메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

Author keywords

[No Author keywords available]

Indexed keywords

LITHIUM ION; OXYGEN; SODIUM ION; SULFUR;

EID: 85028535479     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms15806     Document Type: Review
Times cited : (327)

References (114)
  • 1
    • 84907820348 scopus 로고    scopus 로고
    • New horizons for conventional lithium ion battery technology
    • Erickson, E. M., Ghanty, C. & Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 5, 3313-3324 (2014).
    • (2014) J. Phys. Chem. Lett. , vol.5 , pp. 3313-3324
    • Erickson, E.M.1    Ghanty, C.2    Aurbach, D.3
  • 2
    • 78650103818 scopus 로고    scopus 로고
    • In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode
    • This paper reports for the first time the dynamics of litiated-unlithiated reaction front in a SnO2 nanowire inside a transmission electron microscope
    • Huang, J. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515-1520 (2010). This paper reports for the first time the dynamics of litiated-unlithiated reaction front in a SnO2 nanowire inside a transmission electron microscope.
    • (2010) Science , vol.330 , pp. 1515-1520
    • Huang, J.1
  • 3
    • 85027944510 scopus 로고    scopus 로고
    • In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view
    • Wang, C. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: a retrospective and perspective view. J. Mater. Res. 30, 326-339 (2015).
    • (2015) J. Mater. Res. , vol.30 , pp. 326-339
    • Wang, C.1
  • 4
    • 84947555609 scopus 로고    scopus 로고
    • Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges
    • Gu, M., He, Y., Zheng, J. & Wang, C. Nanoscale silicon as anode for Li-ion batteries: the fundamentals, promises, and challenges. Nano Energy 17, 366-383 (2015).
    • (2015) Nano Energy , vol.17 , pp. 366-383
    • Gu, M.1    He, Y.2    Zheng, J.3    Wang, C.4
  • 5
    • 84867327667 scopus 로고    scopus 로고
    • In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures
    • Liu, X. et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722-741 (2012).
    • (2012) Adv. Energy Mater. , vol.2 , pp. 722-741
    • Liu, X.1
  • 6
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 7
    • 0034727086 scopus 로고    scopus 로고
    • Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
    • Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496-499 (2000).
    • (2000) Nature , vol.407 , pp. 496-499
    • Poizot, P.1    Laruelle, S.2    Grugeon, S.3    Dupont, L.4    Tarascon, J.M.5
  • 8
    • 84929207745 scopus 로고    scopus 로고
    • Asynchronous crystal cell expansion during lithiation of K-stabilized a-MnO2
    • This paper reveals the dynamics of Li transport in transitional metal oxides that possess one-dimensional tunnels and how the atomistic mechanisms affect the overall battery performance
    • Yuan, Y. et al. Asynchronous crystal cell expansion during lithiation of K-stabilized a-MnO2. Nano Lett. 15, 2998-3007 (2015). This paper reveals the dynamics of Li transport in transitional metal oxides that possess one-dimensional tunnels and how the atomistic mechanisms affect the overall battery performance.
    • (2015) Nano Lett. , vol.15 , pp. 2998-3007
    • Yuan, Y.1
  • 9
    • 84921795489 scopus 로고    scopus 로고
    • Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy
    • Lee, S. et al. Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. ACS Nano 9, 626-632 (2014).
    • (2014) ACS Nano , vol.9 , pp. 626-632
    • Lee, S.1
  • 10
    • 84896379513 scopus 로고    scopus 로고
    • Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte
    • Holtz, M. E. et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453-1459 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1453-1459
    • Holtz, M.E.1
  • 11
    • 84903987014 scopus 로고    scopus 로고
    • In situ observation of random solid solution zone in LiFePO4 electrode
    • Niu, J. et al. In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett. 14, 4005-4010 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 4005-4010
    • Niu, J.1
  • 12
    • 84885835254 scopus 로고    scopus 로고
    • In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation
    • Zhu, Y. et al. In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation. Adv. Mater. 25, 5461-5466 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 5461-5466
    • Zhu, Y.1
  • 13
    • 84884268269 scopus 로고    scopus 로고
    • Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys
    • Wang, Z. et al. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys. Nano Lett. 13, 4511-4516 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 4511-4516
    • Wang, Z.1
  • 14
    • 84863229783 scopus 로고    scopus 로고
    • Size-dependent fracture of silicon nanoparticles during lithiation
    • Liu, X. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522-1531 (2012).
