-
1
-
-
0035890440
-
Issues and Challenges Facing Rechargeable Lithium Batteries
-
Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries Nature 2001, 414, 359-367 10.1038/35104644
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
2
-
-
76249131385
-
Challenges for Rechargeable Li Batteries
-
Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries Chem. Mater. 2010, 22, 587-603 10.1021/cm901452z
-
(2010)
Chem. Mater.
, vol.22
, pp. 587-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
3
-
-
79960898109
-
Challenges for Na-Ion Negative Electrodes
-
Chevrier, V. L.; Ceder, G. Challenges for Na-Ion Negative Electrodes J. Electrochem. Soc. 2011, 158, A1011-A1014 10.1149/1.3607983
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
4
-
-
84882684643
-
Update on Na-Based Battery Materials. A Growing Research Path
-
Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-Based Battery Materials. A Growing Research Path Energy Environ. Sci. 2013, 6, 2312-2337 10.1039/c3ee41031e
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2312-2337
-
-
Palomares, V.1
Casas-Cabanas, M.2
Castillo-Martínez, E.3
Han, M.H.4
Rojo, T.5
-
5
-
-
84873405642
-
Sodium-Ion Batteries
-
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-Ion Batteries Adv. Funct. Mater. 2013, 23, 947-958 10.1002/adfm.201200691
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
6
-
-
84867297718
-
Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
-
Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries Adv. Energy Mater. 2012, 2, 710-721 10.1002/aenm.201200026
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.-W.1
Seo, D.-H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
7
-
-
0024068597
-
Electrochemical Intercalation of Sodium in Graphite
-
Ge, P. Electrochemical Intercalation of Sodium in Graphite Solid State Ionics 1988, 28-30, 1172-1175 10.1016/0167-2738(88)90351-7
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1172-1175
-
-
Ge, P.1
-
8
-
-
84908143622
-
Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena
-
Jache, B.; Adelhelm, P. Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena Angew. Chem., Int. Ed. 2014, 53, 10169-10173 10.1002/anie.201403734
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 10169-10173
-
-
Jache, B.1
Adelhelm, P.2
-
9
-
-
0034753822
-
Carbon Black: A Promising Electrode Material for Sodium-Ion Batteries
-
Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Carbon Black: A Promising Electrode Material for Sodium-Ion Batteries Electrochem. Commun. 2001, 3, 639-642 10.1016/S1388-2481(01)00244-2
-
(2001)
Electrochem. Commun.
, vol.3
, pp. 639-642
-
-
Alcántara, R.1
Jiménez-Mateos, J.M.2
Lavela, P.3
Tirado, J.L.4
-
10
-
-
84863832016
-
Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
-
Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications Nano Lett. 2012, 12, 3783-3787 10.1021/nl3016957
-
(2012)
Nano Lett.
, vol.12
, pp. 3783-3787
-
-
Cao, Y.1
Xiao, L.2
Sushko, M.L.3
Wang, W.4
Schwenzer, B.5
Xiao, J.6
Nie, Z.7
Saraf, L.V.8
Yang, Z.9
Liu, J.10
-
11
-
-
84902241202
-
In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers
-
Liu, Y.; Fan, F.; Wang, J.; Liu, Y.; Chen, H.; Jungjohann, K. L.; Xu, Y.; Zhu, Y.; Bigio, D.; Zhu, T.; Wang, C. In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers Nano Lett. 2014, 14, 3445-3452 10.1021/nl500970a
-
(2014)
Nano Lett.
, vol.14
, pp. 3445-3452
-
-
Liu, Y.1
Fan, F.2
Wang, J.3
Liu, Y.4
Chen, H.5
Jungjohann, K.L.6
Xu, Y.7
Zhu, Y.8
Bigio, D.9
Zhu, T.10
Wang, C.11
-
12
-
-
80052216133
-
Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies
-
Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Room-Temperature Sodium-Ion Batteries: Improving the Rate Capability of Carbon Anode Materials by Templating Strategies Energy Environ. Sci. 2011, 4, 3342-3345 10.1039/c1ee01744f
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3342-3345
-
-
Wenzel, S.1
Hara, T.2
Janek, J.3
Adelhelm, P.4
-
13
-
-
84869168616
-
Reversible Insertion of Sodium in Tin
-
Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible Insertion of Sodium in Tin J. Electrochem. Soc. 2012, 159, A1801-A1805 10.1149/2.037211jes
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A1801-A1805
-
-
Ellis, L.D.1
Hatchard, T.D.2
Obrovac, M.N.3
-
14
-
-
84869152614
-
Microstructural Evolution of Tin Nanoparticles during in Situ Sodium Insertion and Extraction
-
Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural Evolution of Tin Nanoparticles during in Situ Sodium Insertion and Extraction Nano Lett. 2012, 12, 5897-5902 10.1021/nl303305c
-
(2012)
Nano Lett.
