메뉴 건너뛰기




Volumn 13, Issue 11, 2013, Pages 5212-5217

Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling

Author keywords

Gallium nanodroplets; in situ TEM; lithium ion battery; nanovoid; phase field

Indexed keywords

IN-SITU TEM; LITHIUM-ION BATTERY; NANO-DROPLETS; NANOVOID; PHASE FIELDS;

EID: 84887851487     PISSN: 15306984     EISSN: 15306992     Source Type: Journal    
DOI: 10.1021/nl402644w     Document Type: Article
Times cited : (96)

References (47)
  • 1
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries Nature 2001, 414 (6861) 359-367
    • (2001) Nature , vol.414 , Issue.6861 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 2
    • 41849146772 scopus 로고    scopus 로고
    • Materials challenges facing electrical energy storage
    • Whittingham, M. S. Materials challenges facing electrical energy storage MRS Bull. 2008, 33 (4) 411-419
    • (2008) MRS Bull. , vol.33 , Issue.4 , pp. 411-419
    • Whittingham, M.S.1
  • 3
    • 76249131385 scopus 로고    scopus 로고
    • Challenges for Rechargeable Li Batteries
    • Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries Chem. Mater. 2010, 22 (3) 587-603
    • (2010) Chem. Mater. , vol.22 , Issue.3 , pp. 587-603
    • Goodenough, J.B.1    Kim, Y.2
  • 4
    • 77955508076 scopus 로고    scopus 로고
    • Key challenges in future Li-battery research
    • Tarascon, J. M. Key challenges in future Li-battery research Philos. Trans. R. Soc. 2010, 368 (1923) 3227-3241
    • (2010) Philos. Trans. R. Soc. , vol.368 , Issue.1923 , pp. 3227-3241
    • Tarascon, J.M.1
  • 8
    • 0037465265 scopus 로고    scopus 로고
    • Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage
    • Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage Acta Mater. 2003, 51 (4) 1103-1113
    • (2003) Acta Mater. , vol.51 , Issue.4 , pp. 1103-1113
    • Limthongkul, P.1    Jang, Y.I.2    Dudney, N.J.3    Chiang, Y.M.4
  • 9
    • 2942565804 scopus 로고    scopus 로고
    • Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities
    • Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities J. Electrochem. Soc. 2004, 151 (5) A698-A702
    • (2004) J. Electrochem. Soc. , vol.151 , Issue.5
    • Graetz, J.1    Ahn, C.C.2    Yazami, R.3    Fultz, B.4
  • 11
    • 77956345139 scopus 로고    scopus 로고
    • A review of the electrochemical performance of alloy anodes for lithium-ion batteries
    • Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries J. Power Sources 2011, 196 (1) 13-24
    • (2011) J. Power Sources , vol.196 , Issue.1 , pp. 13-24
    • Zhang, W.-J.1
  • 12
    • 79959821670 scopus 로고    scopus 로고
    • A review of advanced and practical lithium battery materials
    • Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials J. Mater. Chem. 2011, 21 (27) 9938-9954
    • (2011) J. Mater. Chem. , vol.21 , Issue.27 , pp. 9938-9954
    • Marom, R.1    Amalraj, S.F.2    Leifer, N.3    Jacob, D.4    Aurbach, D.5
  • 13
    • 77957906317 scopus 로고    scopus 로고
    • Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries
    • Kamali, A. R.; Fray, D. J. Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries J. New Mater. Electrochem. Syst. 2010, 13 (2) 147-160
    • (2010) J. New Mater. Electrochem. Syst. , vol.13 , Issue.2 , pp. 147-160
    • Kamali, A.R.1    Fray, D.J.2
  • 16
    • 84863229332 scopus 로고    scopus 로고
    • Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
    • Lee, S. W.; McDowell, M. T.; Berla, L. A.; Nix, W. D.; Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (11) 4080-4085
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.11 , pp. 4080-4085
    • Lee, S.W.1    McDowell, M.T.2    Berla, L.A.3    Nix, W.D.4    Cui, Y.5
  • 17
    • 79959992488 scopus 로고    scopus 로고
    • Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes
    • Goldman, J. L.; Long, B. R.; Gewirth, A. A.; Nuzzo, R. G. Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes Adv. Funct. Mater. 2011, 21 (13) 2412-2422
    • (2011) Adv. Funct. Mater. , vol.21 , Issue.13 , pp. 2412-2422
    • Goldman, J.L.1    Long, B.R.2    Gewirth, A.A.3    Nuzzo, R.G.4
  • 18
    • 79960213953 scopus 로고    scopus 로고
    • Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
    • Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life Nano Lett. 2011, 11 (7) 2949-2954
    • (2011) Nano Lett. , vol.11 , Issue.7 , pp. 2949-2954