    • (2012) ACS Nano , vol.6 , pp. 1522-1531
    • Liu, X.1
  • 15
    • 84874440829 scopus 로고    scopus 로고
    • Self-limiting lithiation in silicon nanowires
    • Liu, X. et al. Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495-1503 (2013).
    • (2013) ACS Nano , vol.7 , pp. 1495-1503
    • Liu, X.1
  • 16
    • 80051627673 scopus 로고    scopus 로고
    • Anisotropic swelling and fracture of silicon nanowires during lithiation
    • Liu, X. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312-3318 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 3312-3318
    • Liu, X.1
  • 17
    • 84869081646 scopus 로고    scopus 로고
    • In situ atomic-scale imaging of electrochemical lithiation in silicon
    • This paper reports the atomistic behaviors of electrochemical interfaces during the lithation of crystalline silicon
    • Liu, X. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749-756 (2012). This paper reports the atomistic behaviors of electrochemical interfaces during the lithation of crystalline silicon.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 749-756
    • Liu, X.1
  • 18
    • 84946495575 scopus 로고    scopus 로고
    • TEM in situ lithiation of tin nanoneedles for battery applications
    • Janish, M. T. et al. TEM in situ lithiation of tin nanoneedles for battery applications. J. Mater. Sci. 51, 589-602 (2016).
    • (2016) J. Mater. Sci. , vol.51 , pp. 589-602
    • Janish, M.T.1
  • 19
    • 80052817703 scopus 로고    scopus 로고
    • Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study
    • Liu, X. et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11, 3991-3997 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 3991-3997
    • Liu, X.1
  • 20
    • 84976550456 scopus 로고    scopus 로고
    • Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy
    • Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R. & Harris, C. T. Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy. ACS Nano 10, 5670-5678 (2016).
    • (2016) ACS Nano , vol.10 , pp. 5670-5678
    • Leenheer, A.J.1    Jungjohann, K.L.2    Zavadil, K.R.3    Harris, C.T.4
  • 21
    • 84867672114 scopus 로고    scopus 로고
    • Designing nanostructured Si anodes for high energy lithium ion batteries
    • Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414-429 (2012).
    • (2012) Nano Today , vol.7 , pp. 414-429
    • Wu, H.1    Cui, Y.2
  • 22
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes
    • Liu, N. et al. A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes. Nat. Nanotechnol. 9, 187-192 (2014).
    • (2014) Nat Nanotechnol. , vol.9 , pp. 187-192
    • Liu, N.1
  • 23
    • 84903949987 scopus 로고    scopus 로고
    • Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
    • Li, X. et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4105
    • Li, X.1
  • 24
    • 84908633107 scopus 로고    scopus 로고
    • Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries
    • Zhang, Z. et al. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem. 126, 5265-5269 (2014).
    • (2014) Angew. Chem. , vol.126 , pp. 5265-5269
    • Zhang, Z.1
  • 25
    • 84901467517 scopus 로고    scopus 로고
    • Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
    • Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1943
    • Wu, H.1
  • 26
    • 84912529900 scopus 로고    scopus 로고
    • Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery
    • Luo, L., Wu, J., Xu, J. & Dravid, V. P. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. ACS Nano 8, 11560-11566 (2014).
    • (2014) ACS Nano , vol.8 , pp. 11560-11566
    • Luo, L.1    Wu, J.2    Xu, J.3    Dravid, V.P.4
  • 27
    • 84896878521 scopus 로고    scopus 로고
    • In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery
    • Su, Q. et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl. Mater. Interfaces 6, 3016-3022 (2014).
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 3016-3022
    • Su, Q.1
  • 28
    • 84902952055 scopus 로고    scopus 로고
    • Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery
    • Liu, S. et al. Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 8, 84-94 (2014).
    • (2014) Nano Energy , vol.8 , pp. 84-94
    • Liu, S.1
  • 29
    • 84870848818 scopus 로고    scopus 로고
    • Tracking lithium transport and electrochemical reactions in nanoparticles
    • Wang, F. et al. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 1201
    • Wang, F.1
  • 30
    • 84966774656 scopus 로고    scopus 로고
    • Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
    • This paper reveals the non-equilibrium lithiation pathways in spinel Fe3O4 and correlates the intermediate phase transitions with the battery performance
    • He, K. et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7, 11441 (2016). This paper reveals the non-equilibrium lithiation pathways in spinel Fe3O4 and correlates the intermediate phase transitions with the battery performance.
