메뉴 건너뛰기




Volumn 1, Issue 2, 2016, Pages

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes

Author keywords

[No Author keywords available]

Indexed keywords

ANODES; EFFICIENCY; GRAPHENE; LITHIUM-ION BATTERIES; SILICON; SOLID ELECTROLYTES;

EID: 85079544577     PISSN: None     EISSN: 20587546     Source Type: Journal    
DOI: 10.1038/nenergy.2015.29     Document Type: Article
Times cited : (755)

References (53)
  • 2
    • 38949102073 scopus 로고    scopus 로고
    • Building better batteries
    • Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
    • (2008) Nature , vol.451 , pp. 652-657
    • Armand, M.1    Tarascon, J.-M.2
  • 4
    • 37849002504 scopus 로고    scopus 로고
    • High-performance lithium battery anodes using silicon nanowires
    • Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).
    • (2008) Nature Nanotech , vol.3 , pp. 31-35
    • Chan, C.K.1
  • 6
    • 84905817375 scopus 로고    scopus 로고
    • Interconnected hollow carbon nanospheres for stable lithium metal anodes
    • Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014).
    • (2014) Nature Nanotech , vol.9 , pp. 618-623
    • Zheng, G.1
  • 7
    • 84923365387 scopus 로고    scopus 로고
    • High rate and stable cycling of lithium metal anode
    • Qian, J. et al. High rate and stable cycling of lithium metal anode. Nature Commun. 6, 6362 (2015).
    • (2015) Nature Commun , vol.6 , pp. 6362
    • Qian, J.1
  • 9
    • 67349275043 scopus 로고    scopus 로고
    • A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
    • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).
    • (2009) Nature Mater , vol.8 , pp. 500-506
    • Ji, X.1    Lee, K.T.2    Nazar, L.F.3
  • 10
    • 77955797778 scopus 로고    scopus 로고
    • Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries
    • Lu, Y.-C., Gasteiger, H. A., Crumlin, E., McGuire, R. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1025 (2010).
    • (2010) J. Electrochem. Soc. , vol.157 , pp. 1025
    • Lu, Y.-C.1    Gasteiger, H.A.2    Crumlin, E.3    McGuire, R.4    Shao-Horn, Y.5
  • 11
    • 84886012072 scopus 로고    scopus 로고
    • 2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
    • 2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Commun. 4, 1331 (2013).
    • (2013) Nature Commun , vol.4
    • Seh, Z.W.1
  • 13
    • 2342577530 scopus 로고    scopus 로고
    • Structural changes in silicon anodes during lithium insertion/extraction
    • Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).
    • (2004) Electrochem. Solid-State Lett , vol.7 , pp. A93-A96
    • Obrovac, M.N.1    Christensen, L.2
  • 15
    • 61649106325 scopus 로고    scopus 로고
    • Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes
    • Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2008).
    • (2008) Nano Lett , vol.9 , pp. 491-495
    • Cui, L.-F.1    Ruffo, R.2    Chan, C.K.3    Peng, H.4    Cui, Y.5
  • 16
    • 77949451542 scopus 로고    scopus 로고
    • Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries
    • Zhou, S., Liu, X. & Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 10, 860–863 (2010).
    • (2010) Nano Lett , vol.10 , pp. 860-863
    • Zhou, S.1    Liu, X.2    Wang, D.3
  • 17
    • 79960213953 scopus 로고    scopus 로고
    • Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
    • Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).
    • (2011) Nano Lett , vol.11 , pp. 2949-2954
    • Yao, Y.1
  • 18
    • 72849145531 scopus 로고    scopus 로고
    • Silicon nanotube battery anodes
    • Park, M.-H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).
    • (2009) Nano Lett , vol.9 , pp. 3844-3847
    • Park, M.-H.1
  • 19
    • 77956201750 scopus 로고    scopus 로고
    • Stabilization of silicon anode for Li-ion batteries
    • Xiao, J. et al. Stabilization of silicon anode for Li-ion batteries. J. Electrochem. Soc. 157, A1047–A1051 (2010).
    • (2010) J. Electrochem. Soc , vol.157 , pp. A1047-A1051
    • Xiao, J.1
  • 20
    • 84876714588 scopus 로고    scopus 로고
    • Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries
    • Yi, R., Dai, F., Gordin, M. L., Chen, S. & Wang, D. Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013).
    • (2013) Adv. Energy Mater , vol.3 , pp. 295-300
    • Yi, R.1    Dai, F.2    Gordin, M.L.3    Chen, S.4    Wang, D.5
  • 21
    • 84861091085 scopus 로고    scopus 로고