, vol.12
, pp. 5897-5902
-
-
Wang, J.W.1
Liu, X.H.2
Mao, S.X.3
Huang, J.Y.4
-
15
-
-
84871591420
-
Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism
-
Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism J. Am. Chem. Soc. 2012, 134, 20805-20811 10.1021/ja310347x
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20805-20811
-
-
Darwiche, A.1
Marino, C.2
Sougrati, M.T.3
Fraisse, B.4
Stievano, L.5
Monconduit, L.6
-
16
-
-
84862527593
-
High Capacity Na-Storage and Superior Cyclability of Nanocomposite Sb/C Anode for Na-Ion Batteries
-
Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. High Capacity Na-Storage and Superior Cyclability of Nanocomposite Sb/C Anode for Na-Ion Batteries Chem. Commun. (Cambridge, U. K.) 2012, 48, 7070-7072 10.1039/c2cc32730a
-
(2012)
Chem. Commun. (Cambridge, U. K.)
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
Chen, Y.2
Wu, L.3
Cao, Y.4
Ai, X.5
Yang, H.6
-
17
-
-
84896385034
-
Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes: Nano versus Bulk
-
He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes: Nano versus Bulk Nano Lett. 2014, 14, 1255-1262 10.1021/nl404165c
-
(2014)
Nano Lett.
, vol.14
, pp. 1255-1262
-
-
He, M.1
Kravchyk, K.2
Walter, M.3
Kovalenko, M.V.4
-
18
-
-
84863230428
-
High Capacity, Reversible Alloying Reactions in SnSb/C Nanocomposites for Na-Ion Battery Applications
-
Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. High Capacity, Reversible Alloying Reactions in SnSb/C Nanocomposites for Na-Ion Battery Applications Chem. Commun. 2012, 48, 3321-3323 10.1039/c2cc17129e
-
(2012)
Chem. Commun.
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
Cao, Y.2
Xiao, J.3
Wang, W.4
Kovarik, L.5
Nie, Z.6
Liu, J.7
-
19
-
-
84901684098
-
Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys
-
Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys ACS Nano 2014, 8, 4415-4429 10.1021/nn4063598
-
(2014)
ACS Nano
, vol.8
, pp. 4415-4429
-
-
Farbod, B.1
Cui, K.2
Kalisvaart, W.P.3
Kupsta, M.4
Zahiri, B.5
Kohandehghan, A.6
Lotfabad, E.M.7
Li, Z.8
Luber, E.J.9
Mitlin, D.10
-
20
-
-
84883857525
-
High Capacity Lithium Ion Battery Anodes of Silicon and Germanium
-
Bogart, T. D.; Chockla, A. M.; Korgel, B. A. High Capacity Lithium Ion Battery Anodes of Silicon and Germanium Curr. Opin. Chem. Eng. 2013, 2, 286-293 10.1016/j.coche.2013.07.001
-
(2013)
Curr. Opin. Chem. Eng.
