-
1
-
-
47249135099
-
Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration
-
Ai, L., M. Rouhanizadeh, J. C. Wu, W. Takabe, H. Yu, M. Alavi, R. Li, Y. Chu, J. Miller, D. D. Heistad, and T. K. Hsiai. Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration. Am. J. Physiol. Cell Physiol. 294:C1576–C1585, 2008.
-
(2008)
Am. J. Physiol. Cell Physiol
, vol.294
, pp. C1576-C1585
-
-
Ai, L.1
Rouhanizadeh, M.2
Wu, J.C.3
Takabe, W.4
Yu, H.5
Alavi, M.6
Li, R.7
Chu, Y.8
Miller, J.9
Heistad, D.D.10
Hsiai, T.K.11
-
2
-
-
4143055746
-
Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction
-
Ali, M. H., D. P. Pearlstein, C. E. Mathieu, and P. T. Schumacker. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L486–L496, 2004.
-
(2004)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.287
, pp. L486-L496
-
-
Ali, M.H.1
Pearlstein, D.P.2
Mathieu, C.E.3
Schumacker, P.T.4
-
3
-
-
84902131678
-
Mechanisms of plaque formation and rupture
-
Bentzon, J. F., F. Otsuka, R. Virmani, and E. Falk. Mechanisms of plaque formation and rupture. Circ. Res. 114:1852–1866, 2014.
-
(2014)
Circ. Res
, vol.114
, pp. 1852-1866
-
-
Bentzon, J.F.1
Otsuka, F.2
Virmani, R.3
Falk, E.4
-
4
-
-
0034456720
-
Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone
-
Boveris, A., and E. Cadenas. Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250, 2000.
-
(2000)
IUBMB Life
, vol.50
, pp. 245-250
-
-
Boveris, A.1
Cadenas, E.2
-
5
-
-
0030551050
-
Endothelial cell injury in cardiovascular surgery: ischemia-reperfusion
-
Boyle, Jr., E. M., T. H. Pohlman, C. J. Cornejo, and E. D. Verrier. Endothelial cell injury in cardiovascular surgery: ischemia-reperfusion. Ann. Thorac. Surg. 62:1868–1875, 1996.
-
(1996)
Ann. Thorac. Surg
, vol.62
, pp. 1868-1875
-
-
Boyle, E.M.1
Pohlman, T.H.2
Cornejo, C.J.3
Verrier, E.D.4
-
6
-
-
0346487261
-
Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition
-
Brookes, P. S., and V. M. Darley-Usmar. Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am. J. Physiol. Heart Circ. Physiol. 286:H39–H46, 2004.
-
(2004)
Am. J. Physiol. Heart Circ. Physiol
, vol.286
, pp. H39-H46
-
-
Brookes, P.S.1
Darley-Usmar, V.M.2
-
7
-
-
4544235673
-
Calcium, ATP, and ROS: a mitochondrial love-hate triangle
-
Brookes, P. S., Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287:C817–C833, 2004.
-
(2004)
Am. J. Physiol. Cell Physiol
, vol.287
, pp. C817-C833
-
-
Brookes, P.S.1
Yoon, Y.2
Robotham, J.L.3
Anders, M.W.4
Sheu, S.S.5
-
8
-
-
0036889794
-
Nitric oxide inhibition of mitochondrial respiration and its role in cell death
-
Brown, G. C., and V. Borutaite. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. Biol. Med. 33:1440–1450, 2002.
-
(2002)
Free Radic. Biol. Med
, vol.33
, pp. 1440-1450
-
-
Brown, G.C.1
Borutaite, V.2
-
9
-
-
3543008400
-
Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols
-
Brown, G. C., and V. Borutaite. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 1658:44–49, 2004.
-
(2004)
Biochim. Biophys. Acta
, vol.1658
, pp. 44-49
-
-
Brown, G.C.1
Borutaite, V.2
-
10
-
-
84863016934
-
2+ entry and mitochondrial ROS signaling
-
2+ entry and mitochondrial ROS signaling. Am. J. Physiol. Heart Circ. Physiol. 302:H634–H642, 2012.
-
(2012)
Am. J. Physiol. Heart Circ. Physiol
, vol.302
, pp. H634-H642
-
-
Bubolz, A.H.1
Mendoza, S.A.2
Zheng, X.3
Zinkevich, N.S.4
Li, R.5
Gutterman, D.D.6
Zhang, D.X.7
-
11
-
-
38349070256
-
Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury
-
Burwell, L. S., and P. S. Brookes. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid. Redox Signal. 10:579–599, 2008.
-
(2008)
Antioxid. Redox Signal
, vol.10
, pp. 579-599
-
-
Burwell, L.S.1
Brookes, P.S.2
-
12
-
-
1642422773
-
Mitochondrial free radical production and cell signaling
-
Cadenas, E. Mitochondrial free radical production and cell signaling. Mol. Aspects Med. 25:17–26, 2004.
-
(2004)
Mol. Aspects Med
, vol.25
, pp. 17-26
-
-
Cadenas, E.1
-
13
-
-
0034053099
-
Pathophysiology of ischaemia-reperfusion injury. [Review]
-
Carden, D. L., and D. N. Granger. Pathophysiology of ischaemia-reperfusion injury. [Review]. J. Pathol. 190:255–266, 2000.
-
(2000)
J. Pathol
, vol.190
, pp. 255-266
-
-
Carden, D.L.1
Granger, D.N.2
-
14
-
-
0029998238
-
Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport
-
Cassina, A., and R. Radi. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328:309–316, 1996.
-
(1996)
Arch. Biochem. Biophys
, vol.328
, pp. 309-316
-
-
Cassina, A.1
Radi, R.2
-
15
-
-
57349160257
-
Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria
-
Cereghetti, G. M., A. Stangherlin, O. Martins de Brito, C. R. Chang, C. Blackstone, P. Bernardi, and L. Scorrano. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. USA 105:15803–15808, 2008.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 15803-15808
-
-
Cereghetti, G.M.1
Stangherlin, A.2
Martins de Brito, O.3
Chang, C.R.4
Blackstone, C.5
Bernardi, P.6
Scorrano, L.7
-
16
-
-
34250774463
-
Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior
-
Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.
-
(2007)
J. Am. Coll. Cardiol
, vol.49
, pp. 2379-2393
-
-
Chatzizisis, Y.S.1
Coskun, A.U.2
Jonas, M.3
Edelman, E.R.4
Feldman, C.L.5
Stone, P.H.6
-
17
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen, Y., M. B. Azad, and S. B. Gibson. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040–1052, 2009.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
18
-
-
60549108384
-
Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis
-
Chiu, J. J., S. Usami, and S. Chien. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann. Med. 41:19–28, 2009.
-
(2009)
Ann. Med
, vol.41
, pp. 19-28
-
-
Chiu, J.J.1
Usami, S.2
Chien, S.3
-
19
-
-
28044464985
-
Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases
-
Cleeter, M. W., J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. Schapira. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345:50–54, 1994.
-
(1994)
FEBS Lett
, vol.345
, pp. 50-54
-
-
Cleeter, M.W.1
Cooper, J.M.2
Darley-Usmar, V.M.3
Moncada, S.4
Schapira, A.H.5
-
20
-
-
0033573981
-
On the mechanism by which vascular endothelial cells regulate their oxygen consumption
-
Clementi, E., G. C. Brown, N. Foxwell, and S. Moncada. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl. Acad. Sci. USA 96:1559–1562, 1999.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 1559-1562
-
-
Clementi, E.1
Brown, G.C.2
Foxwell, N.3
Moncada, S.4
-
21
-
-
34848840991
-
Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death
-
Cribbs, J. T., and S. Strack. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939–944, 2007.
