-
1
-
-
84942376822
-
Boeing's Dreamliner batteries inherently unsafe'-and yours may be too
-
January
-
Gallagher, S. Boeing's Dreamliner batteries inherently unsafe'-and yours may be too. Ars Technica (January, 2013); http://arstechnica.com/business/2013/01/ boeings-dreamliner-batteries-inherently-unsafe-and-yours-may-be-too
-
(2013)
Ars Technica
-
-
Gallagher, S.1
-
2
-
-
84942376823
-
Feds review third Tesla fire as shares fall again
-
7 November
-
Meier, F. &Woodyard, C. Feds review third Tesla fire as shares fall again. USA Today (7 November 2013); http://www.usatoday.com/story/money/cars/2013/ 11/07/third-fire-in-tesla-model-s-reported/3465717
-
(2013)
USA Today
-
-
Meier, F.1
Woodyard, C.2
-
3
-
-
67349207720
-
Inorganic solid Li ion conductors: An overview
-
Knauth, P. Inorganic solid Li ion conductors: An overview. Solid State Ion. 180, 911-916 (2009).
-
(2009)
Solid State Ion.
, vol.180
, pp. 911-916
-
-
Knauth, P.1
-
4
-
-
0034320019
-
Thin-film lithium and lithium-ion batteries
-
Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33-45 (2000).
-
(2000)
Solid State Ion.
, vol.135
, pp. 33-45
-
-
Bates, J.B.1
Dudney, N.J.2
Neudecker, B.3
Ueda, A.4
Evans, C.D.5
-
5
-
-
84923368018
-
Solid electrolyte: The key for high-voltage lithium batteries
-
Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401408
-
-
Li, J.1
Ma, C.2
Chi, M.3
Liang, C.4
Dudney, N.J.5
-
6
-
-
0020721391
-
The A-C conductivity of polycrystalline LISICON Li2C2xZn-xGeO4, and a model for intergranular constriction resistances
-
Bruce, P. G. The A-C conductivity of polycrystalline LISICON, Li2C2xZn1-xGeO4, and a model for intergranular constriction resistances. J. Electrochem. Soc. 130, 662-669 (1983).
-
(1983)
J. Electrochem. Soc.
, vol.130
, pp. 662-669
-
-
Bruce, P.G.1
-
7
-
-
0025418194
-
Ionic conductivity of solid electrolytes based on lithium titanium phosphate
-
Aono, H. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023-1027 (1990).
-
(1990)
J. Electrochem. Soc.
, vol.137
, pp. 1023-1027
-
-
Aono, H.1
-
8
-
-
0027610976
-
High ionic conductivity in lithium lanthanum titanate
-
Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689-693 (1993).
-
(1993)
Solid State Commun.
, vol.86
, pp. 689-693
-
-
Inaguma, Y.1
-
9
-
-
35349008587
-
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
-
Murugan, R., Thangadurai, V. &Weppner,W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778-7781 (2007).
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 7778-7781
-
-
Murugan, R.1
Thangadurai, V.2
Weppner, W.3
-
10
-
-
0031076663
-
A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride
-
Yu, X., Bates, J. B., Jellison, G. E. Jr & Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
-
(1997)
J. Electrochem. Soc.
, vol.144
, pp. 524-532
-
-
Yu, X.1
Bates, J.B.2
Jellison, Jr.G.E.3
Hart, F.X.4
-
11
-
-
0000482535
-
Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system
-
Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742 (2001).
-
(2001)
J. Electrochem. Soc.
, vol.148
, pp. A742
-
-
Kanno, R.1
Murayama, M.2
-
12
-
-
34447250977
-
Crystal structure of a superionic conductor Li7P3S11
-
Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163-1167 (2007).
-
(2007)
Solid State Ion.
, vol.178
, pp. 1163-1167
-
-
Yamane, H.1
-
13
-
-
84893028915
-
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
-
Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627-631 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 627-631
-
-
Seino, Y.1
Ota, T.2
Takada, K.3
Hayashi, A.4
Tatsumisago, M.5
-
14
-
-
80052054095
-
A lithium superionic conductor
-
Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682-686 (2011).
-
(2011)
Nature Mater.
