-
1
-
-
84988864262
-
Revised estimates for the number of human and bacterial cells in the body
-
Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacterial cells in the body. PLoS Biol. 2016, 14, e1002533. [CrossRef] [PubMed]
-
(2016)
Plos Biol
, vol.14
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
2
-
-
84961288867
-
Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans
-
Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [CrossRef] [PubMed]
-
(2016)
Cell
, vol.164
, pp. 337-340
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
3
-
-
84866146940
-
Diversity and resilience of the human gut microbiota
-
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [CrossRef] [PubMed]
-
(2012)
Nature
, vol.489
, pp. 220-230
-
-
Lozupone, C.A.1
Stombaugh, J.I.2
Gordon, J.I.3
Jansson, J.K.4
Knight, R.5
-
4
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [CrossRef] [PubMed]
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
Arumugam, M.4
Burgdorf, K.S.5
Manichanh, C.6
Nielsen, T.7
Pons, N.8
Levenez, F.9
Yamada, T.10
-
5
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef] [PubMed]
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
Le Paslier, D.4
Yamada, T.5
Mende, D.R.6
Fernandes, G.R.7
Tap, J.8
Bruls, T.9
Batto, J.M.10
-
6
-
-
84964350668
-
Gut microbiota: The brain peacekeeper
-
Mu, C.; Yang, Y.; Zhu, W. Gut microbiota: The brain peacekeeper. Front. Microbiol. 2016, 7, 345. [CrossRef] [PubMed]
-
(2016)
Front. Microbiol
, vol.7
, pp. 345
-
-
Mu, C.1
Yang, Y.2
Zhu, W.3
-
8
-
-
84939609921
-
Roles of commensal microbiota in pancreas homeostasis and pancreatic pathologies
-
Leal-Lopes, C.; Velloso, F.J.; Campopiano, J.C.; Sogayar, M.C.; Correa, R.G. Roles of commensal microbiota in pancreas homeostasis and pancreatic pathologies. J. Diabetes Res. 2015, 2015, 284680. [CrossRef] [PubMed]
-
(2015)
J. Diabetes Res
, vol.2015
, pp. 284680
-
-
Leal-Lopes, C.1
Velloso, F.J.2
Campopiano, J.C.3
Sogayar, M.C.4
Correa, R.G.5
-
9
-
-
84989906845
-
Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature
-
Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J. Obes. 2016, 2016, 7353642. [CrossRef] [PubMed]
-
(2016)
J. Obes
, vol.2016
, pp. 7353642
-
-
Khan, M.J.1
Gerasimidis, K.2
Edwards, C.A.3
Shaikh, M.G.4
-
10
-
-
85000956262
-
Role of gut microbiota in atherosclerosis
-
Jonsson, A.L.; Backhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79–87. [CrossRef] [PubMed]
-
(2017)
Nat. Rev. Cardiol
, vol.14
, pp. 79-87
-
-
Jonsson, A.L.1
Backhed, F.2
-
11
-
-
84944682179
-
Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine
-
Haghikia, A.; Jorg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2015, 43, 817–829. [CrossRef] [PubMed]
-
(2015)
Immunity
, vol.43
, pp. 817-829
-
-
Haghikia, A.1
Jorg, S.2
Duscha, A.3
Berg, J.4
Manzel, A.5