    • Yao, Y.1    McDowell, M.T.2    Ryu, I.3    Wu, H.4    Liu, N.5    Hu, L.6    Nix, W.D.7    Cui, Y.8
  • 19
    • 80051710786 scopus 로고    scopus 로고
    • Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries
    • Deshpande, R. D.; Li, J. C.; Cheng, Y. T.; Verbrugge, M. W. Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries J. Electrochem. Soc. 2011, 158 (8) A845-A849
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.8
    • Deshpande, R.D.1    Li, J.C.2    Cheng, Y.T.3    Verbrugge, M.W.4
  • 20
    • 84863229783 scopus 로고    scopus 로고
    • Size-Dependent Fracture of Silicon Nanoparticles during Lithiation
    • Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation ACS Nano 2012, 6 (2) 1522-1531
    • (2012) ACS Nano , vol.6 , Issue.2 , pp. 1522-1531
    • Liu, X.H.1    Zhong, L.2    Huang, S.3    Mao, S.X.4    Zhu, T.5    Huang, J.Y.6
  • 21
    • 79960218035 scopus 로고    scopus 로고
    • Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation
    • Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation Nano Lett. 2011, 11 (7) 3034-3039
    • (2011) Nano Lett. , vol.11 , Issue.7 , pp. 3034-3039
    • Lee, S.W.1    McDowell, M.T.2    Choi, J.W.3    Cui, Y.4
  • 22
    • 84863767388 scopus 로고    scopus 로고
    • Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures
    • Zhao, K.; Pharr, M.; Hartle, L.; Vlassak, J. J.; Suo, Z. Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures J. Power Sources 2012, 218 (0) 6-14
    • (2012) J. Power Sources , vol.218 , Issue.0 , pp. 6-14
    • Zhao, K.1    Pharr, M.2    Hartle, L.3    Vlassak, J.J.4    Suo, Z.5
  • 23
    • 84867327667 scopus 로고    scopus 로고
    • In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
    • Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S.; Zhu, T.; Li, J.; Huang, J. Y. In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures Adv. Energy Mater. 2012, 2 (7) 722-741
    • (2012) Adv. Energy Mater. , vol.2 , Issue.7 , pp. 722-741
    • Liu, X.H.1    Liu, Y.2    Kushima, A.3    Zhang, S.4    Zhu, T.5    Li, J.6    Huang, J.Y.7
  • 25
    • 80053298772 scopus 로고    scopus 로고
    • In situ TEM electrochemistry of anode materials in lithium ion batteries
    • Liu, X. H.; Huang, J. Y. In situ TEM electrochemistry of anode materials in lithium ion batteries Energy Environ. Sci. 2011, 4 (10) 3844-3860
    • (2011) Energy Environ. Sci. , vol.4 , Issue.10 , pp. 3844-3860
    • Liu, X.H.1    Huang, J.Y.2
  • 28
    • 79955901188 scopus 로고    scopus 로고
    • In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a SnO2 Nanowire during Lithium Intercalation
    • Wang, C.-M.; Xu, W.; Liu, J.; Zhang, J.-G.; Saraf, L. V.; Arey, B. W.; Choi, D.; Yang, Z.-G.; Xiao, J.; Thevuthasan, S.; Baer, D. R. In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a SnO2 Nanowire during Lithium Intercalation Nano Lett. 2011, 11 (5) 1874-1880
    • (2011) Nano Lett. , vol.11 , Issue.5 , pp. 1874-1880
    • Wang, C.-M.1    Xu, W.2    Liu, J.3    Zhang, J.-G.4    Saraf, L.V.5    Arey, B.W.6    Choi, D.7    Yang, Z.-G.8    Xiao, J.9    Thevuthasan, S.10    Baer, D.R.11
  • 29
    • 0036036465 scopus 로고    scopus 로고
    • Phase-field models for microstructure evolution
    • Chen, L. Q. Phase-field models for microstructure evolution Annu. Rev. Mater. Res. 2002, 32, 113-140
    • (2002) Annu. Rev. Mater. Res. , vol.32 , pp. 113-140
    • Chen, L.Q.1
  • 31
    • 80052817703 scopus 로고    scopus 로고
    • Reversible Nanopore Formation in Ge Nanowires during Lithiation- Delithiation Cycling: An in Situ Transmission Electron Microscopy Study
    • Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y. Reversible Nanopore Formation in Ge Nanowires during Lithiation-Delithiation Cycling: An In Situ Transmission Electron Microscopy Study Nano Lett. 2011, 11 (9) 3991-3997
    • (2011) Nano Lett. , vol.11 , Issue.9 , pp. 3991-3997
    • Liu, X.H.1    Huang, S.2    Picraux, S.T.3    Li, J.4    Zhu, T.5    Huang, J.Y.6
  • 33
    • 84869463671 scopus 로고    scopus 로고
    • Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with in Situ Transmission Electron Microscopy
    • McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C.; Nix, W. D.; Cui, Y. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy Adv. Mater. 2012, 24 (45) 6034-6041
    • (2012) Adv. Mater. , vol.24 , Issue.45 , pp. 6034-6041