, vol.10
, pp. 682-686
-
-
Kamaya, N.1
-
15
-
-
84887886120
-
Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes
-
Kuhn, A., Duppel, V. & Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548-3552 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3548-3552
-
-
Kuhn, A.1
Duppel, V.2
Lotsch, B.V.3
-
16
-
-
84871329876
-
Phase stability, electrochemical stability and ionic conductivity of the Li10- 1MP2X12 (M D Ge, Si, Sn, Al or P, and X D O, S or Se) family of superionic conductors
-
Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10- 1MP2X12 (M D Ge, Si, Sn, Al or P, and X D O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148-156 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 148-156
-
-
Ong, S.P.1
-
17
-
-
84886549418
-
Li10SnP2S12: An affordable lithium superionic conductor
-
Bron, P. et al. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694-15697 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 15694-15697
-
-
Bron, P.1
-
18
-
-
84903546514
-
A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes
-
Kuhn, A. et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669-14674 (2014).
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 14669-14674
-
-
Kuhn, A.1
-
19
-
-
84923346320
-
Empowering the lithium metal battery through a silicon-based superionic conductor
-
Whiteley, J. M.,Woo, J. H., Hu, E., Nam, K.-W. & Lee, S.-H. Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812-A1817 (2014).
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A1812-A1817
-
-
Whiteley, J.M.1
Woo, J.H.2
Hu, E.3
Nam, K.-W.4
Lee, S.-H.5
-
20
-
-
84906242666
-
Syn thesis structure and lithium ionic conductivity of solid solutions of Li10(Ge1-xMx) P2S12 (M D Si, Sn)
-
Kato, Y. et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-xMx)P2S12 (M D Si, Sn). J. Power Sources 271, 60-64 (2014).
-
(2014)
J. Power Sources
, vol.271
, pp. 60-64
-
-
Kato, Y.1
-
21
-
-
84872735242
-
Understanding Li diffusion in Li-intercalation compounds
-
Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216-1225 (2013).
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1216-1225
-
-
Van Der Ven, A.1
Bhattacharya, J.2
Belak, A.A.3
-
22
-
-
84908136453
-
The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes
-
Urban, A., Lee, J. & Ceder, G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Energy Mater. 4, 1400478 (2014).
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400478
-
-
Urban, A.1
Lee, J.2
Ceder, G.3
-
23
-
-
84879867575
-
Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12
-
Kuhn, A., Kohler, J. & Lotsch, B. V. Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 15, 11620-11622 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 11620-11622
-
-
Kuhn, A.1
Kohler, J.2
Lotsch, B.V.3
-
24
-
-
33749000896
-
Factors that affect Li mobility in layered lithium transition metal oxides
-
Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).
-
(2006)
Phys. Rev. B
, vol.74
, pp. 094105
-
-
Kang, K.1
Ceder, G.2
-
26
-
-
2942594262
-
Material design of new lithium ionic conductor, thio-LISICON, in the Li2S-P2S5 system
-
Murayama, M., Sonoyama, N., Yamada, A. & Kanno, R. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S-P2S5 system. Solid State Ion. 170, 173-180 (2004).
-
(2004)
Solid State Ion.
, vol.170
, pp. 173-180
-
-
Murayama, M.1
Sonoyama, N.2
Yamada, A.3
Kanno, R.4
-
27
-
-
0035509065
-
First-principles theory of ionic diffusion with nondilute carriers
-
Van der Ven, A., Ceder, G., Asta, M. & Tepesch, P. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 184307
-
-
Van Der Ven, A.1
Ceder, G.2
Asta, M.3
Tepesch, P.4
-
28
-
-
84855666963
-
First principles study of the Li10GeP2S12 lithium super ionic conductor material
-
Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15-17 (2012).
-
(2012)
Chem. Mater.
, vol.24
, pp. 15-17
-
-
Mo, Y.1
Ong, S.P.2
Ceder, G.3
-
29
-
-
0000157972
-
Li3BS3
-
Vinatier, P., Gravereau, P., Menetrier, M., Trut, L. & Levasseur, A. Li3BS3. Acta Crystallogr. C 50, 1180-1183 (1994).
-
(1994)
Acta Crystallogr. C
, vol.50
, pp. 1180-1183
-
-
Vinatier, P.1
Gravereau, P.2
Menetrier, M.3
Trut, L.4
Levasseur, A.5
-
30
-
-
79251594252
-
Crystal structure and phase transitions of the lithium ionic conductor Li3PS4
-
Homma, K. et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 182, 53-58 (2011).
-
(2011)
Solid State Ion.