Waschbisch, A.6
Hammer, A.7
Lee, D.H.8
May, C.9
Wilck, N.10
-
12
-
-
84944675457
-
Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain
-
Bhutia, Y.D.; Ganapathy, V. Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain. Immunity 2015, 43, 629–631. [CrossRef] [PubMed]
-
(2015)
Immunity
, vol.43
, pp. 629-631
-
-
Bhutia, Y.D.1
Ganapathy, V.2
-
13
-
-
84966658995
-
Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
-
Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597. [CrossRef] [PubMed]
-
(2016)
Nat. Med
, vol.22
, pp. 586-597
-
-
Rothhammer, V.1
Mascanfroni, I.D.2
Bunse, L.3
Takenaka, M.C.4
Kenison, J.E.5
Mayo, L.6
Chao, C.C.7
Patel, B.8
Yan, R.9
Blain, M.10
-
14
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [CrossRef] [PubMed]
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
Iannitti, R.G.2
Cunha, C.3
De Luca, A.4
Giovannini, G.5
Pieraccini, G.6
Zecchi, R.7
D’Angelo, C.8
Massi-Benedetti, C.9
Fallarino, F.10
-
15
-
-
84928173371
-
Microbial activities and intestinal homeostasis: A delicate balance between health and disease
-
Ohland, C.L.; Jobin, C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 28–40. [CrossRef] [PubMed]
-
(2015)
Cell. Mol. Gastroenterol. Hepatol
, vol.1
, pp. 28-40
-
-
Ohland, C.L.1
Jobin, C.2
-
16
-
-
84962193496
-
Dysbiosis in intestinal inflammation: Cause or consequence
-
Buttó, L.F.; Haller, D. Dysbiosis in intestinal inflammation: Cause or consequence. Int. J. Med. Microbiol. 2016, 306, 302–309. [CrossRef] [PubMed]
-
(2016)
Int. J. Med. Microbiol
, vol.306
, pp. 302-309
-
-
Buttó, L.F.1
Haller, D.2
-
17
-
-
84926436561
-
Microbiota disbiosis is associated with colorectal cancer
-
Gao, Z.; Guo, B.; Gao, R.; Zhu, Q.; Qin, H. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 2015, 6, 20. [CrossRef] [PubMed]
-
(2015)
Front. Microbiol
, vol.6
, pp. 20
-
-
Gao, Z.1
Guo, B.2
Gao, R.3
Zhu, Q.4
Qin, H.5
-
18
-
-
78650118403
-
The struggle within: Microbial influences on colorectal cancer
-
Arthur, J.C.; Jobin, C. The struggle within: Microbial influences on colorectal cancer. Inflamm. Bowel Dis. 2011, 17, 396–409. [CrossRef] [PubMed]
-
(2011)
Inflamm. Bowel Dis
, vol.17
, pp. 396-409
-
-
Arthur, J.C.1
Jobin, C.2
-
19
-
-
0027369395
-
Ulcerative colitis-like disease with a disrupted interleukin-2 gene
-
Sadlack, B.; Merz, H.; Schorle, H.; Schimpl, A.; Feller, A.C.; Horak, I. Ulcerative colitis-like disease with a disrupted interleukin-2 gene. Cell 1993, 75, 253–261. [CrossRef]
-
(1993)
Cell
, vol.75
, pp. 253-261
-
-
Sadlack, B.1
Merz, H.2
Schorle, H.3
Schimpl, A.4
Feller, A.C.5
Horak, I.6
-
20
-
-
0035192380
-
Inflammatory bowel disease: Lessons from the IL-10 gene-deficient mouse
-
Madsen, K.L. Inflammatory bowel disease: Lessons from the IL-10 gene-deficient mouse. Clin. Investig. Med. 2001, 24, 250–257.