    • (2016) Nat. Commun. , vol.7 , pp. 11441
    • He, K.1
  • 31
    • 84978296120 scopus 로고    scopus 로고
    • In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of a-MoO3 in Li-ion batteries
    • Li, Y., Sun, H., Cheng, X., Zhang, Y. & Zhao, K. In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of a-MoO3 in Li-ion batteries. Nano Energy 27, 95-102 (2016).
    • (2016) Nano Energy , vol.27 , pp. 95-102
    • Li, Y.1    Sun, H.2    Cheng, X.3    Zhang, Y.4    Zhao, K.5
  • 32
    • 84880789333 scopus 로고    scopus 로고
    • In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2
    • Gregorczyk, K. E., Liu, Y., Sullivan, J. P. & Rubloff, G. W. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. ACS Nano 7, 6354-6360 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6354-6360
    • Gregorczyk, K.E.1    Liu, Y.2    Sullivan, J.P.3    Rubloff, G.W.4
  • 33
    • 84887000983 scopus 로고    scopus 로고
    • In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes
    • Su, Q., Xie, D., Zhang, J., Du, G. & Xu, B. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes. ACS Nano 7, 9115-9121 (2013).
    • (2013) ACS Nano , vol.7 , pp. 9115-9121
    • Su, Q.1    Xie, D.2    Zhang, J.3    Du, G.4    Xu, B.5
  • 34
    • 84860317067 scopus 로고    scopus 로고
    • Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy
    • Wang, X. et al. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Chem. Commun. 48, 4812-4814 (2012).
    • (2012) Chem. Commun. , vol.48 , pp. 4812-4814
    • Wang, X.1
  • 35
    • 84907735586 scopus 로고    scopus 로고
    • Visualizing the roles of graphene for excellent lithium storage
    • Shan, X. et al. Visualizing the roles of graphene for excellent lithium storage. J. Mater. Chem. A 2, 17808-17814 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 17808-17814
    • Shan, X.1
  • 36
    • 84866649273 scopus 로고    scopus 로고
    • In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix
    • Gu, M. et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439-8447 (2012).
    • (2012) ACS Nano , vol.6 , pp. 8439-8447
    • Gu, M.1
  • 37
    • 84858273557 scopus 로고    scopus 로고
    • In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries
    • Wang, C. et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 1624-1632 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 1624-1632
    • Wang, C.1
  • 38
    • 85079544577 scopus 로고    scopus 로고
    • Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
    • Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).
    • (2016) Nat. Energy , vol.1 , pp. 15029
    • Li, Y.1
  • 39
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
    • This paper reports a novel design of hollow carbon structure which effectively addresses the problems in silicon anode in terms of its large volumetric variation during cycling
    • Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315-3321 (2012). This paper reports a novel design of hollow carbon structure which effectively addresses the problems in silicon anode in terms of its large volumetric variation during cycling.
    • (2012) Nano Lett , vol.12 , pp. 3315-3321
    • Liu, N.1
  • 40
    • 84942540252 scopus 로고    scopus 로고
    • In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics
    • Lu, X., Bogart, T. D., Gu, M., Wang, C. & Korgel, B. A. In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics. J. Phys. Chem. C 119, 21889-21895 (2015).
    • (2015) J. Phys. Chem. C , vol.119 , pp. 21889-21895
    • Lu, X.1    Bogart, T.D.2    Gu, M.3    Wang, C.4    Korgel, B.A.5
  • 41
    • 84885455064 scopus 로고    scopus 로고
    • Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale
    • Liu, Y. et al. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale. Nano Lett. 13, 4876-4883 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 4876-4883
    • Liu, Y.1
  • 42
    • 84920986584 scopus 로고    scopus 로고
    • Twin boundary-assisted lithium ion transport
    • Nie, A. et al. Twin boundary-assisted lithium ion transport. Nano Lett. 15, 610-615 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 610-615
    • Nie, A.1
  • 43
    • 84907833167 scopus 로고    scopus 로고
    • Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy
    • Hwang, S. et al. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl. Mater. Interfaces 6, 15140-15147 (2014).