, vol.182
, pp. 53-58
-
-
Homma, K.1
-
31
-
-
85018145574
-
Anomalous high ionic conductivity of nanoporous Li3PS4
-
Liu, Z. et al. Anomalous high ionic conductivity of nanoporous --Li3PS4. J. Am. Chem. Soc. 135, 20-23 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 20-23
-
-
Liu, Z.1
-
32
-
-
84866392772
-
Superionic conductivity in lithium-rich anti-perovskites
-
Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042-15047 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15042-15047
-
-
Zhao, Y.1
Daemen, L.L.2
-
33
-
-
84890391918
-
Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors
-
Emly, A., Kioupakis, E. & Van der Ven, A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater. 25, 4663-4670 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 4663-4670
-
-
Emly, A.1
Kioupakis, E.2
Van Der Ven, A.3
-
34
-
-
4143086086
-
Superionics: Crystal structures and conduction processes
-
Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233-1314 (2004).
-
(2004)
Rep. Prog. Phys.
, vol.67
, pp. 1233-1314
-
-
Hull, S.1
-
35
-
-
84882655041
-
Mg rechargeable batteries: An on-going challenge
-
Yoo, H. D. et al. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6, 2265-2279 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2265-2279
-
-
Yoo, H.D.1
-
36
-
-
38349054817
-
Li6PS5X: A class of crystalline Li-rich solids with an unusually high LiC mobility
-
Deiseroth, H. J. et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high LiC mobility. Angew. Chem. Int. Ed. 47, 755-758 (2008).
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 755-758
-
-
Deiseroth, H.J.1
-
37
-
-
84866438723
-
Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
-
Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Commun. 3, 856 (2012).
-
(2012)
Nature Commun.
, vol.3
, pp. 856
-
-
Hayashi, A.1
Noi, K.2
Sakuda, A.3
Tatsumisago, M.4
-
38
-
-
84910652190
-
X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4-6Na4SiS4 glass-ceramic electrolytes
-
Tanibata, N. et al. X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4-6Na4SiS4 glass-ceramic electrolytes. ChemElectroChem 1, 1130-1132 (2014).
-
(2014)
ChemElectroChem
, vol.1
, pp. 1130-1132
-
-
Tanibata, N.1
-
39
-
-
80051710776
-
Lithium distribution in aluminum-free cubic Li7La3Zr2O12
-
Xie, H., Alonso, J. A., Li, Y., Fernndez-Daz, M. T. & Goodenough, J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23, 3587-3589 (2011).
-
(2011)
Chem. Mater.
, vol.23
, pp. 3587-3589
-
-
Xie, H.1
Alonso, J.A.2
Li, Y.3
Fernndez-Daz, M.T.4
Goodenough, J.B.5
-
40
-
-
84863280424
-
Mechanisms of LiC transport in garnet-type cubic Li3CxLa3M2O12 (M D Te, Nb, Zr)
-
Xu, M. et al. Mechanisms of LiC transport in garnet-type cubic Li3CxLa3M2O12 (M D Te, Nb, Zr). Phys. Rev. B 85, 052301 (2012).
-
(2012)
Phys. Rev. B
, vol.85
, pp. 052301
-
-
Xu, M.1
-
41
-
-
84882237641
-
Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7C2x-y (La3-xRbx )( Zr2-yTay) O12 (0-x-0.375,0-y-1) superionic conductor: A first principles investigation
-
Miara, L. J. et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7C2x-y (La3-xRbx ) (Zr2-yTay)O12 (0-x-0.375,0-y-1) superionic conductor: A first principles investigation. Chem. Mater. 25, 3048-3055 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 3048-3055
-
-
Miara, L.J.1
-
42
-
-
84875651186
-
Lithium superionic sulfide cathode for all-solid lithiumffsulfur batteries
-
Lin, Z., Liu, Z., Dudney, N. J. & Liang, C. Lithium superionic sulfide cathode for all-solid lithiumffsulfur batteries. ACS Nano 7, 2829-2833 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 2829-2833
-
-
Lin, Z.1
Liu, Z.2
Dudney, N.J.3
Liang, C.4
-
43
-
-
84870720323
-
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
-
Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314-319 (2013).
-
(2013)
Comput. Mater. Sci.
, vol.68
, pp. 314-319
-
-
Ong, S.P.1
-
44
-
-
82055197100
-
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
-
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272-1276 (2011).
-
(2011)
J. Appl. Crystallogr.
, vol.44
, pp. 1272-1276
-
-
Momma, K.1
Izumi, F.2
-
45
-
-
4243943295
-
Generalized gradient approximation made simple
-
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865-3868
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
46
-
-
25744460922
-
Projector augmented-wave method
-
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953-17979
-
-
Blochl, P.E.1
-
47
-
-
2442537377
-
Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G. Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169-11186
-
-
Kresse, G.1
-
48
-
-
0034513054
-
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
-
Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901-9904 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 9901-9904
-
-
Henkelman, G.1
Uberuaga, B.P.2
Jonsson, H.3
|