-
(2001)
Clin. Investig. Med
, vol.24
, pp. 250-257
-
-
Madsen, K.L.1
-
21
-
-
84952982818
-
Talking microbes: When gut bacteria interact with diet and host organs
-
Cani, P.D.; Everard, A. Talking microbes: When gut bacteria interact with diet and host organs. Mol. Nutr. Food Res. 2016, 60, 58–66. [CrossRef] [PubMed]
-
(2016)
Mol. Nutr. Food Res
, vol.60
, pp. 58-66
-
-
Cani, P.D.1
Everard, A.2
-
22
-
-
0036500996
-
Colorectal cancer in mice genetically deficient in the mucin Muc2
-
Velcich, A.; Yang, W.; Heyer, J.; Fragale, A.; Nicholas, C.; Viani, S.; Kucherlapati, R.; Lipkin, M.; Yang, K.; Augenlicht, L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295, 1726–1729. [CrossRef] [PubMed]
-
(2002)
Science
, vol.295
, pp. 1726-1729
-
-
Velcich, A.1
Yang, W.2
Heyer, J.3
Fragale, A.4
Nicholas, C.5
Viani, S.6
Kucherlapati, R.7
Lipkin, M.8
Yang, K.9
Augenlicht, L.10
-
23
-
-
78650096816
-
Importance of disrupted intestinal barrier in inflammatory bowel diseases
-
Salim, S.Y.; Söderholm, J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 17, 362–381. [CrossRef] [PubMed]
-
(2011)
Inflamm. Bowel Dis
, vol.17
, pp. 362-381
-
-
Salim, S.Y.1
Söderholm, J.D.2
-
24
-
-
84918816499
-
Ulcerative colitis-associated colorectal cancer
-
Yashiro, M. Ulcerative colitis-associated colorectal cancer. World J. Gastroenterol. 2014, 20, 16389–16397. [CrossRef] [PubMed]
-
(2014)
World J. Gastroenterol
, vol.20
, pp. 16389-16397
-
-
Yashiro, M.1
-
25
-
-
30944458581
-
Layers of mutualism with commensal bacteria protect us from intestinal inflammation
-
Mueller, C.; Macpherson, A.J. Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 2006, 55, 276–284. [CrossRef] [PubMed]
-
(2006)
Gut
, vol.55
, pp. 276-284
-
-
Mueller, C.1
Macpherson, A.J.2
-
26
-
-
84962048121
-
Gut microbiotas and host evolution: Scaling up symbiosis
-
Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 2016, 31, 539–549. [CrossRef] [PubMed]
-
(2016)
Trends Ecol. E
, vol.31
, pp. 539-549
-
-
Shapira, M.1
-
27
-
-
39049154328
-
Skin microbiota: A source of disease or defence?
-
Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [CrossRef] [PubMed]
-
(2008)
Br. J. Dermatol
, vol.158
, pp. 442-455
-
-
Cogen, A.L.1
Nizet, V.2
Gallo, R.L.3
-
28
-
-
0037509909
-
Regulation of short-chain fatty acid production
-
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [CrossRef] [PubMed]
-
(2003)
Proc. Nutr. Soc
, vol.62
, pp. 67-72
-
-
Macfarlane, S.1
Macfarlane, G.T.2
-
29
-
-
85013427506
-
Gut microbiome and colon cancer: Role of bacterial metabolites and their molecular targets in the host
-
Bhutia, Y.D.; Ogura, J.; Sivaprakasam, S.; Ganapathy, V. Gut microbiome and colon cancer: Role of bacterial metabolites and their molecular targets in the host. Curr. Colorectal Cancer Rep. 2017, 13, 111–118. [CrossRef]
-
(2017)
Curr. Colorectal Cancer Rep
, vol.13
, pp. 111-118
-
-
Bhutia, Y.D.1
Ogura, J.2
Sivaprakasam, S.3
Ganapathy, V.4
-
30
-
-
84871634362
-
Microbiota and innate immunity in intestinal inflammation and neoplasia
-
Cario, E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr. Opin. Gastroenterol. 2013, 29, 85–91. [CrossRef] [PubMed]
-
(2013)
Curr. Opin. Gastroenterol
, vol.29
, pp. 85-91
-
-
Cario, E.1
-
31
-
-
84871633923
-
The colonic microbiota in health and disease
-