, vol.2
, pp. 286-293
-
-
Bogart, T.D.1
Chockla, A.M.2
Korgel, B.A.3
-
21
-
-
84867672114
-
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
-
Wu, H.; Cui, Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries Nano Today 2012, 7, 414-429 10.1016/j.nantod.2012.08.004
-
(2012)
Nano Today
, vol.7
, pp. 414-429
-
-
Wu, H.1
Cui, Y.2
-
22
-
-
80053298772
-
In Situ TEM Electrochemistry of Anode Materials in Lithium Ion Batteries
-
Liu, X. H.; Huang, J. Y. In Situ TEM Electrochemistry of Anode Materials in Lithium Ion Batteries Energy Environ. Sci. 2011, 4, 3844 10.1039/c1ee01918j
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3844
-
-
Liu, X.H.1
Huang, J.Y.2
-
23
-
-
84886905402
-
Comparative Computational Study of the Diffusion of Li, Na, and Mg in Silicon Including the Effect of Vibrations
-
Legrain, F.; Malyi, O. I.; Manzhos, S. Comparative Computational Study of the Diffusion of Li, Na, and Mg in Silicon Including the Effect of Vibrations Solid State Ionics 2013, 253, 157-163 10.1016/j.ssi.2013.09.038
-
(2013)
Solid State Ionics
, vol.253
, pp. 157-163
-
-
Legrain, F.1
Malyi, O.I.2
Manzhos, S.3
-
24
-
-
84883261226
-
Germanium as Negative Electrode Material for Sodium-Ion Batteries
-
Baggetto, L.; Keum; Jong, K.; Browning; James, F.; Veith; Gabriel, M. Germanium as Negative Electrode Material for Sodium-Ion Batteries Electrochem. Commun. 2013, 34, 41-44 10.1016/j.elecom.2013.05.025
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 41-44
-
-
Baggetto, L.1
Keum2
Jong, K.3
Browning4
James, F.5
Veith6
Gabriel, M.7
-
25
-
-
84884549870
-
Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material
-
Abel, P. R.; Lin, Y.-M.; de Souza, T.; Chou, C.-Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material J. Phys. Chem. C 2013, 117, 18885-18890 10.1021/jp407322k
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 18885-18890
-
-
Abel, P.R.1
Lin, Y.-M.2
De Souza, T.3
Chou, C.-Y.4
Gupta, A.5
Goodenough, J.B.6
Hwang, G.S.7
Heller, A.8
Mullins, C.B.9
-
26
-
-
84907875612
-
Activation with Li Enables Facile Sodium Storage in Germanium
-
Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; Kalisvaart, W. P.; Mitlin, D. Activation with Li Enables Facile Sodium Storage in Germanium Nano Lett. 2014, 14, 5873-5882 10.1021/nl502812x
-
(2014)
Nano Lett.
, vol.14
, pp. 5873-5882
-
-
Kohandehghan, A.1
Cui, K.2
Kupsta, M.3
Ding, J.4
Memarzadeh Lotfabad, E.5
Kalisvaart, W.P.6
Mitlin, D.7
-
27
-
-
80052817703
-
Reversible Nanopore Formation in Ge Nanowires during Lithiation-Delithiation Cycling: An in Situ Transmission Electron Microscopy Study
-
Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y. Reversible Nanopore Formation in Ge Nanowires during Lithiation-Delithiation Cycling: An in Situ Transmission Electron Microscopy Study Nano Lett. 2011, 11, 3991-3997 10.1021/nl2024118
-
(2011)
Nano Lett.
, vol.11
, pp. 3991-3997
-
-
Liu, X.H.1
Huang, S.2
Picraux, S.T.3
Li, J.4
Zhu, T.5
Huang, J.Y.6
-
28
-
-
84894180897
-
High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles through in Situ Formation of a Continuous Porous Network
-
Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M. High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles through in Situ Formation of a Continuous Porous Network Nano Lett. 2014, 14, 716-723 10.1021/nl403979s
-
(2014)
Nano Lett.
, vol.14
, pp. 716-723
-
-
Kennedy, T.1
Mullane, E.2
Geaney, H.3
Osiak, M.4
O'Dwyer, C.5
Ryan, K.M.6
-
29
-
-
77953622933
-
Corrosion Resistance of Thiol- and Alkene-Passivated Germanium Nanowires
-
Holmberg, V. C.; Korgel, B. A. Corrosion Resistance of Thiol- and Alkene-Passivated Germanium Nanowires Chem. Mater. 2010, 22, 3698-3703 10.1021/cm1005696
-
(2010)
Chem. Mater.
, vol.22
, pp. 3698-3703
-
-
Holmberg, V.C.1
Korgel, B.A.2
-
30
-
-
0037418375
-
Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals
-
Hanrath, T.; Korgel, B. A. Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals Adv. Mater. 2003, 15, 437-440 10.1002/adma.200390101
-
(2003)
Adv. Mater.
