-
1
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).
-
(2005)
Nature Mater
, vol.4
, pp. 366-377
-
-
Aricò, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.-M.4
van Schalkwijk, W.5
-
2
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
4
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires
-
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).
-
(2008)
Nature Nanotech
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
-
5
-
-
0037966114
-
Anodes for lithium batteries: Tin revisited
-
Yang, S., Zavalij, P. Y. & Whittingham, M. S. Anodes for lithium batteries: tin revisited. Electrochem. Commun. 5, 587–590 (2003).
-
(2003)
Electrochem. Commun.
, vol.5
, pp. 587-590
-
-
Yang, S.1
Zavalij, P.Y.2
Whittingham, M.S.3
-
6
-
-
84905817375
-
Interconnected hollow carbon nanospheres for stable lithium metal anodes
-
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014).
-
(2014)
Nature Nanotech
, vol.9
, pp. 618-623
-
-
Zheng, G.1
-
7
-
-
84923365387
-
High rate and stable cycling of lithium metal anode
-
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nature Commun. 6, 6362 (2015).
-
(2015)
Nature Commun
, vol.6
, pp. 6362
-
-
Qian, J.1
-
9
-
-
67349275043
-
A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
-
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).
-
(2009)
Nature Mater
, vol.8
, pp. 500-506
-
-
Ji, X.1
Lee, K.T.2
Nazar, L.F.3
-
10
-
-
77955797778
-
Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries
-
Lu, Y.-C., Gasteiger, H. A., Crumlin, E., McGuire, R. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1025 (2010).
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. 1025
-
-
Lu, Y.-C.1
Gasteiger, H.A.2
Crumlin, E.3
McGuire, R.4
Shao-Horn, Y.5
-
11
-
-
84886012072
-
2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
-
2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Commun. 4, 1331 (2013).
-
(2013)
Nature Commun
, vol.4
-
-
Seh, Z.W.1
-
12
-
-
0035469714
-
Colossal reversible volume changes in lithium alloys
-
Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001).
-
(2001)
Electrochem. Solid-State Lett
, vol.4
, pp. A137-A140
-
-
Beaulieu, L.Y.1
Eberman, K.W.2
Turner, R.L.3
Krause, L.J.4
Dahn, J.R.5
-
13
-
-
2342577530
-
Structural changes in silicon anodes during lithium insertion/extraction
-
Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).
-
(2004)
Electrochem. Solid-State Lett
, vol.7
, pp. A93-A96
-
-
Obrovac, M.N.1
Christensen, L.2
-
14
-
-
34547547045
-
Alloy design for lithium-ion battery anodes
-
Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007).
-
(2007)
J. Electrochem. Soc
, vol.154
, pp. A849-A855
-
-
Obrovac, M.N.1
Christensen, L.2
Le, D.B.3
Dahn, J.R.4
-
15
-
-
61649106325
-
Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes
-
Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2008).
-
(2008)
Nano Lett
, vol.9
, pp. 491-495
-
-
Cui, L.-F.1
Ruffo, R.2
Chan, C.K.3
Peng, H.4
Cui, Y.5
-
16
-
-
77949451542
-
Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries
-
Zhou, S., Liu, X. & Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 10, 860–863 (2010).
-
(2010)
Nano Lett
, vol.10
, pp. 860-863
-
-
Zhou, S.1
Liu, X.2
Wang, D.3
-
17
-
-
79960213953
-
Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
-
Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 2949-2954
-
-
Yao, Y.1
-
18
-
-
72849145531
-
Silicon nanotube battery anodes
-
Park, M.-H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).
-
(2009)
Nano Lett
, vol.9
, pp. 3844-3847
-
-
Park, M.-H.1
-
19
-
-
77956201750
-
Stabilization of silicon anode for Li-ion batteries
-
Xiao, J. et al. Stabilization of silicon anode for Li-ion batteries. J. Electrochem. Soc. 157, A1047–A1051 (2010).