Shanahan, F. The colonic microbiota in health and disease. Curr. Opin. Gastroenterol. 2013, 29, 49–54. [CrossRef] [PubMed]
-
(2013)
Curr. Opin. Gastroenterol
, vol.29
, pp. 49-54
-
-
Shanahan, F.1
-
32
-
-
84964308241
-
Colorectal cancer: Role of commensal bacteria and bystander effects
-
Wang, X.; Huycke, M.M. Colorectal cancer: Role of commensal bacteria and bystander effects. Gut Microbes 2015, 6, 370–376. [CrossRef] [PubMed]
-
(2015)
Gut Microbes
, vol.6
, pp. 370-376
-
-
Wang, X.1
Huycke, M.M.2
-
33
-
-
84889096652
-
The microbiota and inflammatory bowel disease: Insights from animal models
-
Peloquin, J.M.; Nguyen, D.D. The microbiota and inflammatory bowel disease: Insights from animal models. Anaerobe 2013, 24, 102–106. [CrossRef] [PubMed]
-
(2013)
Anaerobe
, vol.24
, pp. 102-106
-
-
Peloquin, J.M.1
Nguyen, D.D.2
-
34
-
-
33748329408
-
Review article: The role of bacteria in onset and perpetuation of inflammatory bowel disease
-
Seksik, P.; Sokol, H.; Lepage, P.; Vasquez, N.; Manichanh, C.; Mangin, I.; Pochart, P.; Dore, J.; Marteau, P. Review article: The role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2006, 24 (Suppl. 3), 11–18. [CrossRef] [PubMed]
-
(2006)
Aliment. Pharmacol. Ther
, vol.24
, pp. 11-18
-
-
Seksik, P.1
Sokol, H.2
Lepage, P.3
Vasquez, N.4
Manichanh, C.5
Mangin, I.6
Pochart, P.7
Dore, J.8
Marteau, P.9
-
35
-
-
84949555561
-
Mechanisms of microbe-host interaction in Crohn’s disease: Dysbiosis vs. pathobiont selection
-
Butto, L.F.; Schaubeck, M.; Haller, D. Mechanisms of microbe-host interaction in Crohn’s disease: Dysbiosis vs. pathobiont selection. Front. Immunol. 2015, 6, 555. [CrossRef] [PubMed]
-
(2015)
Front. Immunol
, vol.6
, pp. 555
-
-
Butto, L.F.1
Schaubeck, M.2
Haller, D.3
-
36
-
-
84929646195
-
Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models
-
De Moreno de LeBlanc, A.; Del Carmen, S.; Chatel, J.M.; Miyoshi, A.; Azevedo, V.; Langella, P.; Bermudez-Humaran, L.G.; LeBlanc, J.G. Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gasteroenterol. Res. Pract. 2015, 2015, 146972. [CrossRef] [PubMed]
-
(2015)
Gasteroenterol. Res. Pract
, vol.2015
-
-
De Moreno De Leblanc, A.1
Del Carmen, S.2
Chatel, J.M.3
Miyoshi, A.4
Azevedo, V.5
Langella, P.6
Bermudez-Humaran, L.G.7
Leblanc, J.G.8
-
37
-
-
84932098334
-
Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease
-
Wasilewski, A.; Zielinska, M.; Storr, M.; Fichna, J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 1674–1682. [CrossRef] [PubMed]
-
(2015)
Inflamm. Bowel Dis
, vol.21
, pp. 1674-1682
-
-
Wasilewski, A.1
Zielinska, M.2
Storr, M.3
Fichna, J.4
-
38
-
-
84924787273
-
IBD and the gut microbiota—From bench to personalized medicine
-
Bellaguarda, E.; Chang, E.B. IBD and the gut microbiota—From bench to personalized medicine. Curr. Gastroenterol. Rep. 2015, 17, 15. [CrossRef] [PubMed]
-
(2015)
Curr. Gastroenterol. Rep
, vol.17
, pp. 15
-
-
Bellaguarda, E.1
Chang, E.B.2
-
39
-
-
84928894858
-
New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics
-
Patel, R.; DuPont, H.L. New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis. 2015, 60 (Suppl. 2), S108–S121. [CrossRef] [PubMed]
-
(2015)
Clin. Infect. Dis
, vol.60
, pp. S108-S121
-
-
Patel, R.1
Dupont, H.L.2
-
40
-
-
84979076129
-
Manipulation of the microbiota using probiotics
-