    • McDowell, M.T.1    Ryu, I.2    Lee, S.W.3    Wang, C.4    Nix, W.D.5    Cui, Y.6
  • 34
    • 84878593928 scopus 로고    scopus 로고
    • Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries
    • Huang, S.; Fan, F.; Li, J.; Zhang, S.; Zhu, T. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries Acta Mater. 2013, 61 (12) 4354-4364
    • (2013) Acta Mater. , vol.61 , Issue.12 , pp. 4354-4364
    • Huang, S.1    Fan, F.2    Li, J.3    Zhang, S.4    Zhu, T.5
  • 35
    • 84859716727 scopus 로고    scopus 로고
    • Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
    • Yang, H.; Huang, S.; Huang, X.; Fan, F.; Liang, W.; Liu, X. H.; Chen, L.-Q.; Huang, J. Y.; Li, J.; Zhu, T.; Zhang, S. Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires Nano Lett. 2012, 12 (4) 1953-1958
    • (2012) Nano Lett. , vol.12 , Issue.4 , pp. 1953-1958
    • Yang, H.1    Huang, S.2    Huang, X.3    Fan, F.4    Liang, W.5    Liu, X.H.6    Chen, L.-Q.7    Huang, J.Y.8    Li, J.9    Zhu, T.10    Zhang, S.11
  • 37
    • 84874440829 scopus 로고    scopus 로고
    • Self-Limiting Lithiation in Silicon Nanowires
    • Liu, X. H.; Fan, F.; Yang, H.; Zhang, S.; Huang, J. Y.; Zhu, T. Self-Limiting Lithiation in Silicon Nanowires ACS Nano 2013, 7 (2) 1495-1503
    • (2013) ACS Nano , vol.7 , Issue.2 , pp. 1495-1503
    • Liu, X.H.1    Fan, F.2    Yang, H.3    Zhang, S.4    Huang, J.Y.5    Zhu, T.6
  • 38
    • 84859371190 scopus 로고    scopus 로고
    • Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires
    • Grantab, R.; Shenoy, V. B. Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires J. Electrochem. Soc. 2012, 159 (5) A584-A591
    • (2012) J. Electrochem. Soc. , vol.159 , Issue.5
    • Grantab, R.1    Shenoy, V.B.2
  • 41
    • 84867222015 scopus 로고    scopus 로고
    • Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries
    • Yu, H.-C.; Chen, H.-Y.; Thornton, K. Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries Modell. Simul. Mater. Sci. Eng. 2012, 20 (7) 075008
    • (2012) Modell. Simul. Mater. Sci. Eng. , vol.20 , Issue.7 , pp. 075008
    • Yu, H.-C.1    Chen, H.-Y.2    Thornton, K.3
  • 42
    • 33845723210 scopus 로고    scopus 로고
    • Spectral methods for partial differential equations in irregular domains: The spectral smoothed boundary method
    • Bueno-Orovio, A.; Perez-Garcia, V. M.; Fenton, F. H. Spectral methods for partial differential equations in irregular domains: The spectral smoothed boundary method SIAM J. Sci. Comput. 2006, 28 (3) 886-900
    • (2006) SIAM J. Sci. Comput. , vol.28 , Issue.3 , pp. 886-900
    • Bueno-Orovio, A.1    Perez-Garcia, V.M.2    Fenton, F.H.3
  • 43
    • 33846368464 scopus 로고    scopus 로고
    • Phase field theory of heterogeneous crystal nucleation
    • Granasy, L.; Pusztai, T.; Saylor, D.; Warren, J. A. Phase field theory of heterogeneous crystal nucleation Phys. Rev. Lett. 2007, 98 (3) 035703
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.3 , pp. 035703
    • Granasy, L.1    Pusztai, T.2    Saylor, D.3    Warren, J.A.4
  • 44
    • 59649099152 scopus 로고    scopus 로고
    • Phase field approach to heterogeneous crystal nucleation in alloys
    • Warren, J. A.; Pusztai, T.; Kornyei, L.; Granasy, L. Phase field approach to heterogeneous crystal nucleation in alloys Phys. Rev. B 2009, 79 (1) 014204
    • (2009) Phys. Rev. B , vol.79 , Issue.1 , pp. 014204
    • Warren, J.A.1    Pusztai, T.2    Kornyei, L.3    Granasy, L.4
  • 45
    • 0001419804 scopus 로고
    • The Oxidation of Iron at 175 to 350 degrees C
    • Davies, D. E.; Evans, U. R.; Agar, J. N. The Oxidation of Iron at 175 to 350 degrees C Proc. R. Soc. A 1954, 225, 443-462
    • (1954) Proc. R. Soc. A , vol.225 , pp. 443-462
    • Davies, D.E.1    Evans, U.R.2    Agar, J.N.3
  • 46
    • 36149069822 scopus 로고
    • The oxidation of metals
    • Lawless, K. R. The oxidation of metals Rep. Prog. Phys. 1974, 37, 231-316
    • (1974) Rep. Prog. Phys. , vol.37 , pp. 231-316
    • Lawless, K.R.1
  • 47
    • 1642621158 scopus 로고
    • General Relationship for the Thermal Oxidation of Silicon
    • Deal, B. E.; Grove, A. S. General Relationship for the Thermal Oxidation of Silicon J. Appl. Phys. 1965, 36 (12) 3770-3778
    • (1965) J. Appl. Phys. , vol.36 , Issue.12 , pp. 3770-3778
    • Deal, B.E.1    Grove, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.