, vol.15
, pp. 437-440
-
-
Hanrath, T.1
Korgel, B.A.2
-
31
-
-
84900018628
-
A Single-Step Reaction for Silicon and Germanium Nanorods
-
Lu, X.; Korgel, B. A. A Single-Step Reaction for Silicon and Germanium Nanorods Chem.-Eur. J. 2014, 20, 5874-5879 10.1002/chem.201402230
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 5874-5879
-
-
Lu, X.1
Korgel, B.A.2
-
32
-
-
84863229783
-
Size-Dependent Fracture of Silicon Nanoparticles during Lithiation
-
Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-Dependent Fracture of Silicon Nanoparticles during Lithiation ACS Nano 2012, 6, 1522-1531 10.1021/nn204476h
-
(2012)
ACS Nano
, vol.6
, pp. 1522-1531
-
-
Liu, X.H.1
Zhong, L.2
Huang, S.3
Mao, S.X.4
Zhu, T.5
Huang, J.Y.6
-
33
-
-
80051627673
-
Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
-
Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W.; Cho, J.-H.; Epstein, E.; Dayeh, S. a; Picraux, S. T.; Zhu, T.; Li, J.; Sullivan, J. P.; Cumings, J.; Wang, C.; Mao, S. X.; Ye, Z. Z.; Zhang, S.; Huang, J. Y. Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation Nano Lett. 2011, 11, 3312-3318 10.1021/nl201684d
-
(2011)
Nano Lett.
, vol.11
, pp. 3312-3318
-
-
Liu, X.H.1
Zheng, H.2
Zhong, L.3
Huang, S.4
Karki, K.5
Zhang, L.Q.6
Liu, Y.7
Kushima, A.8
Liang, W.T.9
Wang, J.W.10
Cho, J.-H.11
Epstein, E.12
Dayeh, S.A.13
Picraux, S.T.14
Zhu, T.15
Li, J.16
Sullivan, J.P.17
Cumings, J.18
Wang, C.19
Mao, S.X.20
Ye, Z.Z.21
Zhang, S.22
Huang, J.Y.23
more..
-
34
-
-
84887854776
-
2 Nanowires for Sodium-Ion Batteries
-
2 Nanowires for Sodium-Ion Batteries Nano Lett. 2013, 13, 5203-5211 10.1021/nl402633n
-
(2013)
Nano Lett.
, vol.13
, pp. 5203-5211
-
-
Gu, M.1
Kushima, A.2
Shao, Y.3
Zhang, J.-G.4
Liu, J.5
Browning, N.D.6
Li, J.7
Wang, C.8
-
35
-
-
0000467240
-
Theory of Self-Diffusion in Alkali Metals: I. Results for Monovacancies in Li, Na, and K
-
Schott, V.; Fähnle, M.; Madden, P. A. Theory of Self-Diffusion in Alkali Metals: I. Results for Monovacancies in Li, Na, and K J. Phys.: Condens. Matter 2000, 12, 1171-1194 10.1088/0953-8984/12/7/303
-
(2000)
J. Phys.: Condens. Matter
, vol.12
, pp. 1171-1194
-
-
Schott, V.1
Fähnle, M.2
Madden, P.A.3
-
36
-
-
2342561300
-
Radiation Damage in the TEM and SEM
-
Egerton, R. F.; Li, P.; Malac, M. Radiation Damage in the TEM and SEM Micron 2004, 35, 399-409 10.1016/j.micron.2004.02.003
-
(2004)
Micron
, vol.35
, pp. 399-409
-
-
Egerton, R.F.1
Li, P.2
Malac, M.3
-
37
-
-
79960218035
-
Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation
-
Lee, S.; McDowell, M.; Choi, J.; Cui, Y. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation Nano Lett. 2011, 11, 3034-3039 10.1021/nl201787r
-
(2011)
Nano Lett.
, vol.11
, pp. 3034-3039
-
-
Lee, S.1
McDowell, M.2
Choi, J.3
Cui, Y.4
-
38
-
-
84933530864
-
Fracture of Crystalline Germanium during Electrochemical Lithium Insertion
-
Lee, S. W.; Ryu, I.; Nix, W. D.; Cui, Y. Fracture of Crystalline Germanium during Electrochemical Lithium Insertion Extrem. Mech. Lett. 2015, 2, 15-19 10.1016/j.eml.2015.01.009
-
(2015)
Extrem. Mech. Lett.
, vol.2
, pp. 15-19
-
-
Lee, S.W.1
Ryu, I.2
Nix, W.D.3
Cui, Y.4
-
39
-
-
84907157685
-
Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin
-
Bogart, T. D.; Lu, X.; Gu, M.; Wang, C.; Korgel, B. A. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin RSC Adv. 2014, 4, 42022-42028 10.1039/C4RA07418A
-
(2014)
RSC Adv.