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 15140-15147
    • Hwang, S.1
  • 44
    • 84931274882 scopus 로고    scopus 로고
    • Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 cathode materials
    • Hwang, S. et al. Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 cathode materials. Chem. Mater. 27, 3927-3935 (2015).
    • (2015) Chem. Mater. , vol.27 , pp. 3927-3935
    • Hwang, S.1
  • 45
    • 85017526328 scopus 로고    scopus 로고
    • Facet-dependent thermal instability in LiCoO2
    • Sharifi-Asl, S. et al. Facet-dependent thermal instability in LiCoO2. Nano Lett. 17, 2165-2171 (2017).
    • (2017) Nano Lett. , vol.17 , pp. 2165-2171
    • Sharifi-Asl, S.1
  • 46
    • 85042060533 scopus 로고    scopus 로고
    • Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
    • This paper demosntrates the succeessful control of lithium plating by doping the anode with various metallic seeds
    • Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). This paper demosntrates the succeessful control of lithium plating by doping the anode with various metallic seeds.
    • (2016) Nat. Energy , vol.1 , pp. 16010
    • Yan, K.1
  • 47
    • 84905817375 scopus 로고    scopus 로고
    • Interconnected hollow carbon nanospheres for stable lithium metal anodes
    • Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618-623 (2014).
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 618-623
    • Zheng, G.1
  • 48
    • 84928958259 scopus 로고    scopus 로고
    • Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy
    • The electrochemical deposition/dissolution of lithium metal is dynamically recorded through a liquid environment containing aprotic electrolyte
    • Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. & Harris, C. T. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379-4389 (2015). The electrochemical deposition/dissolution of lithium metal is dynamically recorded through a liquid environment containing aprotic electrolyte.
    • (2015) ACS Nano , vol.9 , pp. 4379-4389
    • Leenheer, A.J.1    Jungjohann, K.L.2    Zavadil, K.R.3    Sullivan, J.P.4    Harris, C.T.5
  • 49
    • 84897984987 scopus 로고    scopus 로고
    • Visualization of electrode-electrolyte interfaces in LiPF6/EC/ DEC electrolyte for lithium ion batteries via in situ TEM
    • Zeng, Z. et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/ DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745-1750 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1745-1750
    • Zeng, Z.1
  • 50
    • 85007524332 scopus 로고    scopus 로고
    • Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams
    • Kushima, A. et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271-279 (2017).
    • (2017) Nano Energy , vol.32 , pp. 271-279
    • Kushima, A.1
  • 51
    • 84924595204 scopus 로고    scopus 로고
    • Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM
    • Mehdi, B. L. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168-2173 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 2168-2173
    • Mehdi, B.L.1
  • 52
    • 84893458737 scopus 로고    scopus 로고
    • Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy
    • Sacci, R. L. et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104-2107 (2014).
    • (2014) Chem. Commun. , vol.50 , pp. 2104-2107
    • Sacci, R.L.1
  • 53
    • 84942365540 scopus 로고    scopus 로고
    • Design principles for solid-state lithium superionic conductors
    • Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026-1031 (2015).
    • (2015) Nat. Mater. , vol.14 , pp. 1026-1031
    • Wang, Y.1
  • 54
    • 84855814144 scopus 로고    scopus 로고
    • Electrolyte stability determines scaling limits for solidstate 3D Li ion batteries
    • Ruzmetov, D. et al. Electrolyte stability determines scaling limits for solidstate 3D Li ion batteries. Nano Lett. 12, 505-511 (2011).
    • (2011) Nano Lett. , vol.12 , pp. 505-511
    • Ruzmetov, D.1
  • 55
    • 84974622697 scopus 로고    scopus 로고
    • In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries
    • Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760-3767 (2016).
    • (2016) Nano Lett. , vol.16 , pp. 3760-3767
    • Wang, Z.1
  • 56
    • 84994691768 scopus 로고    scopus 로고
    • Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy
    • This paper reports the chemical and structural evolution of electrochemical interphases existing in the interface region between a lithium anode and a solid state electrolyte
    • Ma, C. et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030-7036 (2016). This paper reports the chemical and structural evolution of electrochemical interphases existing in the interface region between a lithium anode and a solid state electrolyte.
    • (2016) Nano Lett. , vol.16 , pp. 7030-7036
    • Ma, C.1
  • 57
    • 77953671236 scopus 로고    scopus 로고
    • Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery
    • Yamamoto, K. et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem., Int. Ed. 49, 4414-4417 (2010).
