메뉴 건너뛰기




Volumn 32, Issue 10, 2010, Pages 1744-1757

Auto-context and its application to high-level vision tasks and 3D brain image segmentation

Author keywords

3D brain segmentation; conditional random fields; Context; discriminative models; image segmentation; object recognition

Indexed keywords

ALGORITHM DESIGN; ANATOMICAL STRUCTURES; BRAIN MRI; BRAIN SEGMENTATION; CLASSIFICATION CONFIDENCE; CONDITIONAL RANDOM FIELD; CONFIGURATION ESTIMATION; CONTEXT; CONTEXT ALGORITHM; CONTEXT INFORMATION; CONTEXT MODELS; DISCRIMINATIVE MODELS; FOREGROUND/BACKGROUND; HUMAN BODIES; IMAGE APPEARANCE; IMAGE PATCHES; MARKOV RANDOM FIELD; MEDICAL IMAGE SEGMENTATION; ORIGINAL IMAGES; PARAMETER SETTING; REGION LABELING; SHAPE INFORMATION; STATE-OF-THE-ART ALGORITHMS; STRUCTURED PREDICTION; TRAINING IMAGE; VISION APPLICATIONS;

EID: 77956051102     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2009.186     Document Type: Article
Times cited : (532)

References (56)
  • 1
    • 33745856534 scopus 로고    scopus 로고
    • Spatialboost: Adding spatial reasoning to ada-boost
    • S. Avidan, "Spatialboost: Adding Spatial Reasoning to Ada-boost," Proc. European Conf. Computer Vision, pp. 386-396, 2006.
    • (2006) Proc. European Conf. Computer Vision , pp. 386-396
    • Avidan, S.1
  • 8
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich and G. Bakiri, "Solving Multiclass Learning Problems via Error-Correcting Output Codes," J. Artificial Intelligence Research, vol.2, pp. 263-286, 1995.
    • (1995) J. Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Y. Freund and R.E. Schapire, "A Decision-Theoretic Generalization of Online Learning and an Application to Boosting," J. Computer and System Sciences, vol.55, no.1, pp. 119-139, 1997.
    • (1997) J. Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, vol.38, no.2, pp. 337-407, 2000.
    • (2000) Annals of Statistics , vol.38 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • Nov.
    • S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.6, no.6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 18
    • 51349086291 scopus 로고    scopus 로고
    • Putting objects in perspective
    • Oct.
    • D. Hoiem, A. Efros, and M. Hebert, "Putting Objects in Perspective," Int'l J. Computer Vision, vol.80, no.1, pp. 3-15, Oct. 2008.
    • (2008) Int'l J. Computer Vision , vol.80 , Issue.1 , pp. 3-15
    • Hoiem, D.1    Efros, A.2    Hebert, M.3
  • 21
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • Oct.
    • S. Kumar and M. Hebert, "Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification," Proc. IEEE Int'l Conf. Computer Vision, pp. 1150-1159, Oct. 2003.
    • (2003) Proc. IEEE Int'l Conf. Computer Vision , pp. 1150-1159
    • Kumar, S.1    Hebert, M.2
  • 22
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • Oct.
    • S. Kumar and M. Hebert, "A Hierarchical Field Framework for Unified Context-Based Classification," Proc. IEEE Int'l Conf. Computer Vision, pp. 1284-1291, Oct. 2005.
    • (2005) Proc. IEEE Int'l Conf. Computer Vision , pp. 1284-1291
    • Kumar, S.1    Hebert, M.2
  • 23
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data," Proc. 10th Int'l Conf. Machine Learning, pp. 282-289, 2001.
    • (2001) Proc. 10th Int'l Conf. Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 28
    • 36548999696 scopus 로고    scopus 로고
    • The role of context in object recognition
    • Dec.
    • A. Oliva and A. Torralba, "The Role of Context in Object Recognition," Trends in Cognitive Sciences, vol.11, no.12, pp. 520-527, Dec. 2007.
    • (2007) Trends in Cognitive Sciences , vol.11 , Issue.12 , pp. 520-527
    • Oliva, A.1    Torralba, A.2
  • 31
    • 33747434409 scopus 로고    scopus 로고
    • A bayesian model for joint segmentation and registration
    • K. Pohl, J. Fisher, R. Kikinis, W. Grimson, and W. Wells, "A Bayesian Model for Joint Segmentation and Registration," Neuro-Image, vol.31, no.1, pp. 228-239, 2006.