Grimm, V.; Riedel, C.U. Manipulation of the microbiota using probiotics. Adv. Exp. Med. Biol. 2016, 902, 109–117. [PubMed]
-
(2016)
Adv. Exp. Med. Biol
, vol.902
, pp. 109-117
-
-
Grimm, V.1
Riedel, C.U.2
-
41
-
-
84859747964
-
Bacterial biogeography of the human digestive tract
-
Stearns, J.C.; Lynch, M.D.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.; Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011, 1, 170. [CrossRef] [PubMed]
-
(2011)
Sci. Rep
, vol.1
, pp. 170
-
-
Stearns, J.C.1
Lynch, M.D.2
Senadheera, D.B.3
Tenenbaum, H.C.4
Goldberg, M.B.5
Cvitkovitch, D.G.6
Croitoru, K.7
Moreno-Hagelsieb, G.8
Neufeld, J.D.9
-
42
-
-
80054980812
-
Regulation of inflammation by short-chain fatty acids
-
Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short-chain fatty acids. Nutrients 2011, 3, 858–876. [CrossRef] [PubMed]
-
(2011)
Nutrients
, vol.3
, pp. 858-876
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Nachbar, R.T.3
Curi, R.4
-
44
-
-
84995414949
-
Diet, microorganisms and their metabolites, and colon cancer
-
O’Keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–706. [CrossRef] [PubMed]
-
(2016)
Nat. Rev. Gastroenterol. Hepatol
, vol.13
, pp. 691-706
-
-
O’Keefe, S.J.1
-
45
-
-
84962195820
-
Intestinal short chain fatty acids and their link with diet and human health
-
Rios-Covian, D.; Ruas-Madeido, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilan, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [CrossRef] [PubMed]
-
(2016)
Front. Microbiol
, vol.7
, pp. 185
-
-
Rios-Covian, D.1
Ruas-Madeido, P.2
Margolles, A.3
Gueimonde, M.4
De Los Reyes-Gavilan, C.G.5
Salazar, N.6
-
46
-
-
33645969256
-
SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor-suppressive function of the transporter
-
Gupta, N.; Martin, P.M.; Prasad, P.D.; Ganapathy, V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor-suppressive function of the transporter. Life Sci. 2006, 78, 2419–2425. [CrossRef] [PubMed]
-
(2006)
Life Sci
, vol.78
, pp. 2419-2425
-
-
Gupta, N.1
Martin, P.M.2
Prasad, P.D.3
Ganapathy, V.4
-
47
-
-
51249118120
-
Sodium-coupled monocarboxylate transporters in normal tissues and in cancer
-
Ganapathy, V.; Thangaraju, M.; Gopal, E.; Martin, P.M.; Itagaki, S.; Miyauchi, S.; Prasad, P.D. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 2008, 10, 193–199. [CrossRef] [PubMed]
-
(2008)
AAPS J
, vol.10
, pp. 193-199
-
-
Ganapathy, V.1
Thangaraju, M.2
Gopal, E.3
Martin, P.M.4
Itagaki, S.5
Miyauchi, S.6
Prasad, P.D.7
-
48
-
-
77951932119
-
Role of colonic short-chain fatty acid transport in diarrhea
-
Binder, H.J. Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol. 2010, 72, 297–313. [CrossRef] [PubMed]
-
(2010)
Annu. Rev. Physiol
, vol.72
, pp. 297-313
-
-
Binder, H.J.1
-
49
-
-
84887903682
-
Butyrate and colorectal cancer: The role of butyrate transport
-
Goncalves, P.; Martel, F. Butyrate and colorectal cancer: The role of butyrate transport. Curr. Drug Metab. 2013, 14, 994–1008. [CrossRef] [PubMed]
-
(2013)
Curr. Drug Metab
, vol.14
, pp. 994-1008
-
-
Goncalves, P.1
Martel, F.2
-
50
-
-
51449119654
-
Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions
-
Tazoe, H.; Otomo, Y.; Kaji, I.; Tanaka, R.; Karaki, S.I.; Kuwahara, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 2008, 59 (Suppl. 2), 252–262.