-
(2007)
EMBO Rep
, vol.8
, pp. 939-944
-
-
Cribbs, J.T.1
Strack, S.2
-
22
-
-
0344146411
-
Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts
-
Csonka, C., Z. Szilvassy, F. Fulop, T. Pali, I. E. Blasig, A. Tosaki, R. Schulz, and P. Ferdinandy. Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts. Circulation 100:2260–2266, 1999.
-
(1999)
Circulation
, vol.100
, pp. 2260-2266
-
-
Csonka, C.1
Szilvassy, Z.2
Fulop, F.3
Pali, T.4
Blasig, I.E.5
Tosaki, A.6
Schulz, R.7
Ferdinandy, P.8
-
23
-
-
12344306644
-
The role of shear stress in the pathogenesis of atherosclerosis
-
Cunningham, K. S., and A. I. Gotlieb. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 85:9–23, 2005.
-
(2005)
Lab. Investig
, vol.85
, pp. 9-23
-
-
Cunningham, K.S.1
Gotlieb, A.I.2
-
24
-
-
40949124862
-
Endothelial transcriptome profiles in vivo in complex arterial flow fields
-
Davies, P. F. Endothelial transcriptome profiles in vivo in complex arterial flow fields. Ann. Biomed. Eng. 36:563–570, 2008.
-
(2008)
Ann. Biomed. Eng
, vol.36
, pp. 563-570
-
-
Davies, P.F.1
-
25
-
-
84879979537
-
The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo
-
Davies, P. F., M. Civelek, Y. Fang, and I. Fleming. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99:315–327, 2013.
-
(2013)
Cardiovasc. Res
, vol.99
, pp. 315-327
-
-
Davies, P.F.1
Civelek, M.2
Fang, Y.3
Fleming, I.4
-
26
-
-
2942733214
-
Role of endothelial dysfunction in atherosclerosis
-
Davignon, J., and P. Ganz. Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32, 2004.
-
(2004)
Circulation
, vol.109
, pp. III27-III32
-
-
Davignon, J.1
Ganz, P.2
-
27
-
-
84902190893
-
Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation
-
De Pascali, F., C. Hemann, K. Samons, C. A. Chen, and J. L. Zweier. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 53:3679–3688, 2014.
-
(2014)
Biochemistry
, vol.53
, pp. 3679-3688
-
-
De Pascali, F.1
Hemann, C.2
Samons, K.3
Chen, C.A.4
Zweier, J.L.5
-
28
-
-
84879047011
-
Cellular metabolic and autophagic pathways: traffic control by redox signaling
-
Dodson, M., V. Darley-Usmar, and J. Zhang. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic. Biol. Med. 63:207–221, 2013.
-
(2013)
Free Radic. Biol. Med
, vol.63
, pp. 207-221
-
-
Dodson, M.1
Darley-Usmar, V.2
Zhang, J.3
-
29
-
-
33749343550
-
NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells
-
Duerrschmidt, N., C. Stielow, G. Muller, P. J. Pagano, and H. Morawietz. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J. Physiol. 576:557–567, 2006.
-
(2006)
J. Physiol
, vol.576
, pp. 557-567
-
-
Duerrschmidt, N.1
Stielow, C.2
Muller, G.3
Pagano, P.J.4
Morawietz, H.5
-
30
-
-
33845976357
-
Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology
-
Duvezin-Caubet, S., R. Jagasia, J. Wagener, S. Hofmann, A. Trifunovic, A. Hansson, A. Chomyn, M. F. Bauer, G. Attardi, N. G. Larsson, W. Neupert, and A. S. Reichert. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. 281:37972–37979, 2006.
-
(2006)
J. Biol. Chem
, vol.281
, pp. 37972-37979
-
-
Duvezin-Caubet, S.1
Jagasia, R.2
Wagener, J.3
Hofmann, S.4
Trifunovic, A.5
Hansson, A.6
Chomyn, A.7
Bauer, M.F.8
Attardi, G.9
Larsson, N.G.10
Neupert, W.11
Reichert, A.S.12
-
32
-
-
0035822692
-
Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice
-
Feng, Q., X. Lu, D. L. Jones, J. Shen, and J. M. Arnold. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104:700–704, 2001.
-
(2001)
Circulation
, vol.104
, pp. 700-704
-
-
Feng, Q.1
Lu, X.2
Jones, D.L.3
Shen, J.4
Arnold, J.M.5
-
33
-
-
0037293568
-
Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning
-
Ferdinandy, P., and R. Schulz. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 138:532–543, 2003.
-
(2003)
Br. J. Pharmacol
, vol.138
, pp. 532-543
-
-
Ferdinandy, P.1
Schulz, R.2
-
34
-
-
0035487808
-
The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis
-
Frank, S., B. Gaume, E. S. Bergmann-Leitner, W. W. Leitner, E. G. Robert, F. Catez, C. L. Smith, and R. J. Youle. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1:515–525, 2001.
-
(2001)
Dev. Cell
, vol.1
, pp. 515-525
-
-
Frank, S.1
Gaume, B.2
Bergmann-Leitner, E.S.3
Leitner, W.W.4
Robert, E.G.5
Catez, F.6
Smith, C.L.7
Youle, R.J.8
-
35
-
-
60749137151
-
NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology
-
Frey, R. S., M. Ushio-Fukai, and A. B. Malik. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid. Redox Signal. 11:791–810, 2009.
-
(2009)
Antioxid. Redox Signal
, vol.11
, pp. 791-810
-
-
Frey, R.S.1
Ushio-Fukai, M.2
Malik, A.B.3
-
36
-
-
84983656624
-
Mitochondrial dynamics and motility inside living vascular endothelial cells: role of bioenergetics
-
Giedt, R. J., D. R. Pfeiffer, A. Matzavinos, C. Y. Kao, and B. R. Alevriadou. Mitochondrial dynamics and motility inside living vascular endothelial cells: role of bioenergetics. Ann. Biomed. Eng. 52:348–356, 2012.
-
(2012)
Ann. Biomed. Eng
, vol.52
, pp. 348-356
-
-
Giedt, R.J.1
Pfeiffer, D.R.2
Matzavinos, A.3
Kao, C.Y.4
Alevriadou, B.R.5
-
37
-
-
84855462583
-
Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species
-
Giedt, R. J., C. Yang, J. L. Zweier, A. Matzavinos, and B. R. Alevriadou. Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 52:348–356, 2012.
-
(2012)
Free Radic. Biol. Med
, vol.52
, pp. 348-356
-
-
Giedt, R.J.1
Yang, C.2
Zweier, J.L.3
Matzavinos, A.4
Alevriadou, B.R.5
-
38
-
-
0034085698
-
Endothelial dysfunction, hemodynamic forces, and atherogenesis
-
Gimbrone Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N Y Acad. Sci. 902:230–239; discussion 239–240, 2000.
-
(2000)
Ann. N Y Acad. Sci. 902:230–239; discussion
, pp. 239-240
-
-
Gimbrone, M.A.1
Topper, J.N.2
Nagel, T.3
Anderson, K.R.4
Garcia-Cardena, G.5
-
39
-
-
0030779819
-
Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart
-
Giraldez, R. R., A. Panda, Y. Xia, S. P. Sanders, and J. L. Zweier. Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J. Biol. Chem. 272:21420–21426, 1997.
-
(1997)
J. Biol. Chem
, vol.272
, pp. 21420-21426
-
-
Giraldez, R.R.1
Panda, A.2
Xia, Y.3
Sanders, S.P.4
Zweier, J.L.5
-
40
-
-
34547918309
-
Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies
-
Girn, H. R., S. Ahilathirunayagam, A. I. Mavor, and S. Homer-Vanniasinkam. Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovasc. Surg. 41:277–293, 2007.
-
(2007)
Vasc. Endovasc. Surg
, vol.41
, pp. 277-293
-
-
Girn, H.R.1
Ahilathirunayagam, S.2
Mavor, A.I.3
Homer-Vanniasinkam, S.4
-
41
-
-
0032738983
-
Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase
-
Go, Y. M., R. P. Patel, M. C. Maland, H. Park, J. S. Beckman, V. M. Darley-Usmar, and H. Jo. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am. J. Physiol. 277:H1647–H1653, 1999.