-
(2010)
J. Electrochem. Soc
, vol.157
, pp. A1047-A1051
-
-
Xiao, J.1
-
20
-
-
84876714588
-
Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
-
Yi, R., Dai, F., Gordin, M. L., Chen, S. & Wang, D. Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013).
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 295-300
-
-
Yi, R.1
Dai, F.2
Gordin, M.L.3
Chen, S.4
Wang, D.5
-
21
-
-
84861091085
-
Porous doped silicon nanowires for lithium ion battery anode with long cycle life
-
Ge, M., Rong, J., Fang, X. & Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 2318-2323
-
-
Ge, M.1
Rong, J.2
Fang, X.3
Zhou, C.4
-
22
-
-
84925682633
-
Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes
-
Lu, Z. et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 2540-2547
-
-
Lu, Z.1
-
23
-
-
77950021498
-
High-performance lithium-ion anodes using a hierarchical bottom-up approach
-
Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).
-
(2010)
Nature Mater
, vol.9
, pp. 353-358
-
-
Magasinski, A.1
-
24
-
-
84863115825
-
Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells
-
Ji, L. et al. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 1, 164–171 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 164-171
-
-
Ji, L.1
-
25
-
-
84880417557
-
Silicon–graphene composite anodes for high-energy lithium batteries
-
Ren, J. et al. Silicon–graphene composite anodes for high-energy lithium batteries. Energy Technol. 1, 77–84 (2013).
-
(2013)
Energy Technol
, vol.1
, pp. 77-84
-
-
Ren, J.1
-
26
-
-
84933060055
-
Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
-
Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Commun. 6, 7393 (2015).
-
(2015)
Nature Commun
, vol.6
-
-
Son, I.H.1
-
27
-
-
84862805736
-
Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
-
Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).
-
(2012)
Nature Nanotech
, vol.7
, pp. 310-315
-
-
Wu, H.1
-
28
-
-
84862281347
-
A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
-
Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 3315-3321
-
-
Liu, N.1
-
29
-
-
84895920205
-
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
-
Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).
-
(2014)
Nature Nanotech
, vol.9
, pp. 187-192
-
-
Liu, N.1
-
30
-
-
80053579364
-
A major constituent of brown algae for use in high-capacity Li-ion batteries
-
Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).
-
(2011)
Science
, vol.334
, pp. 75-79
-
-
Kovalenko, I.1
-
31
-
-
84901467517
-
Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
-
Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Commun. 4, 1943 (2013).
-
(2013)
Nature Commun
, vol.4
-
-
Wu, H.1
-
32
-
-
84890095656
-
Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
-
Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 5, 1042–1048 (2013).
-
(2013)
Nature Chem
, vol.5
, pp. 1042-1048
-
-
Wang, C.1
-
33
-
-
77949356288
-
A critical size of silicon nano-anodes for lithium rechargeable batteries
-
Kim, H., Seo, M., Park, M. & Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010).
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2146-2149
-
-
Kim, H.1
Seo, M.2
Park, M.3
Cho, J.4
-
34
-
-
79960218035
-
Anomalous shape changes of silicon nanopillars by electrochemical lithiation
-
Lee, S. W., McDowell, M. T., Choi, J. W. & Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 3034-3039
-
-
Lee, S.W.1
McDowell, M.T.2
Choi, J.W.3
Cui, Y.4
-
35
-
-
80051627673
-
Anisotropic swelling and fracture of silicon nanowires during lithiation
-
Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 3312-3318
-
-
Liu, X.H.1
-
36
-
-
0033184968
-
Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes
-
McMillan, R., Slegr, H., Shu, Z. X. & Wang, W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 81–82, 20–26 (1999).
-
(1999)
J. Power Sources
, vol.81-82
, pp. 20-26
-
-
McMillan, R.1
Slegr, H.2
Shu, Z.X.3
Wang, W.4
-
37
-
-
65549107044
-
Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate
-
Profatilova, I. A., Kim, S.-S. & Choi, N.-S. Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochim. Acta 54, 4445–4450 (2009).