-
(2008)
J. Physiol. Pharmacol
, vol.59
, pp. 252-262
-
-
Tazoe, H.1
Otomo, Y.2
Kaji, I.3
Tanaka, R.4
Karaki, S.I.5
Kuwahara, A.6
-
51
-
-
84888167311
-
Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host
-
Ganapathy, V.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Singh, N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol. 2013, 13, 869–874. [CrossRef] [PubMed]
-
(2013)
Curr. Opin. Pharmacol
, vol.13
, pp. 869-874
-
-
Ganapathy, V.1
Thangaraju, M.2
Prasad, P.D.3
Martin, P.M.4
Singh, N.5
-
52
-
-
84891363464
-
The role of short-chain fatty acids in health and disease
-
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [PubMed]
-
(2014)
Adv. Immunol
, vol.121
, pp. 91-119
-
-
Tan, J.1
McKenzie, C.2
Potamitis, M.3
Thorburn, A.N.4
Mackay, C.R.5
Macia, L.6
-
53
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [CrossRef] [PubMed]
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
Dikiy, S.4
Van Der Veeken, J.5
Deroos, P.6
Liu, H.7
Cross, J.R.8
Pfeffer, K.9
Coffer, P.J.10
-
54
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [CrossRef] [PubMed]
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly-, Y.6
Glickman, J.N.7
Garrett, W.S.8
-
55
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [CrossRef] [PubMed]
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
Kranich, J.4
Sierro, F.5
Yu, D.6
Schilter, H.C.7
Rolph, M.S.8
Mackay, F.9
Artis, D.10
-
56
-
-
33645288854
-
Does butyrate protect from colorectal cancer?
-
Sengupta, S.; Muir, J.G.; Gibson, P.R. Does butyrate protect from colorectal cancer? J. Gastroenterol. Hepatol. 2006, 21, 209–218. [CrossRef] [PubMed]
-
(2006)
J. Gastroenterol. Hepatol
, vol.21
, pp. 209-218
-
-
Sengupta, S.1
Muir, J.G.2
Gibson, P.R.3
-
57
-
-
0023276469
-
Short chain fatty acids in human large intestine, portal, hepatic and venous blood
-
Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [CrossRef] [PubMed]
-
(1987)
Gut
, vol.28
, pp. 1221-1227
-
-
Cummings, J.H.1
Pomare, E.W.2
Branch, W.J.3
Naylor, C.P.4
Macfarlane, G.T.5
-
58
-
-
84930885868
-
Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism
-
Helenius, T.O.; Misiorek, J.O.; Nystrom, J.H.; Fortelius, L.E.; Habtezion, A.; Liao, J.; Asghar, M.N.; Zhang, H.; Azhar, S.; Omary, M.B.; et al. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol. Biol. Cell 2015, 26, 2298–2310. [CrossRef] [PubMed]
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 2298-2310
-
-
Helenius, T.O.1
Misiorek, J.O.2
Nystrom, J.H.3
Fortelius, L.E.4
Habtezion, A.5
Liao, J.6
Asghar, M.N.7
Zhang, H.8
Azhar, S.9
Omary, M.B.10
-
59
-
-
84962609703
-
Probiotics in digestive diseases: Focus on Lactobacillus GG
-
Pace, F.; Pace, M.; Quartarone, G. Probiotics in digestive diseases: Focus on Lactobacillus GG. Minerva Gastroenterol. Dietol. 2015, 61, 273–292. [PubMed]
-
(2015)
Minerva Gastroenterol. Dietol
, vol.61
, pp. 273-292
-
-
Pace, F.1
Pace, M.2
Quartarone, G.3
-
60
-
-
84946223051
-