-
(1999)
Am. J. Physiol
, vol.277
, pp. H1647-H1653
-
-
Go, Y.M.1
Patel, R.P.2
Maland, M.C.3
Park, H.4
Beckman, J.S.5
Darley-Usmar, V.M.6
Jo, H.7
-
42
-
-
84863513473
-
Endothelial mitochondria—less respiration, more integration
-
Groschner, L. N., M. Waldeck-Weiermair, R. Malli, and W. F. Graier. Endothelial mitochondria—less respiration, more integration. Pflugers Arch. 464:63–76, 2012.
-
(2012)
Pflugers Arch
, vol.464
, pp. 63-76
-
-
Groschner, L.N.1
Waldeck-Weiermair, M.2
Malli, R.3
Graier, W.F.4
-
43
-
-
84906950984
-
Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system
-
Guo, F., X. Li, J. Peng, Y. Tang, Q. Yang, L. Liu, Z. Wang, Z. Jiang, M. Xiao, C. Ni, R. Chen, D. Wei, and G. X. Wang. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann. Biomed. Eng. 42:1978–1988, 2014.
-
(2014)
Ann. Biomed. Eng
, vol.42
, pp. 1978-1988
-
-
Guo, F.1
Li, X.2
Peng, J.3
Tang, Y.4
Yang, Q.5
Liu, L.6
Wang, Z.7
Jiang, Z.8
Xiao, M.9
Ni, C.10
Chen, R.11
Wei, D.12
Wang, G.X.13
-
44
-
-
0034079862
-
Free radicals and antioxidants in the year 2000. A historical look to the future
-
Gutteridge, J. M., and B. Halliwell. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci. 899:136–147, 2000.
-
(2000)
Ann. N. Y. Acad. Sci
, vol.899
, pp. 136-147
-
-
Gutteridge, J.M.1
Halliwell, B.2
-
45
-
-
33947317058
-
-
Han, Z., Y. R. Chen, C. I. Jones, 3rd, G. Meenakshisundaram, J. L. Zweier, and B. R. Alevriadou. Shear-induced reactive nitrogen species inhibit mitochondrial respiratory complex activities in cultured vascular endothelial cells. Am. J. Physiol. Cell. Physiol. 292:C1103–C1112, 2007.
-
(2007)
Physiol
, vol.292
, pp. C1103-C1112
-
-
Han, Z.1
Chen, Y.R.2
Jones, C.I.3
3rd, G.M.4
Zweier, J.L.5
-
46
-
-
63849133179
-
-
Han, Z., S. Varadharaj, R. J. Giedt, J. L. Zweier, H. H. Szeto, and B. R. Alevriadou. Mitochondria-derived reactive oxygen species mediate heme oxygenase-1 expression in sheared endothelial cells. J. Pharmacol. Exp. Ther. 329:94–101, 2009.
-
(2009)
Ther
, vol.329
, pp. 94-101
-
-
Han, Z.1
Varadharaj, S.2
Giedt, R.J.3
Zweier, J.L.4
Szeto, H.H.5
-
47
-
-
0033863950
-
P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production
-
Hayashi, Y., Y. Sawa, M. Nishimura, S. J. Tojo, N. Fukuyama, H. Nakazawa, and H. Matsuda. P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production. J. Thorac. Cardiovasc. Surg. 120:558–565, 2000.
-
(2000)
J. Thorac. Cardiovasc. Surg
, vol.120
, pp. 558-565
-
-
Hayashi, Y.1
Sawa, Y.2
Nishimura, M.3
Tojo, S.J.4
Fukuyama, N.5
Nakazawa, H.6
Matsuda, H.7
-
48
-
-
84892402112
-
Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications
-
Hsieh, H. J., C. A. Liu, B. Huang, A. H. Tseng, and D. L. Wang. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 21:3, 2014. doi:10.1186/1423-0127-21-3.
-
(2014)
J. Biomed. Sci
, vol.21
, pp. 3
-
-
Hsieh, H.J.1
Liu, C.A.2
Huang, B.3
Tseng, A.H.4
Wang, D.L.5
-
49
-
-
79958172986
-
Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1
-
Huang, C., A. M. Andres, E. P. Ratliff, G. Hernandez, P. Lee, and R. A. Gottlieb. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6:e20975, 2011.
-
(2011)
PLoS ONE
, vol.6
, pp. e20975
-
-
Huang, C.1
Andres, A.M.2
Ratliff, E.P.3
Hernandez, G.4
Lee, P.5
Gottlieb, R.A.6
-
50
-
-
79956118584
-
Autophagy signaling through reactive oxygen species
-
Huang, J., G. Y. Lam, and J. H. Brumell. Autophagy signaling through reactive oxygen species. Antioxid. Redox Signal. 14:2215–2231, 2011.
-
(2011)
Antioxid. Redox Signal
, vol.14
, pp. 2215-2231
-
-
Huang, J.1
Lam, G.Y.2
Brumell, J.H.3
-
51
-
-
77955518491
-
Autophagy induced by ischemic preconditioning is essential for cardioprotection
-
Huang, C., S. Yitzhaki, C. N. Perry, W. Liu, Z. Giricz, R. M. Mentzer, Jr., and R. A. Gottlieb. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J. Cardiovasc. Transl. Res. 3:365–373, 2010.
-
(2010)
J. Cardiovasc. Transl. Res
, vol.3
, pp. 365-373
-
-
Huang, C.1
Yitzhaki, S.2
Perry, C.N.3
Liu, W.4
Giricz, Z.5
Mentzer, R.M.6
Gottlieb, R.A.7
-
52
-
-
20744436210
-
Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway
-
Huddleson, J. P., N. Ahmad, S. Srinivasan, and J. B. Lingrel. Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway. J. Biol. Chem. 280:23371–23379, 2005.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 23371-23379
-
-
Huddleson, J.P.1
Ahmad, N.2
Srinivasan, S.3
Lingrel, J.B.4
-
53
-
-
77955276502
-
Organellar vs. cellular control of mitochondrial dynamics
-
Hyde, B. B., G. Twig, and O. S. Shirihai. Organellar vs. cellular control of mitochondrial dynamics. Semin. Cell Dev. Biol. 21:575–581, 2010.
-
(2010)
Semin. Cell Dev. Biol
, vol.21
, pp. 575-581
-
-
Hyde, B.B.1
Twig, G.2
Shirihai, O.S.3
-
55
-
-
0038462137
-
Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release
-
Jekabsone, A., L. Ivanoviene, G. C. Brown, and V. Borutaite. Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J. Mol. Cell. Cardiol. 35:803–809, 2003.
-
(2003)
J. Mol. Cell. Cardiol
, vol.35
, pp. 803-809
-
-
Jekabsone, A.1
Ivanoviene, L.2
Brown, G.C.3
Borutaite, V.4
-
56
-
-
0042358676
-
Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase
-
Jin, Z.-G., H. Ueba, T. Tanimoto, A. O. Lungu, M. D. Frame, and B. C. Berk. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93:354–363, 2003.
-
(2003)
Circ. Res
, vol.93
, pp. 354-363
-
-
Jin, Z.-G.1
Ueba, H.2
Tanimoto, T.3
Lungu, A.O.4
Frame, M.D.5
Berk, B.C.6
-
57
-
-
52749091387
-
Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite
-
Jones 3rd, C. I., Z. Han, T. Presley, S. Varadharaj, J. L. Zweier, G. Ilangovan, and B. R. Alevriadou. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite. Am. J. Physiol. Cell. Physiol. 295:C180–C191, 2008.