    • (2010) Angew. Chem., Int. Ed. , vol.49 , pp. 4414-4417
    • Yamamoto, K.1
  • 59
    • 84877289989 scopus 로고    scopus 로고
    • In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2
    • Zhong, L. et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett. 13, 2209-2214 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 2209-2214
    • Zhong, L.1
  • 60
    • 84949639404 scopus 로고    scopus 로고
    • Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery
    • Kushima, A. et al. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery. Nano Lett. 15, 8260-8265 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 8260-8265
    • Kushima, A.1
  • 61
    • 84919884256 scopus 로고    scopus 로고
    • Insight into sulfur reactions in Li-S batteries
    • Xu, R. et al. Insight into sulfur reactions in Li-S batteries. ACS Appl. Mater. Interface 6, 21938-21945 (2014).
    • (2014) ACS Appl. Mater. Interface , vol.6 , pp. 21938-21945
    • Xu, R.1
  • 62
    • 84958634689 scopus 로고    scopus 로고
    • In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes
    • Kim, H. et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015).
    • (2015) Adv. Energy Mater. , vol.5 , pp. 1501306
    • Kim, H.1
  • 63
    • 84916624817 scopus 로고    scopus 로고
    • Research development on sodium-ion batteries
    • Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636-11682 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 11636-11682
    • Yabuuchi, N.1    Kubota, K.2    Dahbi, M.3    Komaba, S.4
  • 64
    • 84928402748 scopus 로고    scopus 로고
    • An ultrafast rechargeable aluminium-ion battery
    • Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324-328 (2015).
    • (2015) Nature , vol.520 , pp. 324-328
    • Lin, M.C.1
  • 65
    • 84989177722 scopus 로고    scopus 로고
    • Electrochemistry of selenium with sodium and lithium: Kinetics and reaction mechanism
    • Li, Q. et al. Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism. ACS Nano 10, 8788-8795 (2016).
    • (2016) ACS Nano , vol.10 , pp. 8788-8795
    • Li, Q.1
  • 66
    • 84900302888 scopus 로고    scopus 로고
    • Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets
    • Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693-6697 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6693-6697
    • Wang, L.1    Xu, Z.2    Wang, W.3    Bai, X.4
  • 67
    • 84948404586 scopus 로고    scopus 로고
    • Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2
    • Gao, P., Wang, L., Zhang, Y., Huang, Y. & Liu, K. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 9, 11296-11301 (2015).
    • (2015) ACS Nano , vol.9 , pp. 11296-11301
    • Gao, P.1    Wang, L.2    Zhang, Y.3    Huang, Y.4    Liu, K.5
  • 68
    • 84949818921 scopus 로고    scopus 로고
    • Dynamic study of (De)sodiation in alpha-MnO2 nanowires
    • Yuan, Y. et al. Dynamic study of (De)sodiation in alpha-MnO2 nanowires. Nano Energy 19, 382-390 (2016).
    • (2016) Nano Energy , vol.19 , pp. 382-390
    • Yuan, Y.1
  • 69
    • 84922766182 scopus 로고    scopus 로고
    • Transitions from near-surface to interior redox upon lithiation in conversion electrode materials
    • He, K. et al. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials. Nano Lett. 15, 1437-1444 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 1437-1444
    • He, K.1
  • 70
    • 84941072170 scopus 로고    scopus 로고
    • Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation
    • He, K. et al. Sodiation kinetics of metal oxide conversion electrodes: a comparative study with lithiation. Nano Lett. 15, 5755-5763 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 5755-5763
    • He, K.1
  • 71
    • 84956649292 scopus 로고    scopus 로고
    • In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
    • Zhang, L. et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode. RSC Adv. 6, 11441-11445 (2016).
    • (2016) RSC Adv. , vol.6 , pp. 11441-11445
    • Zhang, L.1
  • 72
    • 84904745341 scopus 로고    scopus 로고
    • Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries
    • He, K. et al. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. ACS Nano 8, 7251-7259 (2014).
    • (2014) ACS Nano , vol.8 , pp. 7251-7259
    • He, K.1
  • 73
    • 84887854776 scopus 로고    scopus 로고
    • Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries
    • Gu, M. et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 13, 5203-5211 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 5203-5211
    • Gu, M.1
  • 74
    • 84981172815 scopus 로고    scopus 로고
    • Ultrafast and highly reversible sodium storage in zinc-antimony intermetallic nanomaterials
    • Nie, A. et al. Ultrafast and highly reversible sodium storage in zinc-antimony intermetallic nanomaterials. Adv. Funct. Mater. 26, 543-552 (2016).