Indole and tryptophan metabolism: Endogenous and dietary routes to Ah receptor activation
-
Hubbard, T.D.; Murray, I.A.; Perdew, G.H. Indole and tryptophan metabolism: Endogenous and dietary routes to Ah receptor activation. Drug Metab. Dispos. 2015, 43, 1522–1535. [CrossRef] [PubMed]
-
(2015)
Drug Metab. Dispos
, vol.43
, pp. 1522-1535
-
-
Hubbard, T.D.1
Murray, I.A.2
Perdew, G.H.3
-
61
-
-
84897374287
-
Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities
-
Jin, U.H.; Lee, S.O.; Sridharan, G.; Lee, K.; Davidson, L.A.; Jayaraman, A.; Chapkin, R.S.; Alaniz, R.; Safe, S. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 2014, 85, 777–788. [CrossRef] [PubMed]
-
(2014)
Mol. Pharmacol
, vol.85
, pp. 777-788
-
-
Jin, U.H.1
Lee, S.O.2
Sridharan, G.3
Lee, K.4
Davidson, L.A.5
Jayaraman, A.6
Chapkin, R.S.7
Alaniz, R.8
Safe, S.9
-
62
-
-
84978770558
-
The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse
-
Díaz-Díaz, C.J.; Ronnekleiv-Kelly, S.M.; Nukaya, M.; Geiger, P.G.; Balbo, S.; Dator, R.; Megna, B.W.; Carney, P.R.; Bradfield, C.A.; Kennedy, G.D. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann. Surg. 2016, 264, 429–436. [CrossRef] [PubMed]
-
(2016)
Ann. Surg
, vol.264
, pp. 429-436
-
-
Díaz-Díaz, C.J.1
Ronnekleiv-Kelly, S.M.2
Nukaya, M.3
Geiger, P.G.4
Balbo, S.5
Dator, R.6
Megna, B.W.7
Carney, P.R.8
Bradfield, C.A.9
Kennedy, G.D.10
-
63
-
-
84960375270
-
Consequences of bile salt biotransformations by intestinal bacteria
-
Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [CrossRef] [PubMed]
-
(2016)
Gut Microbes
, vol.7
, pp. 22-39
-
-
Ridlon, J.M.1
Harris, S.C.2
Bhowmik, S.3
Kang, D.J.4
Hylemon, P.B.5
-
64
-
-
84921417572
-
The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases
-
Brown, J.M.; Hazen, S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 2015, 66, 343–359. [CrossRef] [PubMed]
-
(2015)
Annu. Rev. Med
, vol.66
, pp. 343-359
-
-
Brown, J.M.1
Hazen, S.L.2
-
65
-
-
84960334018
-
Trimethylamine-N-oxide: A link between the gut microbiome, bile acid metabolism, and atherosclerosis
-
Wilson, A.; McLean, C.; Kim, R.B. Trimethylamine-N-oxide: A link between the gut microbiome, bile acid metabolism, and atherosclerosis. Curr. Opin. Lipidol. 2016, 27, 148–154. [CrossRef] [PubMed]
-
(2016)
Curr. Opin. Lipidol
, vol.27
, pp. 148-154
-
-
Wilson, A.1
McLean, C.2
Kim, R.B.3
-
66
-
-
84926434241
-
Bacterial production of conjugated linoleic and linolenic acid in foods: A technological challenge
-
Gorissen, L.; Leroy, F.; De Vuyst, L.; De Smet, S.; Raes, K. Bacterial production of conjugated linoleic and linolenic acid in foods: A technological challenge. Crit. Rev. Food Sci. Nutr. 2015, 55, 1561–1574. [CrossRef] [PubMed]
-
(2015)
Crit. Rev. Food Sci. Nutr
, vol.55
, pp. 1561-1574
-
-
Gorissen, L.1
Leroy, F.2
De Vuyst, L.3
De Smet, S.4
Raes, K.5
-
67
-
-
0038676409
-
Inhibition of histone deacetylase activity by butyrate
-
Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 2003, 133 (Suppl. 7), S2485–S2493.