-
(2008)
Am. J. Physiol. Cell. Physiol
, vol.295
, pp. C180-C191
-
-
Jones, C.I.1
Han, Z.2
Presley, T.3
Varadharaj, S.4
Zweier, J.L.5
Ilangovan, G.6
Alevriadou, B.R.7
-
58
-
-
34247214633
-
Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells
-
Jones 3rd, C. I., H. Zhu, S. F. Martin, Z. Han, Y. Li, and B. R. Alevriadou. Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells. Ann. Biomed. Eng. 35:683–693, 2007.
-
(2007)
Ann. Biomed. Eng
, vol.35
, pp. 683-693
-
-
Jones, C.I.1
Zhu, H.2
Martin, S.F.3
Han, Z.4
Li, Y.5
Alevriadou, B.R.6
-
60
-
-
0036813511
-
Nitric oxide and cardioprotection during ischemia-reperfusion
-
Jugdutt, B. I. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail. Rev. 7:391–405, 2002.
-
(2002)
Heart Fail. Rev
, vol.7
, pp. 391-405
-
-
Jugdutt, B.I.1
-
62
-
-
0032971430
-
Nitric oxide as a bifunctional regulator of apoptosis
-
Kim, Y. M., C. A. Bombeck, and T. R. Billiar. Nitric oxide as a bifunctional regulator of apoptosis. Circ. Res. 84:253–256, 1999.
-
(1999)
Circ. Res
, vol.84
, pp. 253-256
-
-
Kim, Y.M.1
Bombeck, C.A.2
Billiar, T.R.3
-
63
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky, D. J., and S. D. Emr. Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721, 2000.
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
64
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J., F. C. Abdalla, H. Abeliovich, R. T. Abraham, A. Acevedo-Arozena, K. Adeli, L. Agholme, M. Agnello, P. Agostinis, J. A. Aguirre-Ghiso, H. J. Ahn, O. Ait-Mohamed, S. Ait-Si-Ali, T. Akematsu, S. Akira, H. M. Al-Younes, M. A. Al-Zeer, M. L. Albert, R. L. Albin, J. Alegre-Abarrategui, M. F. Aleo, M. Alirezaei, A. Almasan, M. Almonte-Becerril, A. Amano, R. Amaravadi, S. Amarnath, A. O. Amer, N. Andrieu-Abadie, V. Anantharam, D. K. Ann, S. Anoopkumar-Dukie, H. Aoki, N. Apostolova, G. Arancia, J. P. Aris, K. Asanuma, N. Y. Asare, H. Ashida, V. Askanas, D. S. Askew, P. Auberger, M. Baba, S. K. Backues, E. H. Baehrecke, B. A. Bahr, X. Y. Bai, Y. Bailly, R. Baiocchi, G. Baldini, W. Balduini, A. Ballabio, B. A. Bamber, E. T. Bampton, G. Banhegyi, C. R. Bartholomew, D. C. Bassham, R. C. Bast, Jr., H. Batoko, B. H. Bay, I. Beau, D. M. Bechet, T. J. Begley, C. Behl, C. Behrends, S. Bekri, B. Bellaire, L. J. Bendall, L. Benetti, L. Berliocchi, H. Bernardi, F. Bernassola, S. Besteiro, I. Bhatia-Kissova, X. Bi, M. Biard-Piechaczyk, J. S. Blum, L. H. Boise, P. Bonaldo, D. L. Boone, B. C. Bornhauser, K. R. Bortoluci, I. Bossis, F. Bost, J. P. Bourquin, P. Boya, M. Boyer-Guittaut, P. V. Bozhkov, N. R. Brady, C. Brancolini, A. Brech, J. E. Brenman, A. Brennand, E. H. Bresnick, P. Brest, D. Bridges, M. L. Bristol, P. S. Brookes, E. J. Brown, J. H. Brumell, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544, 2012.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
Ahn, H.J.11
Ait-Mohamed, O.12
Ait-Si-Ali, S.13
Akematsu, T.14
Akira, S.15
Al-Younes, H.M.16
Al-Zeer, M.A.17
Albert, M.L.18
Albin, R.L.19
Alegre-Abarrategui, J.20
Aleo, M.F.21
Alirezaei, M.22
Almasan, A.23
Almonte-Becerril, M.24
Amano, A.25
Amaravadi, R.26
Amarnath, S.27
Amer, A.O.28
Andrieu-Abadie, N.29
Anantharam, V.30
Ann, D.K.31
Anoopkumar-Dukie, S.32
Aoki, H.33
Apostolova, N.34
Arancia, G.35
Aris, J.P.36
Asanuma, K.37
Asare, N.Y.38
Ashida, H.39
Askanas, V.40
Askew, D.S.41
Auberger, P.42
Baba, M.43
Backues, S.K.44
Baehrecke, E.H.45
Bahr, B.A.46
Bai, X.Y.47
Bailly, Y.48
Baiocchi, R.49
Baldini, G.50
Balduini, W.51
Ballabio, A.52
Bamber, B.A.53
Bampton, E.T.54
Banhegyi, G.55
Bartholomew, C.R.56
Bassham, D.C.57
Bast, R.C.58
Batoko, H.59
Bay, B.H.60
Beau, I.61
Bechet, D.M.62
Begley, T.J.63
Behl, C.64
Behrends, C.65
Bekri, S.66
Bellaire, B.67
Bendall, L.J.68
Benetti, L.69
Berliocchi, L.70
Bernardi, H.71
Bernassola, F.72
Besteiro, S.73
Bhatia-Kissova, I.74
Bi, X.75
Biard-Piechaczyk, M.76
Blum, J.S.77
Boise, L.H.78
Bonaldo, P.79
Boone, D.L.80
Bornhauser, B.C.81
Bortoluci, K.R.82
Bossis, I.83
Bost, F.84
Bourquin, J.P.85
Boya, P.86
Boyer-Guittaut, M.87
Bozhkov, P.V.88
Brady, N.R.89
Brancolini, C.90
Brech, A.91
Brenman, J.E.92
Brennand, A.93
Bresnick, E.H.94
Brest, P.95
Bridges, D.96
Bristol, M.L.97
Brookes, P.S.98
Brown, E.J.99
Brumell, J.H.100
more..
-
65
-
-
84876347779
-
Mitochondria and endothelial function
-
Kluge, M. A., J. L. Fetterman, and J. A. Vita. Mitochondria and endothelial function. Circ. Res. 112:1171–1188, 2013.
-
(2013)
Circ. Res
, vol.112
, pp. 1171-1188
-
-
Kluge, M.A.1
Fetterman, J.L.2
Vita, J.A.3
-
66
-
-
84867724832
-
Mitochondria and mitophagy: the yin and yang of cell death control
-
Kubli, D. A., and A. B. Gustafsson. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 111:1208–1221, 2012.
-
(2012)
Circ. Res
, vol.111
, pp. 1208-1221
-
-
Kubli, D.A.1
Gustafsson, A.B.2
-
67
-
-
0028095848
-
Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells
-
Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–C636, 1994.
-
(1994)
Am. J. Physiol
, vol.266
, pp. C628-C636
-
-
Kuchan, M.J.1
Frangos, J.A.2
-
68
-
-
0025047567
-
Endothelium-dependent, flow-induced dilation of isolated coronary arterioles
-
Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259:H1063–H1070, 1990.
-
(1990)
Am. J. Physiol
, vol.259
, pp. H1063-H1070
-
-
Kuo, L.1
Davis, M.J.2
Chilian, W.M.3
-
69
-
-
84864120303
-
Translational evidence that impaired autophagy contributes to arterial ageing
-
LaRocca, T. J., G. D. Henson, A. Thorburn, A. L. Sindler, G. L. Pierce, and D. R. Seals. Translational evidence that impaired autophagy contributes to arterial ageing. J. Physiol. 590:3305–3316, 2012.