    • (2016) Adv. Funct. Mater. , vol.26 , pp. 543-552
    • Nie, A.1
  • 75
    • 84914111135 scopus 로고    scopus 로고
    • Lithiation-induced shuffling of atomic stacks
    • Nie, A. et al. Lithiation-induced shuffling of atomic stacks. Nano Lett. 14, 5301-5307 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 5301-5307
    • Nie, A.1
  • 76
    • 84899439663 scopus 로고    scopus 로고
    • In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes
    • Su, Q. et al. In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 8, 3620-3627 (2014).
    • (2014) ACS Nano , vol.8 , pp. 3620-3627
    • Su, Q.1
  • 77
    • 84891367444 scopus 로고    scopus 로고
    • In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes
    • Su, Q. et al. In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes. ACS Nano 7, 11379-11387 (2013).
    • (2013) ACS Nano , vol.7 , pp. 11379-11387
    • Su, Q.1
  • 78
    • 84981765195 scopus 로고    scopus 로고
    • Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca
    • This paper reveals for the first time the existence of an intercalation step prior to the conversion of WO3 electrode during the insertion of Li, Na and Ca2 ions
    • He, Y. et al. Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca. Angew. Chem. Int. Ed. 55, 6244-6247 (2016). This paper reveals for the first time the existence of an intercalation step prior to the conversion of WO3 electrode during the insertion of Li, Na and Ca2 ions.
    • (2016) Angew. Chem. Int. Ed. , vol.55 , pp. 6244-6247
    • He, Y.1
  • 79
    • 84957004712 scopus 로고    scopus 로고
    • Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy
    • Luo, L. et al. Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy. Nanotechnology 27, 085402 (2016).
    • (2016) Nanotechnology , vol.27 , pp. 085402
    • Luo, L.1
  • 80
    • 2342561300 scopus 로고    scopus 로고
    • Radiation damage in the TEM and SEM
    • Egerton, R., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399-409 (2004).
    • (2004) Micron , vol.35 , pp. 399-409
    • Egerton, R.1    Li, P.2    Malac, M.3
  • 81
    • 84894675524 scopus 로고    scopus 로고
    • Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes
    • Gao, Q. et al. Direct evidence of lithium-induced atomic ordering in amorphous TiO2 nanotubes. Chem. Mater. 26, 1660-1669 (2014).
    • (2014) Chem. Mater. , vol.26 , pp. 1660-1669
    • Gao, Q.1
  • 82
    • 84896377217 scopus 로고    scopus 로고
    • Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy
    • Abellan, P. et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293-1299 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1293-1299
    • Abellan, P.1
  • 83
    • 84950269241 scopus 로고    scopus 로고
    • Opportunities and challenges in liquid cell electron microscopy
    • Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015).
    • (2015) Science , vol.350 , pp. 9886
    • Ross, F.M.1
  • 84
    • 84989941517 scopus 로고    scopus 로고
    • Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures
    • Yuan, Y. et al. Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 10, 539-548 (2016).
    • (2016) ACS Nano , vol.10 , pp. 539-548
    • Yuan, Y.1
  • 85
    • 84907457070 scopus 로고    scopus 로고
    • Electron-water interactions and implications for liquid cell electron microscopy
    • Schneider, N. M. et al. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373-22382 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 22373-22382
    • Schneider, N.M.1
  • 86
    • 84924567251 scopus 로고    scopus 로고
    • Nanoscale imaging of fundamental Li battery chemistry: Solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters
    • Sacci, R. L. et al. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011-2018 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 2011-2018
    • Sacci, R.L.1
  • 87
    • 29444437534 scopus 로고    scopus 로고
    • Nanoionics: Ion transport and electrochemical storage in confined systems
    • Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805-815 (2005).
    • (2005) Nat. Mater. , vol.4 , pp. 805-815
    • Maier, J.1
  • 88
    • 84870878813 scopus 로고    scopus 로고
    • Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots
    • Nagatani, K. et al. Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J. Field. Robot. 30, 44-63 (2013).
