메뉴 건너뛰기




Volumn 10126 LNCS, Issue , 2016, Pages 15-24

Deep spectral-based shape features for Alzheimer’s disease classification

Author keywords

Alzheimer s disease; Classification; Spectral matching; Variational autoencoder

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED ANALYSIS; LEARNING SYSTEMS; NEURODEGENERATIVE DISEASES;

EID: 85007394364     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-51237-2_2     Document Type: Conference Paper
Times cited : (47)

References (18)
  • 1
    • 48649092771 scopus 로고    scopus 로고
    • Clinical criteria for the diagnosis of Alzheimer disease: Still good after all these years
    • Ranginwala, N.A., Hynan, L.S., Weiner, M.F., White, C.L.I.: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am. J. Geriatr. Psychiatry 16(5), 384–388 (2008)
    • (2008) Am. J. Geriatr. Psychiatry , vol.16 , Issue.5 , pp. 384-388
    • Ranginwala, N.A.1    Hynan, L.S.2    Weiner, M.F.3    White, C.L.I.4
  • 2
    • 0032988610 scopus 로고    scopus 로고
    • Mild cognitive impairment: Clinical characterization and outcome
    • Petersen, R., Smith, G., Waring, S., Ivnik, R., Tangalos, E., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)
    • (1999) Arch. Neurol , vol.56 , Issue.3 , pp. 303-308
    • Petersen, R.1    Smith, G.2    Waring, S.3    Ivnik, R.4    Tangalos, E.5    Kokmen, E.6
  • 3
    • 0034801730 scopus 로고    scopus 로고
    • Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease
    • Du, A.T., Schuff, N., et al.: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 71, 441–447 (2001)
    • (2001) J. Neurol. Neurosurg. Psychiatry , vol.71 , pp. 441-447
    • Du, A.T.1    Schuff, N.2
  • 5
    • 39749189507 scopus 로고    scopus 로고
    • Alzheimer’s disease via pattern classification of MRI
    • Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.: Alzheimer’s disease via pattern classification of MRI. Neurobiol. Aging 29(4), 514–523 (2008)
    • (2008) Neurobiol. Aging , vol.29 , Issue.4 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.5
  • 6
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 8
    • 84947442893 scopus 로고    scopus 로고
    • Spectral forests: Learning of surface data, application to cortical parcellation
    • In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.), Springer, Heidelberg
    • Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_67
    • (2015) MICCAI 2015. LNCS , vol.9349 , pp. 547-555
    • Lombaert, H.1    Criminisi, A.2    Ayache, N.3
  • 9
    • 84880883096 scopus 로고    scopus 로고
    • FOCUSR: Feature oriented correspondence using spectral regularization –a method for precise surface matching
    • Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F.: FOCUSR: feature oriented correspondence using spectral regularization –a method for precise surface matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2143–2160 (2013)
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.9 , pp. 2143-2160
    • Lombaert, H.1    Grady, L.2    Polimeni, J.R.3    Cheriet, F.4
  • 10
    • 84901282121 scopus 로고    scopus 로고
    • Diffeomorphic spectral matching of cortical surfaces
    • In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.), Springer, Heidelberg
    • Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013). doi:10.1007/ 978-3-642-38868-2_32
    • (2013) IPMI 2013. LNCS , vol.7917 , pp. 376-389
    • Lombaert, H.1    Sporring, J.2    Siddiqi, K.3
  • 11
    • 84978394352 scopus 로고    scopus 로고
    • Domain adaptation for Alzheimer’s disease diagnostics
    • Wachinger, C., Reuter, M.: Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139, 470–479 (2016)
    • (2016) Neuroimage , vol.139 , pp. 470-479
    • Wachinger, C.1    Reuter, M.2
  • 12
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.), Springer, Heidelberg
    • Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). doi:10.1007/ 978-3-642-40763-5_72
    • (2013) MICCAI 2013. LNCS , vol.8150 , pp. 583-590
    • Suk, H.-I.1    Shen, D.2
  • 16
    • 41949137974 scopus 로고    scopus 로고
    • The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
    • Jack, C., Bernstein, M., Fox, N., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: JMRI 27(4), 685–691 (2008)
    • (2008) J. Magn. Reson. Imaging: JMRI , vol.27 , Issue.4 , pp. 685-691
    • Jack, C.1    Bernstein, M.2    Fox, N.3
  • 17
    • 79955484518 scopus 로고    scopus 로고
    • A Bayesian model of shape and appearance for subcortical brain segmentation
    • Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907–922 (2011)
    • (2011) Neuroimage , vol.56 , pp. 907-922
    • Patenaude, B.1    Smith, S.M.2    Kennedy, D.N.3    Jenkinson, M.4
  • 18
    • 84935894515 scopus 로고    scopus 로고
    • Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer’s disease and mild cognitive impairment
    • Goryawala, M., et al.: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer’s disease and mild cognitive impairment. Comput. Intell. Neurosci. 2015, 56 (2015)
    • (2015) Comput. Intell. Neurosci. 2015 , vol.56
    • Goryawala, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.