-
(2012)
J. Physiol
, vol.590
, pp. 3305-3316
-
-
LaRocca, T.J.1
Henson, G.D.2
Thorburn, A.3
Sindler, A.L.4
Pierce, G.L.5
Seals, D.R.6
-
70
-
-
0037230180
-
ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel
-
Lebuffe, G., P. T. Schumacker, Z. H. Shao, T. Anderson, H. Iwase, and T. L. Vanden Hoek. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am. J. Physiol. Heart Circ. Physiol. 284:H299–H308, 2003.
-
(2003)
Am. J. Physiol. Heart Circ. Physiol
, vol.284
, pp. H299-H308
-
-
Lebuffe, G.1
Schumacker, P.T.2
Shao, Z.H.3
Anderson, T.4
Iwase, H.5
Vanden Hoek, T.L.6
-
71
-
-
0032504657
-
Role of mitochondria in oxidative stress and ageing
-
Lenaz, G. Role of mitochondria in oxidative stress and ageing. Biochim. Biophys. Acta 1366:53–67, 1998.
-
(1998)
Biochim. Biophys. Acta
, vol.1366
, pp. 53-67
-
-
Lenaz, G.1
-
72
-
-
69249231973
-
Pulsatile shear stress increased mitochondrial membrane potential: implication of Mn-SOD
-
Li, R., T. Beebe, J. Cui, M. Rouhanizadeh, L. Ai, P. Wang, M. Gundersen, W. Takabe, and T. K. Hsiai. Pulsatile shear stress increased mitochondrial membrane potential: implication of Mn-SOD. Biochem. Biophys. Res. Commun. 388:406–412, 2009.
-
(2009)
Biochem. Biophys. Res. Commun
, vol.388
, pp. 406-412
-
-
Li, R.1
Beebe, T.2
Cui, J.3
Rouhanizadeh, M.4
Ai, L.5
Wang, P.6
Gundersen, M.7
Takabe, W.8
Hsiai, T.K.9
-
73
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
Li, L., Y. Chen, and S. B. Gibson. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell. Signal. 25:50–65, 2013.
-
(2013)
Cell. Signal
, vol.25
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
74
-
-
6344285417
-
Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology
-
Li, J. M., and A. M. Shah. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R1014–R1030, 2004.
-
(2004)
Am. J. Physiol. Regul. Integr. Comp. Physiol
, vol.287
, pp. R1014-R1030
-
-
Li, J.M.1
Shah, A.M.2
-
75
-
-
33845324887
-
Atherosclerosis: disease biology affecting the coronary vasculature
-
Libby, P. Atherosclerosis: disease biology affecting the coronary vasculature. Am. J. Cardiol. 98:3Q–9Q, 2006.
-
(2006)
Am. J. Cardiol
, vol.98
, pp. 3Q-9Q
-
-
Libby, P.1
-
76
-
-
0031010584
-
Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats
-
Liu, P., C. E. Hock, R. Nagele, and P. Y. Wong. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am. J. Physiol. 272:H2327–H2336, 1997.
-
(1997)
Am. J. Physiol
, vol.272
, pp. H2327-H2336
-
-
Liu, P.1
Hock, C.E.2
Nagele, R.3
Wong, P.Y.4
-
78
-
-
0033574438
-
Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption
-
Loke, K. E., P. I. McConnell, J. M. Tuzman, E. G. Shesely, C. J. Smith, C. J. Stackpole, C. I. Thompson, G. Kaley, M. S. Wolin, and T. H. Hintze. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption. Circ. Res. 84:840–845, 1999.
-
(1999)
Circ. Res
, vol.84
, pp. 840-845
-
-
Loke, K.E.1
McConnell, P.I.2
Tuzman, J.M.3
Shesely, E.G.4
Smith, C.J.5
Stackpole, C.J.6
Thompson, C.I.7
Kaley, G.8
Wolin, M.S.9
Hintze, T.H.10
-
79
-
-
84866530606
-
Autophagy is impaired in cardiac ischemia-reperfusion injury
-
Ma, X., H. Liu, S. R. Foyil, R. J. Godar, C. J. Weinheimer, and A. Diwan. Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 8:1394–1396, 2012.
-
(2012)
Autophagy
, vol.8
, pp. 1394-1396
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
Godar, R.J.4
Weinheimer, C.J.5
Diwan, A.6
-
80
-
-
84863192578
-
Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury
-
Ma, X., H. Liu, S. R. Foyil, R. J. Godar, C. J. Weinheimer, J. A. Hill, and A. Diwan. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170–3181, 2012.
-
(2012)
Circulation
, vol.125
, pp. 3170-3181
-
-
Ma, X.1
Liu, H.2
Foyil, S.R.3
Godar, R.J.4
Weinheimer, C.J.5
Hill, J.A.6
Diwan, A.7
-
81
-
-
0033485806
-
Hemodynamic shear stress and its role in atherosclerosis
-
Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.
-
(1999)
JAMA
, vol.282
, pp. 2035-2042
-
-
Malek, A.M.1
Alper, S.L.2
Izumo, S.3
-
82
-
-
84879076534
-
Mitochondria in heart failure: the emerging role of mitochondrial dynamics
-
Marin-Garcia, J., A. T. Akhmedov, and G. W. Moe. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail. Rev. 18:439–456, 2013.
-
(2013)
Heart Fail. Rev
, vol.18
, pp. 439-456
-
-
Marin-Garcia, J.1
Akhmedov, A.T.2
Moe, G.W.3
-
83
-
-
23844506942
-
Rac1 inhibition protects against hypoxia/reoxygenation-induced lipid peroxidation in human vascular endothelial cells
-
Martin, S. F., S. Chatterjee, N. Parinandi, and B. R. Alevriadou. Rac1 inhibition protects against hypoxia/reoxygenation-induced lipid peroxidation in human vascular endothelial cells. Vasc. Pharmacol. 43:148–156, 2005.
-
(2005)
Vasc. Pharmacol
, vol.43
, pp. 148-156
-
-
Martin, S.F.1
Chatterjee, S.2
Parinandi, N.3
Alevriadou, B.R.4
-
84
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Matsui, Y., H. Takagi, X. Qu, M. Abdellatif, H. Sakoda, T. Asano, B. Levine, and J. Sadoshima. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100:914–922, 2007.
-
(2007)
Circ. Res
, vol.100
, pp. 914-922
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
Abdellatif, M.4
Sakoda, H.5
Asano, T.6
Levine, B.7
Sadoshima, J.8
-
85
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima, N., and M. Komatsu. Autophagy: renovation of cells and tissues. Cell 147:728–741, 2011.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
86
-
-
0025763296
-
2+ signaling of vascular endothelial cells: effect of shear stress and ATP
-
2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol. 260:H1698–H1707, 1991.
-
(1991)
Am. J. Physiol
, vol.260
, pp. H1698-H1707
-
-
Mo, M.1
Eskin, S.G.2
Schilling, W.P.3
-
87
-
-
10344221083
-
Complex III releases superoxide to both sides of the inner mitochondrial membrane
-
Muller, F. L., Y. Liu, and H. Van Remmen. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279:49064–49073, 2004.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 49064-49073
-
-
Muller, F.L.1
Liu, Y.2
Van Remmen, H.3
-
88
-
-
42049108814
-
Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
-
Murphy, E., and C. Steenbergen. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88:581–609, 2008.
-
(2008)
Physiol. Rev
, vol.88
, pp. 581-609
-
-
Murphy, E.1
Steenbergen, C.2
-
89
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra, D., A. Tanaka, D. F. Suen, and R. J. Youle. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803, 2008.
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
90
-
-
0036088598
-
Adhesion of flowing monocytes to hypoxia-reoxygenation-exposed endothelial cells: role of Rac1, ROS, and VCAM-1
-
Ng, C. K., S. S. Deshpande, K. Irani, and B. R. Alevriadou. Adhesion of flowing monocytes to hypoxia-reoxygenation-exposed endothelial cells: role of Rac1, ROS, and VCAM-1. Am. J. Physiol. Cell Physiol. 283:C93–C102, 2002.