-
(2009)
Electrochim. Acta
, vol.54
, pp. 4445-4450
-
-
Profatilova, I.A.1
Kim, S.-S.2
Choi, N.-S.3
-
38
-
-
0035951278
-
Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions
-
Jeong, S.-K. et al. Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir 17, 8281–8286 (2001).
-
(2001)
Langmuir
, vol.17
, pp. 8281-8286
-
-
Jeong, S.-K.1
-
40
-
-
0001324231
-
Study of metallic carbides by electron diffraction part I. Formation and decomposition of nickel carbide
-
Nagakura, S. Study of metallic carbides by electron diffraction part I. Formation and decomposition of nickel carbide. J. Phys. Soc. Jpn 12, 482–494 (1957).
-
(1957)
J. Phys. Soc. Jpn
, vol.12
, pp. 482-494
-
-
Nagakura, S.1
-
41
-
-
84865611228
-
Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles
-
Yoon, S.-M. et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803–6811 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 6803-6811
-
-
Yoon, S.-M.1
-
42
-
-
71949096648
-
Evolution of graphene growth on Ni and Cu by carbon isotope labeling
-
Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).
-
(2009)
Nano Lett
, vol.9
, pp. 4268-4272
-
-
Li, X.1
Cai, W.2
Colombo, L.3
Ruoff, R.S.4
-
43
-
-
0242603790
-
Interpretation of Raman spectra of disordered and amorphous carbon
-
Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 14095-14107
-
-
Ferrari, A.C.1
Robertson, J.2
-
44
-
-
78650103818
-
2 nanowire electrode
-
2 nanowire electrode. Science 330, 1515–1520 (2010).
-
(2010)
Science
, vol.330
, pp. 1515-1520
-
-
Huang, J.Y.1
-
45
-
-
84873669437
-
In situ TEM of two-phase lithiation of amorphous silicon nanospheres
-
McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 758-764
-
-
McDowell, M.T.1
-
46
-
-
73849129182
-
Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries
-
Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196–A202 (2010).
-
(2010)
J. Electrochem. Soc
, vol.157
, pp. A196-A202
-
-
Smith, A.J.1
Burns, J.C.2
Trussler, S.3
Dahn, J.R.4
-
47
-
-
74149088360
-
Enhanced reversible lithium storage in a nanosize silicon/graphene composite
-
Chou, S.-L. et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010).
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 303-306
-
-
Chou, S.-L.1
-
48
-
-
79551687445
-
Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
-
Xiang, H. et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49, 1787–1796 (2011).
-
(2011)
Carbon
, vol.49
, pp. 1787-1796
-
-
Xiang, H.1
-
49
-
-
84867288645
-
Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries
-
Zhou, X., Yin, Y., Wan, L. & Guo, Y. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086–1090 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 1086-1090
-
-
Zhou, X.1
Yin, Y.2
Wan, L.3
Guo, Y.4
-
50
-
-
84863629371
-
Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes
-
Luo, J. et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012).
-
(2012)
J. Phys. Chem. Lett
, vol.3
, pp. 1824-1829
-
-
Luo, J.1
-
51
-
-
35348945857
-
Mussel-inspired surface chemistry for multifunctional coatings
-
Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).
-
(2007)
Science
, vol.318
, pp. 426-430
-
-
Lee, H.1
Dellatore, S.M.2
Miller, W.M.3
Messersmith, P.B.4
-
52
-
-
79959255330
-
Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres
-
Liu, J. et al. Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 5947-5951
-
-
Liu, J.1
-
53
-
-
84877831153
-
Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin
-
Li, N. et al. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).
-
(2013)
Chem. Commun.
, vol.49
, pp. 5135-5137
-
-
Li, N.1
|