, vol.4
, pp. 42022-42028
-
-
Bogart, T.D.1
Lu, X.2
Gu, M.3
Wang, C.4
Korgel, B.A.5
-
40
-
-
84942540252
-
In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics
-
Lu, X.; Bogart, T. D.; Gu, M.; Wang, C.; Korgel, B. A. In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics J. Phys. Chem. C 2015, 119, 21889-218895 10.1021/acs.jpcc.5b06386
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 21889-218895
-
-
Lu, X.1
Bogart, T.D.2
Gu, M.3
Wang, C.4
Korgel, B.A.5
-
41
-
-
84869081646
-
In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon
-
Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. a; Davydov, A. V.; Mao, S. X.; Picraux, S. T.; Zhang, S.; Li, J.; Zhu, T.; Huang, J. Y. In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon Nat. Nanotechnol. 2012, 7, 749-756 10.1038/nnano.2012.170
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 749-756
-
-
Liu, X.H.1
Wang, J.W.2
Huang, S.3
Fan, F.4
Huang, X.5
Liu, Y.6
Krylyuk, S.7
Yoo, J.8
Dayeh, S.A.9
Davydov, A.V.10
Mao, S.X.11
Picraux, S.T.12
Zhang, S.13
Li, J.14
Zhu, T.15
Huang, J.Y.16
-
42
-
-
84880830702
-
Electronic Origin for the Phase Transition from Amorphous Li(x)Si to Crystalline Li15Si4
-
Gu, M.; Wang, Z.; Connell, J. G.; Perea, D. E.; Lauhon, L. J.; Gao, F.; Wang, C. Electronic Origin for the Phase Transition from Amorphous Li(x)Si to Crystalline Li15Si4 ACS Nano 2013, 7, 6303-6309 10.1021/nn402349j
-
(2013)
ACS Nano
, vol.7
, pp. 6303-6309
-
-
Gu, M.1
Wang, Z.2
Connell, J.G.3
Perea, D.E.4
Lauhon, L.J.5
Gao, F.6
Wang, C.7
-
43
-
-
84874440829
-
Self-Limiting Lithiation in Silicon Nanowires
-
Liu, X. H.; Fan, F.; Yang, H.; Zhang, S.; Huang, J. Y.; Zhu, T. Self-Limiting Lithiation in Silicon Nanowires ACS Nano 2013, 7, 1495-1503 10.1021/nn305282d
-
(2013)
ACS Nano
, vol.7
, pp. 1495-1503
-
-
Liu, X.H.1
Fan, F.2
Yang, H.3
Zhang, S.4
Huang, J.Y.5
Zhu, T.6
-
44
-
-
0014508996
-
Density of "Amorphous" Ge
-
Light, T. B. Density of "Amorphous" Ge Phys. Rev. Lett. 1969, 22, 999-1000 10.1103/PhysRevLett.22.999
-
(1969)
Phys. Rev. Lett.
, vol.22
, pp. 999-1000
-
-
Light, T.B.1
-
45
-
-
84876534304
-
Tough Germanium Nanoparticles under Electrochemical Cycling
-
Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S. Tough Germanium Nanoparticles under Electrochemical Cycling ACS Nano 2013, 7, 3427-3433 10.1021/nn400330h
-
(2013)
ACS Nano
, vol.7
, pp. 3427-3433
-
-
Liang, W.1
Yang, H.2
Fan, F.3
Liu, Y.4
Liu, X.H.5
Huang, J.Y.6
Zhu, T.7
Zhang, S.8
-
46
-
-
79958851687
-
Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
-
Liu, X. H.; Zhang, L. Q.; Zhong, L.; Liu, Y.; Zheng, H.; Wang, J. W.; Cho, J.-H.; Dayeh, S. A.; Picraux, S. T.; Sullivan, J. P.; Mao, S. X.; Ye, Z. Z.; Huang, J. Y. Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes Nano Lett. 2011, 11, 2251-2258 10.1021/nl200412p
-
(2011)
Nano Lett.