-
(2002)
Am. J. Physiol. Cell Physiol
, vol.283
, pp. C93-C102
-
-
Ng, C.K.1
Deshpande, S.S.2
Irani, K.3
Alevriadou, B.R.4
-
91
-
-
79960815697
-
Flow shear stress and atherosclerosis: a matter of site specificity
-
Nigro, P., J. Abe, and B. C. Berk. Flow shear stress and atherosclerosis: a matter of site specificity. Antioxid. Redox Signal. 15:1405–1414, 2011.
-
(2011)
Antioxid. Redox Signal
, vol.15
, pp. 1405-1414
-
-
Nigro, P.1
Abe, J.2
Berk, B.C.3
-
92
-
-
9344220484
-
Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals
-
Nisoli, E., S. Falcone, C. Tonello, V. Cozzi, L. Palomba, M. Fiorani, A. Pisconti, S. Brunelli, A. Cardile, M. Francolini, O. Cantoni, M. O. Carruba, S. Moncada, and E. Clementi. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc. Natl. Acad. Sci. USA 101:16507–16512, 2004.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 16507-16512
-
-
Nisoli, E.1
Falcone, S.2
Tonello, C.3
Cozzi, V.4
Palomba, L.5
Fiorani, M.6
Pisconti, A.7
Brunelli, S.8
Cardile, A.9
Francolini, M.10
Cantoni, O.11
Carruba, M.O.12
Moncada, S.13
Clementi, E.14
-
93
-
-
84859429500
-
Mitochondria and autophagy: critical interplay between the two homeostats
-
Okamoto, K., and N. Kondo-Okamoto. Mitochondria and autophagy: critical interplay between the two homeostats. Biochim. Biophys. Acta 1820:595–600, 2012.
-
(2012)
Biochim. Biophys. Acta
, vol.1820
, pp. 595-600
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
-
94
-
-
84879858842
-
Mitochondrial dynamics in cardiovascular health and disease
-
Ong, S. B., A. R. Hall, and D. J. Hausenloy. Mitochondrial dynamics in cardiovascular health and disease. Antioxid. Redox Signal. 19:400–414, 2013.
-
(2013)
Antioxid. Redox Signal
, vol.19
, pp. 400-414
-
-
Ong, S.B.1
Hall, A.R.2
Hausenloy, D.J.3
-
95
-
-
77952236126
-
Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury
-
Ong, S. B., S. Subrayan, S. Y. Lim, D. M. Yellon, S. M. Davidson, and D. J. Hausenloy. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022, 2010.
-
(2010)
Circulation
, vol.121
, pp. 2012-2022
-
-
Ong, S.B.1
Subrayan, S.2
Lim, S.Y.3
Yellon, D.M.4
Davidson, S.M.5
Hausenloy, D.J.6
-
96
-
-
33745742159
-
Mitochondrial fission and apoptosis: an ongoing trial
-
Parone, P. A., and J. C. Martinou. Mitochondrial fission and apoptosis: an ongoing trial. Biochim. Biophys. Acta 1763:522–530, 2006.
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 522-530
-
-
Parone, P.A.1
Martinou, J.C.2
-
97
-
-
10744233033
-
Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta
-
Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, Jr., and P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. USA 101:2482–2487, 2004.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 2482-2487
-
-
Passerini, A.G.1
Polacek, D.C.2
Shi, C.3
Francesco, N.M.4
Manduchi, E.5
Grant, G.R.6
Pritchard, W.F.7
Powell, S.8
Chang, G.Y.9
Stoeckert, C.J.10
Davies, P.F.11
-
98
-
-
0035949587
-
Dynamic regulation of metabolism and respiration by endogenously produced nitric oxide protects against oxidative stress
-
Paxinou, E., M. Weisse, Q. Chen, J. M. Souza, C. Hertkorn, M. Selak, E. Daikhin, M. Yudkoff, G. Sowa, W. C. Sessa, and H. Ischiropoulos. Dynamic regulation of metabolism and respiration by endogenously produced nitric oxide protects against oxidative stress. Proc. Natl. Acad. Sci. USA 98:11575–11580, 2001.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 11575-11580
-
-
Paxinou, E.1
Weisse, M.2
Chen, Q.3
Souza, J.M.4
Hertkorn, C.5
Selak, M.6
Daikhin, E.7
Yudkoff, M.8
Sowa, G.9
Sessa, W.C.10
Ischiropoulos, H.11
-
99
-
-
0029986691
-
Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles
-
Poderoso, J. J., M. C. Carreras, C. Lisdero, N. Riobo, F. Schopfer, and A. Boveris. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328:85–92, 1996.
-
(1996)
Arch. Biochem. Biophys
, vol.328
, pp. 85-92
-
-
Poderoso, J.J.1
Carreras, M.C.2
Lisdero, C.3
Riobo, N.4
Schopfer, F.5
Boveris, A.6
-
100
-
-
0033621429
-
The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol
-
Poderoso, J. J., C. Lisdero, F. Schopfer, N. Riobo, M. C. Carreras, E. Cadenas, and A. Boveris. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J. Biol. Chem. 274:37709–37716, 1999.
-
(1999)
J. Biol. Chem
, vol.274
, pp. 37709-37716
-
-
Poderoso, J.J.1
Lisdero, C.2
Schopfer, F.3
Riobo, N.4
Carreras, M.C.5
Cadenas, E.6
Boveris, A.7
-
101
-
-
84868198865
-
Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production
-
Quarrie, R., D. S. Lee, G. Steinbaugh, B. Cramer, W. Erdahl, D. R. Pfeiffer, J. L. Zweier, and J. A. Crestanello. Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production. J. Surg. Res. 178:8–17, 2012.
-
(2012)
J. Surg. Res
, vol.178
, pp. 8-17
-
-
Quarrie, R.1
Lee, D.S.2
Steinbaugh, G.3
Cramer, B.4
Erdahl, W.5
Pfeiffer, D.R.6
Zweier, J.L.7
Crestanello, J.A.8
-
102
-
-
33645770953
-
Mitochondria as signaling organelles in the vascular endothelium
-
Quintero, M., S. L. Colombo, A. Godfrey, and S. Moncada. Mitochondria as signaling organelles in the vascular endothelium. Proc. Natl. Acad. Sci. USA 103:5379–5384, 2006.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 5379-5384
-
-
Quintero, M.1
Colombo, S.L.2
Godfrey, A.3
Moncada, S.4
-
103
-
-
84893841039
-
Hemodynamic regulation of reactive oxygen species: implications for vascular diseases
-
Raaz, U., R. Toh, L. Maegdefessel, M. Adam, F. Nakagami, F. C. Emrich, J. M. Spin, and P. S. Tsao. Hemodynamic regulation of reactive oxygen species: implications for vascular diseases. Antioxid. Redox Signal. 20:914–928, 2014.
-
(2014)
Antioxid. Redox Signal
, vol.20
, pp. 914-928
-
-
Raaz, U.1
Toh, R.2
Maegdefessel, L.3
Adam, M.4
Nakagami, F.5
Emrich, F.C.6
Spin, J.M.7
Tsao, P.S.8
-
104
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A. S., B. Kostelecky, N. Elia, and J. Lippincott-Schwartz. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 108:10190–10195, 2011.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
105
-
-
78149475088
-
Regulation of mammalian autophagy in physiology and pathophysiology
-
Ravikumar, B., S. Sarkar, J. E. Davies, M. Futter, M. Garcia-Arencibia, Z. W. Green-Thompson, M. Jimenez-Sanchez, V. I. Korolchuk, M. Lichtenberg, S. Luo, D. C. Massey, F. M. Menzies, K. Moreau, U. Narayanan, M. Renna, F. H. Siddiqi, B. R. Underwood, A. R. Winslow, and D. C. Rubinsztein. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90:1383–1435, 2010.