    • (2006) Neuro-Image , vol.31 , Issue.1 , pp. 228-239
    • Pohl, K.1    Fisher, J.2    Kikinis, R.3    Grimson, W.4    Wells, W.5
  • 34
    • 56749117943 scopus 로고    scopus 로고
    • In defence of one-vs-all classification
    • R. Rifkin and A. Klautau, "In Defence of One-vs-All Classification," J. Machine Learning Research, vol.5, pp. 101-141, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 35
    • 4043153403 scopus 로고    scopus 로고
    • Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
    • Aug
    • T. Rohlfing, D.B. Russakoff, and J.C.R. Maurer, "Performance-Based Classifier Combination in Atlas-Based Image Segmentation Using Expectation-Maximization Parameter Estimation," IEEE Trans. Medical Imaging, vol.23, no.8, pp. 983-994, Aug. 2004.
    • (2004) IEEE Trans. Medical Imaging , vol.23 , Issue.8 , pp. 983-994
    • Rohlfing, T.1    Russakoff, D.B.2    Maurer, J.C.R.3
  • 36
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, R.E. Freund, P. Bartlett, and W.S. Lee, "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods," Annals of Statistics, vol.26, pp. 1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, R.E.2    Bartlett, P.3    Lee, W.S.4
  • 38
    • 33745824267 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation," Proc. European Conf. Computer Vision, pp. 1-15, 2006.
    • (2006) Proc. European Conf. Computer Vision , pp. 1-15
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 40
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • S. Smith, "Fast Robust Automated Brain Extraction," Human Brain Mapping, vol.17, no.3, pp. 856-876, 2001.
    • (2001) Human Brain Mapping , vol.17 , Issue.3 , pp. 856-876
    • Smith, S.1
  • 44
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting tree: Learning discriminative models for classification, recognition, and clustering
    • Oct.
    • Z. Tu, "Probabilistic Boosting Tree: Learning Discriminative Models for Classification, Recognition, and Clustering," Proc. IEEE Int'l Conf. Computer Vision, pp. 1589-1596, Oct. 2005.
    • (2005) Proc. IEEE Int'l Conf. Computer Vision , pp. 1589-1596
    • Tu, Z.1
  • 45
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection, and object recognition
    • July
    • Z. Tu, X. Chen, A. Yuille, and S. Zhu, "Image Parsing: Unifying Segmentation, Detection, and Object Recognition," Int'l J. Computer Vision, vol.63, no.2, pp. 113-140, July 2005.
    • (2005) Int'l J. Computer Vision , vol.63 , Issue.2 , pp. 113-140
    • Tu, Z.1    Chen, X.2    Yuille, A.3    Zhu, S.4
  • 46
    • 41649091676 scopus 로고    scopus 로고
    • Brain anatomical structure parsing by hybrid discriminative/generative models
    • Apr.
    • Z. Tu, K. Narr, P. Dollar, P. Thompson, and A. Toga, "Brain Anatomical Structure Parsing by Hybrid Discriminative/Generative Models," IEEE Trans. Medical Imaging, vol.27, no.4, pp. 495508, Apr. 2008.
    • (2008) IEEE Trans. Medical Imaging , vol.27 , Issue.4 , pp. 495-508
    • Tu, Z.1    Narr, K.2    Dollar, P.3    Thompson, P.4    Toga, A.5
  • 50
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P.A. Viola and M.J. Jones, "Robust Real-Time Face Detection," Int'l J. Computer Vision, vol.57, no.2, pp. 137-154, 2004.
    • (2004) Int'l J. Computer Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.A.1    Jones, M.J.2
  • 51
  • 54
    • 4043068463 scopus 로고    scopus 로고
    • Neighbor-constrained segmentation with level set based 3D deformable models
    • Aug.
    • J. Yang, L.H. Staib, and J.S. Duncan, "Neighbor-Constrained Segmentation with Level Set Based 3D Deformable Models," IEEE Trans. Medical Imaging, vol.23, no.8, pp. 940-948, Aug. 2004.
    • (2004) IEEE Trans. Medical Imaging , vol.23 , Issue.8 , pp. 940-948
    • Yang, J.1    Staib, L.H.2    Duncan, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.