, vol.11
, pp. 2251-2258
-
-
Liu, X.H.1
Zhang, L.Q.2
Zhong, L.3
Liu, Y.4
Zheng, H.5
Wang, J.W.6
Cho, J.-H.7
Dayeh, S.A.8
Picraux, S.T.9
Sullivan, J.P.10
Mao, S.X.11
Ye, Z.Z.12
Huang, J.Y.13
-
47
-
-
84959163295
-
-
note
-
The volume expansion of 303% is calculated based on the diameter of the a-Ge nanowire prior to Na insertion (first image in Figure 4 b). This value is 390% when the volume of the crystalline Ge nanowire is taken as the basis (first image in Figure 4 a).
-
-
-
-
48
-
-
84980914422
-
Das Verhalten der Alkalimetalle zu Halbmetallen. XI. Die Kristallstruktur von NaSi und NaGe
-
Witte, J.; Schnering, H. G.; Klemm, W. Das Verhalten Der Alkalimetalle Zu Halbmetallen. XI. Die Kristallstruktur von NaSi Und NaGe Z. Anorg. Allg. Chem. 1964, 327, 260-273 10.1002/zaac.19643270319
-
(1964)
Z. Anorg. Allg. Chem.
, vol.327
, pp. 260-273
-
-
Witte, J.1
Schnering, H.G.2
Klemm, W.3
-
49
-
-
84897115828
-
Supplemental Literature Review of Binary Phase Diagrams: Al-Br, B-Cd, Cd-Mg, Cd-Ti, Er-Fe, Fe-Nd, Ge-Na, Ge-Ni, Ge-Sc, Hf-W, Pb-Yb, and Re-Ti
-
Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams: Al-Br, B-Cd, Cd-Mg, Cd-Ti, Er-Fe, Fe-Nd, Ge-Na, Ge-Ni, Ge-Sc, Hf-W, Pb-Yb, and Re-Ti J. Phase Equilib. Diffus. 2014, 35, 195-207 10.1007/s11669-013-0273-7
-
(2014)
J. Phase Equilib. Diffus.
, vol.35
, pp. 195-207
-
-
Okamoto, H.1
-
50
-
-
84898080702
-
Atom-Level Understanding of the Sodiation Process in Silicon Anode Material
-
Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y.-K. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material J. Phys. Chem. Lett. 2014, 5, 1283-1288 10.1021/jz5002743
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 1283-1288
-
-
Jung, S.C.1
Jung, D.S.2
Choi, J.W.3
Han, Y.-K.4
-
51
-
-
84939826077
-
Rational Material Design for Ultrafast Rechargeable Lithium-Ion Batteries
-
Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X. Rational Material Design for Ultrafast Rechargeable Lithium-Ion Batteries Chem. Soc. Rev. 2015, 44, 5926-5940 10.1039/C4CS00442F
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5926-5940
-
-
Tang, Y.1
Zhang, Y.2
Li, W.3
Ma, B.4
Chen, X.5
-
52
-
-
77949466983
-
Controlling Diffusion of Lithium in Silicon Nanostructures
-
Chan, T.-L.; Chelikowsky, J. R. Controlling Diffusion of Lithium in Silicon Nanostructures Nano Lett. 2010, 10, 821-825 10.1021/nl903183n
-
(2010)
Nano Lett.
, vol.10
, pp. 821-825
-
-
Chan, T.-L.1
Chelikowsky, J.R.2
-
53
-
-
0001135711
-
Determination of Diffusion Mechanisms in Amorphous Silicon
-
Coffa, S.; Poate, J. M.; Jacobson, D. C.; Frank, W.; Gustin, W. Determination of Diffusion Mechanisms in Amorphous Silicon Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 8355-8358 10.1103/PhysRevB.45.8355
-
(1992)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.45
, pp. 8355-8358
-
-
Coffa, S.1
Poate, J.M.2
Jacobson, D.C.3
Frank, W.4
Gustin, W.5
-
54
-
-
0000656866
-
Impurity Trapping and Gettering in Amorphous Silicon
-
Coffa, S.; Poate, J. M.; Jacobson, D. C.; Polman, A. Impurity Trapping and Gettering in Amorphous Silicon Appl. Phys. Lett. 1991, 58, 2916-2918 10.1063/1.104721
-
(1991)
Appl. Phys. Lett.
, vol.58
, pp. 2916-2918
-
-
Coffa, S.1
Poate, J.M.2
Jacobson, D.C.3
Polman, A.4
|