    • Porous doped silicon nanowires for lithium ion battery anode with long cycle life
    • Ge, M., Rong, J., Fang, X. & Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).
    • (2012) Nano Lett , vol.12 , pp. 2318-2323
    • Ge, M.1    Rong, J.2    Fang, X.3    Zhou, C.4
  • 22
    • 84925682633 scopus 로고    scopus 로고
    • Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes
    • Lu, Z. et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015).
    • (2015) ACS Nano , vol.9 , pp. 2540-2547
    • Lu, Z.1
  • 23
    • 77950021498 scopus 로고    scopus 로고
    • High-performance lithium-ion anodes using a hierarchical bottom-up approach
    • Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).
    • (2010) Nature Mater , vol.9 , pp. 353-358
    • Magasinski, A.1
  • 24
    • 84863115825 scopus 로고    scopus 로고
    • Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells
    • Ji, L. et al. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 1, 164–171 (2012).
    • (2012) Nano Energy , vol.1 , pp. 164-171
    • Ji, L.1
  • 25
    • 84880417557 scopus 로고    scopus 로고
    • Silicon–graphene composite anodes for high-energy lithium batteries
    • Ren, J. et al. Silicon–graphene composite anodes for high-energy lithium batteries. Energy Technol. 1, 77–84 (2013).
    • (2013) Energy Technol , vol.1 , pp. 77-84
    • Ren, J.1
  • 26
    • 84933060055 scopus 로고    scopus 로고
    • Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
    • Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Commun. 6, 7393 (2015).
    • (2015) Nature Commun , vol.6
    • Son, I.H.1
  • 27
    • 84862805736 scopus 로고    scopus 로고
    • Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
    • Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).
    • (2012) Nature Nanotech , vol.7 , pp. 310-315
    • Wu, H.1
  • 28
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
    • Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3315-3321
    • Liu, N.1
  • 29
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
    • Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).
    • (2014) Nature Nanotech , vol.9 , pp. 187-192
    • Liu, N.1
  • 30
    • 80053579364 scopus 로고    scopus 로고
    • A major constituent of brown algae for use in high-capacity Li-ion batteries
    • Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).
    • (2011) Science , vol.334 , pp. 75-79
    • Kovalenko, I.1
  • 31
    • 84901467517 scopus 로고    scopus 로고
    • Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
    • Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Commun. 4, 1943 (2013).
    • (2013) Nature Commun , vol.4
    • Wu, H.1
  • 32
    • 84890095656 scopus 로고    scopus 로고
    • Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
    • Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 5, 1042–1048 (2013).
    • (2013) Nature Chem , vol.5 , pp. 1042-1048
    • Wang, C.1
  • 33
    • 77949356288 scopus 로고    scopus 로고
    • A critical size of silicon nano-anodes for lithium rechargeable batteries
    • Kim, H., Seo, M., Park, M. & Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010).
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 2146-2149
    • Kim, H.1    Seo, M.2    Park, M.3    Cho, J.4
  • 34
    • 79960218035 scopus 로고    scopus 로고
    • Anomalous shape changes of silicon nanopillars by electrochemical lithiation
    • Lee, S. W., McDowell, M. T., Choi, J. W. & Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011).
    • (2011) Nano Lett , vol.11 , pp. 3034-3039
    • Lee, S.W.1    McDowell, M.T.2    Choi, J.W.3    Cui, Y.4
  • 35
    • 80051627673 scopus 로고    scopus 로고
    • Anisotropic swelling and fracture of silicon nanowires during lithiation
    • Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).
    • (2011) Nano Lett , vol.11 , pp. 3312-3318
    • Liu, X.H.1
  • 36
    • 0033184968 scopus 로고    scopus 로고
    • Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes
    • McMillan, R., Slegr, H., Shu, Z. X. & Wang, W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 81–82, 20–26 (1999).
    • (1999) J. Power Sources , vol.81-82 , pp. 20-26
    • McMillan, R.1    Slegr, H.2    Shu, Z.X.3    Wang, W.4
  • 37
    • 65549107044 scopus 로고    scopus 로고
    • Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate
    • Profatilova, I. A., Kim, S.-S. & Choi, N.-S. Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochim. Acta 54, 4445–4450 (2009).