    • (2013) J. Field. Robot. , vol.30 , pp. 44-63
    • Nagatani, K.1
  • 89
    • 84974633000 scopus 로고    scopus 로고
    • Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography
    • Gan, Z. et al. Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography. Nano Lett. 16, 3748-3753 (2016).
    • (2016) Nano Lett. , vol.16 , pp. 3748-3753
    • Gan, Z.1
  • 90
    • 84989917741 scopus 로고    scopus 로고
    • Current status and future directions for in situ transmission electron microscopy
    • Taheri, M. L. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86-95 (2016).
    • (2016) Ultramicroscopy , vol.170 , pp. 86-95
    • Taheri, M.L.1
  • 91
    • 0035910396 scopus 로고    scopus 로고
    • Direct imaging of transient molecular structures with ultrafast diffraction
    • Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458-462 (2001).
    • (2001) Science , vol.291 , pp. 458-462
    • Ihee, H.1
  • 92
    • 34447122609 scopus 로고    scopus 로고
    • Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation
    • Lysenko, S., Ruá, A., Vikhnin, V., Fernández, F. & Liu, H. Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation. Phys. Rev. B 76, 035104 (2007).
    • (2007) Phys. Rev. B , vol.76 , pp. 035104
    • Lysenko, S.1    Ruá, A.2    Vikhnin, V.3    Fernández, F.4    Liu, H.5
  • 93
    • 84918800688 scopus 로고    scopus 로고
    • Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy
    • Picher, M., Mazzucco, S., Blankenship, S. & Sharma, R. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy 150, 10-15 (2015).
    • (2015) Ultramicroscopy , vol.150 , pp. 10-15
    • Picher, M.1    Mazzucco, S.2    Blankenship, S.3    Sharma, R.4
  • 94
    • 84995687620 scopus 로고    scopus 로고
    • In situ TEM Raman spectroscopy and laser-based materials modification
    • Allen, F., Kim, E., Andresen, N., Grigoropoulos, C. & Minor, A. In situ TEM Raman spectroscopy and laser-based materials modification. Ultramicroscopy 178, 33-37 (2017).
    • (2017) Ultramicroscopy , vol.178 , pp. 33-37
    • Allen, F.1    Kim, E.2    Andresen, N.3    Grigoropoulos, C.4    Minor, A.5
  • 95
    • 84941119368 scopus 로고    scopus 로고
    • In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries
    • Zhu, Z. et al. In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15, 6170-6176 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 6170-6176
    • Zhu, Z.1
  • 96
    • 84976536293 scopus 로고    scopus 로고
    • In-situ isotopic analysis at nanoscale using parallel ion electron spectrometry: A powerful new paradigm for correlative microscopy
    • Yedra, L., Eswara, S., Dowsett, D. & Wirtz, T. In-situ isotopic analysis at nanoscale using parallel ion electron spectrometry: a powerful new paradigm for correlative microscopy. Sci. Rep. 6, 28705 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 28705
    • Yedra, L.1    Eswara, S.2    Dowsett, D.3    Wirtz, T.4
  • 97
    • 84946593249 scopus 로고    scopus 로고
    • Probing battery chemistry with liquid cell electron energy loss spectroscopy
    • Unocic, R. R. et al. Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun. 51, 16377-16380 (2015).
    • (2015) Chem. Commun. , vol.51 , pp. 16377-16380
    • Unocic, R.R.1
  • 99
    • 84899473178 scopus 로고    scopus 로고
    • A. X-ray energydispersive spectrometry during in situ liquid cell studies using an analytical electron microscope
    • Zaluzec, N. J., Burke, M. G., Haigh, S. J. & Kulzick, M. A. X-ray energydispersive spectrometry during in situ liquid cell studies using an analytical electron microscope. Microsc. Microanal. 20, 323-329 (2014).
    • (2014) Microsc Microanal. , vol.20 , pp. 323-329
    • Zaluzec, N.J.1    Burke, M.G.2    Haigh, S.J.3    Kulzick, M.4
  • 100
    • 84859485099 scopus 로고    scopus 로고
    • High-resolution em of colloidal nanocrystal growth using graphene liquid cells
    • Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61-64 (2012).
    • (2012) Science , vol.336 , pp. 61-64
    • Yuk, J.M.1
  • 101
    • 84978052639 scopus 로고    scopus 로고
    • Precise in situ modulation of local liquid chemistry via electron irradiation in nanoreactors based on graphene liquid cells
    • Wang, C., Shokuhfar, T. & Klie, R. F. Precise in situ modulation of local liquid chemistry via electron irradiation in nanoreactors based on graphene liquid cells. Adv. Mater. 28, 7716-7722 (2016).