-
(2010)
Physiol. Rev
, vol.90
, pp. 1383-1435
-
-
Ravikumar, B.1
Sarkar, S.2
Davies, J.E.3
Futter, M.4
Garcia-Arencibia, M.5
Green-Thompson, Z.W.6
Jimenez-Sanchez, M.7
Korolchuk, V.I.8
Lichtenberg, M.9
Luo, S.10
Massey, D.C.11
Menzies, F.M.12
Moreau, K.13
Narayanan, U.14
Renna, M.15
Siddiqi, F.H.16
Underwood, B.R.17
Winslow, A.R.18
Rubinsztein, D.C.19
-
106
-
-
0035477926
-
Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation
-
Riobo, N. A., E. Clementi, M. Melani, A. Boveris, E. Cadenas, S. Moncada, and J. J. Poderoso. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359:139–145, 2001.
-
(2001)
Biochem. J
, vol.359
, pp. 139-145
-
-
Riobo, N.A.1
Clementi, E.2
Melani, M.3
Boveris, A.4
Cadenas, E.5
Moncada, S.6
Poderoso, J.J.7
-
107
-
-
0033552883
-
Atherosclerosis—an inflammatory disease
-
Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126, 1999.
-
(1999)
N. Engl. J. Med
, vol.340
, pp. 115-126
-
-
Ross, R.1
-
108
-
-
0037023636
-
Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury
-
Scarabelli, T. M., A. Stephanou, E. Pasini, L. Comini, R. Raddino, R. A. Knight, and D. S. Latchman. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ. Res. 90:745–748, 2002.
-
(2002)
Circ. Res
, vol.90
, pp. 745-748
-
-
Scarabelli, T.M.1
Stephanou, A.2
Pasini, E.3
Comini, L.4
Raddino, R.5
Knight, R.A.6
Latchman, D.S.7
-
109
-
-
0035902545
-
Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury
-
Scarabelli, T., A. Stephanou, N. Rayment, E. Pasini, L. Comini, S. Curello, R. Ferrari, R. Knight, and D. Latchman. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256, 2001.
-
(2001)
Circulation
, vol.104
, pp. 253-256
-
-
Scarabelli, T.1
Stephanou, A.2
Rayment, N.3
Pasini, E.4
Comini, L.5
Curello, S.6
Ferrari, R.7
Knight, R.8
Latchman, D.9
-
110
-
-
78650890352
-
Regulation of autophagy by ROS: physiology and pathology
-
Scherz-Shouval, R., and Z. Elazar. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36:30–38, 2011.
-
(2011)
Trends Biochem. Sci
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
111
-
-
34250825929
-
Oxidation as a post-translational modification that regulates autophagy
-
Scherz-Shouval, R., E. Shvets, and Z. Elazar. Oxidation as a post-translational modification that regulates autophagy. Autophagy 3:371–373, 2007.
-
(2007)
Autophagy
, vol.3
, pp. 371-373
-
-
Scherz-Shouval, R.1
Shvets, E.2
Elazar, Z.3
-
112
-
-
0026546623
-
Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells
-
Shen, J., F. W. Luscinskas, A. Connolly, C. F. J. Dewey, and M. A. J. Gimbrone. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262:C384–C390, 1992.
-
(1992)
Am. J. Physiol
, vol.262
, pp. C384-C390
-
-
Shen, J.1
Luscinskas, F.W.2
Connolly, A.3
Dewey, C.F.J.4
Gimbrone, M.A.J.5
-
113
-
-
79961021186
-
Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus
-
Shenouda, S. M., M. E. Widlansky, K. Chen, G. Xu, M. Holbrook, C. E. Tabit, N. M. Hamburg, A. A. Frame, T. L. Caiano, M. A. Kluge, M. A. Duess, A. Levit, B. Kim, M. L. Hartman, L. Joseph, O. S. Shirihai, and J. A. Vita. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124:444–453, 2011.
-
(2011)
Circulation
, vol.124
, pp. 444-453
-
-
Shenouda, S.M.1
Widlansky, M.E.2
Chen, K.3
Xu, G.4
Holbrook, M.5
Tabit, C.E.6
Hamburg, N.M.7
Frame, A.A.8
Caiano, T.L.9
Kluge, M.A.10
Duess, M.A.11
Levit, A.12
Kim, B.13
Hartman, M.L.14
Joseph, L.15
Shirihai, O.S.16
Vita, J.A.17
-
114
-
-
0034022357
-
Unidirectional and oscillatory shear stress differentially modulate NOS III gene expression
-
Silacci, P., K. Formentin, K. Bouzourene, F. Daniel, H. R. Brunner, and D. Hayoz. Unidirectional and oscillatory shear stress differentially modulate NOS III gene expression. Nitric Oxide Biol. Chem. Off. J. Nitric Oxide Soc. 4:47–56, 2000.
-
(2000)
Nitric Oxide Biol. Chem. Off. J. Nitric Oxide Soc
, vol.4
, pp. 47-56
-
-
Silacci, P.1
Formentin, K.2
Bouzourene, K.3
Daniel, F.4
Brunner, H.R.5
Hayoz, D.6
-
115
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova, E., L. Griparic, D. L. Shurland, and A. M. van der Bliek. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12:2245–2256, 2001.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
Griparic, L.2
Shurland, D.L.3
van der Bliek, A.M.4
-
116
-
-
6344283050
-
Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase
-
Sorescu, G. P., H. Song, S. L. Tressel, J. Hwang, S. Dikalov, D. A. Smith, N. L. Boyd, M. O. Platt, B. Lassegue, K. K. Griendling, and H. Jo. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95:773–779, 2004.
-
(2004)
Circ. Res
, vol.95
, pp. 773-779
-
-
Sorescu, G.P.1
Song, H.2
Tressel, S.L.3
Hwang, J.4
Dikalov, S.5
Smith, D.A.6
Boyd, N.L.7
Platt, M.O.8
Lassegue, B.9
Griendling, K.K.10
Jo, H.11
-
117
-
-
56349133547
-
Positioning mitochondrial plasticity within cellular signaling cascades
-
Soubannier, V., and H. M. McBride. Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793:154–170, 2009.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 154-170
-
-
Soubannier, V.1
McBride, H.M.2
-
118
-
-
45349094984
-
Mitochondrial dynamics and apoptosis
-
Suen, D. F., K. L. Norris, and R. J. Youle. Mitochondrial dynamics and apoptosis. Genes Dev. 22:1577–1590, 2008.
-
(2008)
Genes Dev
, vol.22
, pp. 1577-1590
-
-
Suen, D.F.1
Norris, K.L.2
Youle, R.J.3
-
119
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi, N., N. Ishihara, A. Jofuku, T. Oka, and K. Mihara. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282:11521–11529, 2007.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
Ishihara, N.2
Jofuku, A.3
Oka, T.4
Mihara, K.5
-
120
-
-
79960811116
-
Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling
-
Takabe, W., N. Jen, L. Ai, R. Hamilton, S. Wang, K. Holmes, F. Dharbandi, B. Khalsa, S. Bressler, M. L. Barr, R. Li, and T. K. Hsiai. Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxid. Redox Signal. 15:1379–1388, 2011.
-
(2011)
Antioxid. Redox Signal
, vol.15
, pp. 1379-1388
-
-
Takabe, W.1
Jen, N.2
Ai, L.3
Hamilton, R.4
Wang, S.5
Holmes, K.6
Dharbandi, F.7
Khalsa, B.8
Bressler, S.9
Barr, M.L.10
Li, R.11
Hsiai, T.K.12
-
121
-
-
84904321037
-
Mitochondria, endothelial cell function, and vascular diseases
-
Tang, X., Y. X. Luo, H. Z. Chen, and D. P. Liu. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 5:175, 2014.