    • (2009) Electrochim. Acta , vol.54 , pp. 4445-4450
    • Profatilova, I.A.1    Kim, S.-S.2    Choi, N.-S.3
  • 38
    • 0035951278 scopus 로고    scopus 로고
    • Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions
    • Jeong, S.-K. et al. Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir 17, 8281–8286 (2001).
    • (2001) Langmuir , vol.17 , pp. 8281-8286
    • Jeong, S.-K.1
  • 40
    • 0001324231 scopus 로고
    • Study of metallic carbides by electron diffraction part I. Formation and decomposition of nickel carbide
    • Nagakura, S. Study of metallic carbides by electron diffraction part I. Formation and decomposition of nickel carbide. J. Phys. Soc. Jpn 12, 482–494 (1957).
    • (1957) J. Phys. Soc. Jpn , vol.12 , pp. 482-494
    • Nagakura, S.1
  • 41
    • 84865611228 scopus 로고    scopus 로고
    • Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles
    • Yoon, S.-M. et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803–6811 (2012).
    • (2012) ACS Nano , vol.6 , pp. 6803-6811
    • Yoon, S.-M.1
  • 42
    • 71949096648 scopus 로고    scopus 로고
    • Evolution of graphene growth on Ni and Cu by carbon isotope labeling
    • Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).
    • (2009) Nano Lett , vol.9 , pp. 4268-4272
    • Li, X.1    Cai, W.2    Colombo, L.3    Ruoff, R.S.4
  • 43
    • 0242603790 scopus 로고    scopus 로고
    • Interpretation of Raman spectra of disordered and amorphous carbon
    • Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).
    • (2000) Phys. Rev. B , vol.61 , pp. 14095-14107
    • Ferrari, A.C.1    Robertson, J.2
  • 44
    • 78650103818 scopus 로고    scopus 로고
    • 2 nanowire electrode
    • 2 nanowire electrode. Science 330, 1515–1520 (2010).
    • (2010) Science , vol.330 , pp. 1515-1520
    • Huang, J.Y.1
  • 45
    • 84873669437 scopus 로고    scopus 로고
    • In situ TEM of two-phase lithiation of amorphous silicon nanospheres
    • McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).
    • (2013) Nano Lett , vol.13 , pp. 758-764
    • McDowell, M.T.1
  • 46
    • 73849129182 scopus 로고    scopus 로고
    • Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries
    • Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196–A202 (2010).
    • (2010) J. Electrochem. Soc , vol.157 , pp. A196-A202
    • Smith, A.J.1    Burns, J.C.2    Trussler, S.3    Dahn, J.R.4
  • 47
    • 74149088360 scopus 로고    scopus 로고
    • Enhanced reversible lithium storage in a nanosize silicon/graphene composite
    • Chou, S.-L. et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010).
    • (2010) Electrochem. Commun. , vol.12 , pp. 303-306
    • Chou, S.-L.1
  • 48
    • 79551687445 scopus 로고    scopus 로고
    • Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
    • Xiang, H. et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49, 1787–1796 (2011).
    • (2011) Carbon , vol.49 , pp. 1787-1796
    • Xiang, H.1
  • 49
    • 84867288645 scopus 로고    scopus 로고
    • Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries
    • Zhou, X., Yin, Y., Wan, L. & Guo, Y. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086–1090 (2012).
    • (2012) Adv. Energy Mater. , vol.2 , pp. 1086-1090
    • Zhou, X.1    Yin, Y.2    Wan, L.3    Guo, Y.4
  • 50
    • 84863629371 scopus 로고    scopus 로고
    • Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes
    • Luo, J. et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012).
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 1824-1829
    • Luo, J.1
  • 51
    • 35348945857 scopus 로고    scopus 로고
    • Mussel-inspired surface chemistry for multifunctional coatings
    • Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).
    • (2007) Science , vol.318 , pp. 426-430
    • Lee, H.1    Dellatore, S.M.2    Miller, W.M.3    Messersmith, P.B.4
  • 52
    • 79959255330 scopus 로고    scopus 로고
    • Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres
    • Liu, J. et al. Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 5947-5951
    • Liu, J.1
  • 53
    • 84877831153 scopus 로고    scopus 로고
    • Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin
    • Li, N. et al. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).
    • (2013) Chem. Commun. , vol.49 , pp. 5135-5137
    • Li, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.