    • (2016) Adv. Mater. , vol.28 , pp. 7716-7722
    • Wang, C.1    Shokuhfar, T.2    Klie, R.F.3
  • 102
    • 84947733694 scopus 로고    scopus 로고
    • Water-in-salt' electrolyte enables high-voltage aqueous lithiumion chemistries
    • Suo, L. et al. 'Water-in-salt' electrolyte enables high-voltage aqueous lithiumion chemistries. Science 350, 938-943 (2015).
    • (2015) Science , vol.350 , pp. 938-943
    • Suo, L.1
  • 103
    • 84861602380 scopus 로고    scopus 로고
    • In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons
    • Liu, X. et al. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon N. Y. 50, 3836-3844 (2012).
    • (2012) Carbon N. Y. , vol.50 , pp. 3836-3844
    • Liu, X.1
  • 104
    • 84878716712 scopus 로고    scopus 로고
    • Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: Two reaction modes are revealed
    • Su, Q. et al. Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by in situ TEM: two reaction modes are revealed. Nanotechnology 24, 255705 (2013).
    • (2013) Nanotechnology , vol.24 , pp. 255705
    • Su, Q.1
  • 105
    • 84887851487 scopus 로고    scopus 로고
    • Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling
    • Liang, W. et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling. Nano Lett. 13, 5212-5217 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 5212-5217
    • Liang, W.1
  • 106
    • 84928170703 scopus 로고    scopus 로고
    • Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery
    • Zhu, B. et al. Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. Nano Energy 13, 620-625 (2015).
    • (2015) Nano Energy , vol.13 , pp. 620-625
    • Zhu, B.1
  • 107
    • 84930679336 scopus 로고    scopus 로고
    • Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery
    • Luo, L. et al. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. ACS Nano 9, 5559-5566 (2015).
    • (2015) ACS Nano , vol.9 , pp. 5559-5566
    • Luo, L.1
  • 108
    • 84979556527 scopus 로고    scopus 로고
    • Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis
    • Krumeich, F., Waser, O. & Pratsinis, S. E. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis. J. Solid State Chem. 242, 96-102 (2016).
    • (2016) J. Solid State Chem. , vol.242 , pp. 96-102
    • Krumeich, F.1    Waser, O.2    Pratsinis, S.E.3
  • 109
    • 84902241202 scopus 로고    scopus 로고
    • In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers
    • Liu, Y. et al. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 14, 3445-3452 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 3445-3452
    • Liu, Y.1
  • 110
    • 84869152614 scopus 로고    scopus 로고
    • Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction
    • Wang, J., Liu, X., Mao, S. X. & Huang, J. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 12, 5897-5902 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 5897-5902
    • Wang, J.1    Liu, X.2    Mao, S.X.3    Huang, J.4
  • 111
    • 84947024542 scopus 로고    scopus 로고
    • A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
    • This paper develops a high-capacity anode based on phosphorene with its storaged mechaisms identified to be a combination of Na intercalation and Na-P alloying processes
    • Sun, J. et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980-985 (2015). This paper develops a high-capacity anode based on phosphorene with its storaged mechaisms identified to be a combination of Na intercalation and Na-P alloying processes.
    • (2015) Nat Nanotechnol. , vol.10 , pp. 980-985
    • Sun, J.1
  • 112
    • 84964931582 scopus 로고    scopus 로고
    • Selective ionic transport pathways in phosphorene
    • Nie, A. et al. Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240-2247 (2016).
    • (2016) Nano Lett. , vol.16 , pp. 2240-2247
    • Nie, A.1
  • 113
    • 84944348379 scopus 로고    scopus 로고
    • Coupling in situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony
    • Li, Z. et al. Coupling in situ TEM and ex situ analysis to understand heterogeneous sodiation of antimony. Nano Lett. 15, 6339-6348 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 6339-6348
    • Li, Z.1
  • 114
    • 84959143088 scopus 로고    scopus 로고
    • Germanium as a sodium ion battery material: In situ TEM reveals fast sodiation kinetics with high capacity
    • Lu, X. et al. Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 28, 1236-1242 (2016).
    • (2016) Chem. Mater. , vol.28 , pp. 1236-1242
    • Lu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.