoders as generative models
    • arXiv:1305.6663, Universite de Montreal
    • Yoshua Bengio, Yao Li, Guillaume Alain, and Pascal Vincent. Generalized denoising autoencoders as generative models. Technical Report arXiv:1305.6663, Universite de Montreal, 2013a.
    • (2013) Technical Report
    • Bengio, Y.1    Li, Y.2    Alain, G.3    Vincent, P.4
  • 10
    • 85162453815 scopus 로고    scopus 로고
    • Structured sparse coding via lateral inhibition
    • Karol Gregor, Arthur Szlam, and Yann LeCun. Structured sparse coding via lateral inhibition. In NIPS'2011, 2011.
    • (2011) NIPS'2011
    • Gregor, K.1    Szlam, A.2    Lecun, Y.3
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 12
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • Aapo Hyvärinen. Estimation of non-normalized statistical models using score matching. J. Machine Learning Res., 6, 2005.
    • (2005) J. Machine Learning Res. , pp. 6
    • Hyvärinen, A.1
  • 14
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • Viren Jain and Sebastian H. Seung. Natural image denoising with convolutional networks. In NIPS'2008, 2008.
    • (2008) NIPS'2008
    • Jain, V.1    Seung, S.H.2
  • 16
    • 85162419825 scopus 로고    scopus 로고
    • Regularized estimation of image statistics by score matching
    • Diederik Kingma and Yann LeCun. Regularized estimation of image statistics by score matching. In NIPS'2010, 2010.
    • (2010) NIPS'2010
    • Kingma, D.1    LeCun, Y.2
  • 17
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML'2009. 2009.
    • (2009) ICML'2009
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 18
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. In NIPS'2010. 2010.
    • (2010) NIPS'2010
    • Narayanan, H.1    Mitter, S.2
  • 19
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37:3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 20
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS'2006, 2007.
    • (2007) NIPS'2006
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 21
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In NIPS'2007, 2008.
    • (2008) NIPS'2007
    • Ranzato, M.1    Boureau, Y.2    LeCun, Y.3
  • 23
    • 80053460450 scopus 로고    scopus 로고
    • ConTractive auto-encoders: Explicit invariance during feature extraction
    • Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML'2011, 2011b.
    • (2011) ICML'2011
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 24
    • 84867136416 scopus 로고    scopus 로고
    • A generative process for sampling contractive auto-encoders
    • Salah Rifai, Yoshua Bengio, Yann Dauphin, and Pascal Vincent. A generative process for sampling contractive auto-encoders. In ICML'2012, 2012.
    • (2012) ICML'2012
    • Rifai, S.1    Bengio, Y.2    Dauphin, Y.3    Vincent, P.4
  • 27
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7), 2011.
    • (2011) Neural Computation , vol.23 , Issue.7
    • Vincent, P.1
  • 28
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML 2008, 2008.
    • (2008) ICML 2008
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.