-
(2014)
Front. Physiol
, vol.5
, pp. 175
-
-
Tang, X.1
Luo, Y.X.2
Chen, H.Z.3
Liu, D.P.4
-
122
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
Turrens, J. F., and A. Boveris. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427, 1980.
-
(1980)
Biochem. J
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
123
-
-
0020397137
-
The effect of hyperoxia on superoxide production by lung submitochondrial particles
-
Turrens, J. F., B. A. Freeman, J. G. Levitt, and J. D. Crapo. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410, 1982.
-
(1982)
Arch. Biochem. Biophys
, vol.217
, pp. 401-410
-
-
Turrens, J.F.1
Freeman, B.A.2
Levitt, J.G.3
Crapo, J.D.4
-
124
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig, G., A. Elorza, A. J. Molina, H. Mohamed, J. D. Wikstrom, G. Walzer, L. Stiles, S. E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B. F. Py, J. Yuan, J. T. Deeney, B. E. Corkey, and O. S. Shirihai. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433–446, 2008.
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
Alroy, J.11
Wu, M.12
Py, B.F.13
Yuan, J.14
Deeney, J.T.15
Corkey, B.E.16
Shirihai, O.S.17
-
125
-
-
79954571354
-
The interplay between mitochondrial dynamics and mitophagy
-
Twig, G., and O. S. Shirihai. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14:1939–1951, 2011.
-
(2011)
Antioxid. Redox Signal
, vol.14
, pp. 1939-1951
-
-
Twig, G.1
Shirihai, O.S.2
-
126
-
-
22144465499
-
Postconditioning—A new link in nature’s armor against myocardial ischemia-reperfusion injury
-
Vinten-Johansen, J., Z. Q. Zhao, A. J. Zatta, H. Kin, M. E. Halkos, and F. Kerendi. Postconditioning—A new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res. Cardiol. 100:295–310, 2005.
-
(2005)
Basic Res. Cardiol
, vol.100
, pp. 295-310
-
-
Vinten-Johansen, J.1
Zhao, Z.Q.2
Zatta, A.J.3
Kin, H.4
Halkos, M.E.5
Kerendi, F.6
-
127
-
-
79952227187
-
2-Deoxy-d-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase
-
Wang, Q., B. Liang, N. A. Shirwany, and M. H. Zou. 2-Deoxy-d-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS ONE 6:e17234, 2011.
-
(2011)
PLoS ONE
, vol.6
, pp. e17234
-
-
Wang, Q.1
Liang, B.2
Shirwany, N.A.3
Zou, M.H.4
-
128
-
-
0029841018
-
Measurement of nitric oxide and peroxynitrite generation in the postischemic heart
-
Wang, P., and J. L. Zweier. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. J. Biol. Chem. 271:29223–29230, 1996.
-
(1996)
J. Biol. Chem
, vol.271
, pp. 29223-29230
-
-
Wang, P.1
Zweier, J.L.2
-
129
-
-
0037180745
-
Gene expression profile of human endothelial cells exposed to sustained fluid shear stress
-
Wasserman, S. M., F. Mehraban, L. G. Komuves, R. B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, and J. N. Topper. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics 12:13–23, 2002.
-
(2002)
Physiol. Genomics
, vol.12
, pp. 13-23
-
-
Wasserman, S.M.1
Mehraban, F.2
Komuves, L.G.3
Yang, R.B.4
Tomlinson, J.E.5
Zhang, Y.6
Spriggs, F.7
Topper, J.N.8
-
130
-
-
84877626889
-
Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts
-
Wei, C., H. Li, L. Han, L. Zhang, and X. Yang. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J. Cardiovasc. Pharmacol. 61:416–422, 2013.
-
(2013)
J. Cardiovasc. Pharmacol
, vol.61
, pp. 416-422
-
-
Wei, C.1
Li, H.2
Han, L.3
Zhang, L.4
Yang, X.5
-
131
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei, Y., S. Pattingre, S. Sinha, M. Bassik, and B. Levine. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30:678–688, 2008.
-
(2008)
Mol. Cell
, vol.30
, pp. 678-688
-
-
Wei, Y.1
Pattingre, S.2
Sinha, S.3
Bassik, M.4
Levine, B.5
-
132
-
-
0029806383
-
Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation
-
Xie, Y. W., and M. S. Wolin. Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation. Circulation 94:2580–2586, 1996.
-
(1996)
Circulation
, vol.94
, pp. 2580-2586
-
-
Xie, Y.W.1
Wolin, M.S.2
-
133
-
-
0031015688
-
Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts
-
Yasmin, W., K. D. Strynadka, and R. Schulz. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc. Res. 33:422–432, 1997.
-
(1997)
Cardiovasc. Res
, vol.33
, pp. 422-432
-
-
Yasmin, W.1
Strynadka, K.D.2
Schulz, R.3
-
134
-
-
0035218025
-
Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression
-
Yeh, L. H., A. M. Kinsey, S. Chatterjee, and B. R. Alevriadou. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J. Vasc. Res. 38:551–559, 2001.
-
(2001)
J. Vasc. Res
, vol.38
, pp. 551-559
-
-
Yeh, L.H.1
Kinsey, A.M.2
Chatterjee, S.3
Alevriadou, B.R.4
-
135
-
-
0032954798
-
Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS
-
Yeh, L. H., Y. J. Park, R. J. Hansalia, I. S. Ahmed, S. S. Deshpande, P. J. Goldschmidt-Clermont, K. Irani, and B. R. Alevriadou. Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS. Am. J. Physiol. 276:C838–C847, 1999.
-
(1999)
Am. J. Physiol
, vol.276
, pp. C838-C847
-
-
Yeh, L.H.1
Park, Y.J.2
Hansalia, R.J.3
Ahmed, I.S.4
Deshpande, S.S.5
Goldschmidt-Clermont, P.J.6
Irani, K.7
Alevriadou, B.R.8
-
136
-
-
73649096734
-
Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression
-
Young, A., W. Wu, W. Sun, H. Benjamin Larman, N. Wang, Y. S. Li, J. Y. Shyy, S. Chien, and G. Garcia-Cardena. Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler. Thromb. Vasc. Biol. 29:1902–1908, 2009.
-
(2009)
Arterioscler. Thromb. Vasc. Biol
, vol.29
, pp. 1902-1908
-
-
Young, A.1
Wu, W.2
Sun, W.3
Benjamin Larman, H.4
Wang, N.5
Li, Y.S.6
Shyy, J.Y.7
Chien, S.8
Garcia-Cardena, G.9
-
137
-
-
0034890674
-
Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model
-
Zhang, Y., J. W. Bissing, L. Xu, A. J. Ryan, S. M. Martin, F. J. Miller, Jr., K. C. Kregel, G. R. Buettner, and R. E. Kerber. Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model. J. Am. Coll. Cardiol. 38:546–554, 2001.
-
(2001)
J. Am. Coll. Cardiol
, vol.38
, pp. 546-554
-
-
Zhang, Y.1
Bissing, J.W.2
Xu, L.3
Ryan, A.J.4
Martin, S.M.5
Miller, F.J.6
Kregel, K.C.7
Buettner, G.R.8
Kerber, R.E.9
-
138
-
-
34250825264
-
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells
-
Zhang, D. X., and D. D. Gutterman. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292:H2023–H2031, 2007.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol
, vol.292
, pp. H2023-H2031
-
-
Zhang, D.X.1
Gutterman, D.D.2
-
139
-
-
20444494969
-
Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport
-
Zhao, X., G. He, Y. R. Chen, R. P. Pandian, P. Kuppusamy, and J. L. Zweier. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation 111:2966–2972, 2005.
-
(2005)
Circulation
, vol.111
, pp. 2966-2972
-
-
Zhao, X.1
He, G.2
Chen, Y.R.3
Pandian, R.P.4
Kuppusamy, P.5
Zweier, J.L.6
|