-
(2003)
J. Nutr
, vol.133
, pp. S2485-S2493
-
-
Davie, J.R.1
-
68
-
-
33846232686
-
SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases
-
Thangaraju, M.; Gopal, E.; Martin, P.M.; Ananth, S.; Smith, S.B.; Prasad, P.D.; Sterneck, E.; Ganapathy, V. SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Cancer Res. 2006, 66, 11560–11564. [CrossRef] [PubMed]
-
(2006)
Cancer Res
, vol.66
, pp. 11560-11564
-
-
Thangaraju, M.1
Gopal, E.2
Martin, P.M.3
Ananth, S.4
Smith, S.B.5
Prasad, P.D.6
Sterneck, E.7
Ganapathy, V.8
-
69
-
-
77956237892
-
Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases
-
Singh, N.; Thangaraju, M.; Prasad, P.D.; Martin, P.M.; Lambert, N.A.; Boettger, T.; Offermanns, S.; Ganapathy, V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 2010, 285, 27601–27608. [CrossRef] [PubMed]
-
(2010)
J. Biol. Chem
, vol.285
, pp. 27601-27608
-
-
Singh, N.1
Thangaraju, M.2
Prasad, P.D.3
Martin, P.M.4
Lambert, N.A.5
Boettger, T.6
Offermanns, S.7
Ganapathy, V.8
-
70
-
-
84922788875
-
Altered expression of histone deacetylases in cancer
-
Montezuma, D.; Henrique, R.M.; Jeronimo, C. Altered expression of histone deacetylases in cancer. Crit. Rev. Oncog. 2015, 20, 19–34. [CrossRef] [PubMed]
-
(2015)
Crit. Rev. Oncog
, vol.20
, pp. 19-34
-
-
Montezuma, D.1
Henrique, R.M.2
Jeronimo, C.3
-
71
-
-
84892942381
-
New and emerging HDAC inhibitors for cancer treatment
-
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 2014, 124, 30–39. [CrossRef] [PubMed]
-
(2014)
J. Clin. Investig
, vol.124
, pp. 30-39
-
-
West, A.C.1
Johnstone, R.W.2
-
72
-
-
66149084058
-
GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon
-
Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lambert, N.A.; et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009, 69, 2826–2832. [CrossRef] [PubMed]
-
(2009)
Cancer Res
, vol.69
, pp. 2826-2832
-
-
Thangaraju, M.1
Cresci, G.A.2
Liu, K.3
Ananth, S.4
Gnanaprakasam, J.P.5
Browning, D.D.6
Mellinger, J.D.7
Smith, S.B.8
Digby, G.J.9
Lambert, N.A.10
-
73
-
-
77950516928
-
Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8
-
Cresci, G.A.; Thangaraju, M.; Mellinger, J.D.; Liu, K.; Ganapathy, V. Colonic gene expression in conventional and germ-free mice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J. Gastrointest. Surg. 2010, 14, 449–461. [CrossRef] [PubMed]
-
(2010)
J. Gastrointest. Surg
, vol.14
, pp. 449-461
-
-
Cresci, G.A.1
Thangaraju, M.2
Mellinger, J.D.3
Liu, K.4
Ganapathy, V.5
-
74
-
-
22844439234
-
D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G
-
D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005, 280, 26649–26652. [CrossRef] [PubMed]
-
(2005)
J. Biol. Chem
, vol.280
, pp. 26649-26652
-
-
Taggart, A.K.1
Kero, J.2
Gan, X.3
Cai, T.Q.4
Cheng, K.5
Ippolito, M.6
Ren, N.7
Kaplan, R.8
Wu, K.9
Wu, T.J.10
-
75
-
-
0038363378
-
The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
-
Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312–11319. [CrossRef] [PubMed]
-
(2003)
J. Biol. Chem
, vol.278
, pp. 11312-11319
-
-
Brown, A.J.1
Goldsworthy, S.M.2
Barnes, A.A.3
Eilert, M.M.4
Tcheang, L.5
Daniels, D.6
Muir, A.I.7
Wigglesworth, M.J.8
Kinghorn, I.9
Fraser, N.J.10
-
76
-
-
84884693129
-
GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs. FFAR3 in enteric neurons and FFAR2 in enteric leukocytes
-
Nøhr, M.K.; Pedersen, M.H.; Gille, A.; Egerod, K.L.; Engelstoft, M.S.; Husted, A.S.; Sichlau, R.M.; Grunddal, K.V.; Poulsen, S.S.; Han, S.; et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs. FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013, 154, 3552–3564. [CrossRef] [PubMed]
-
(2013)
Endocrinology
, vol.154
, pp. 3552-3564
-
-
Nøhr, M.K.1
Pedersen, M.H.2
Gille, A.3
Egerod, K.L.4
Engelstoft, M.S.5
Husted, A.S.6
Sichlau, R.M.7
Grunddal, K.V.8
Poulsen, S.S.9
Han, S.10
-
77
-
-
0038491435
-
Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation
-
Le Poul, E.; Loison, C.; Struyf, S.; Springael, J.Y.; Lannoy, V.; Decobecq, M.E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481–25489. [CrossRef] [PubMed]
-
(2003)
J. Biol. Chem
, vol.278
, pp. 25481-25489
-
-
Le Poul, E.1
Loison, C.2
Struyf, S.3
Springael, J.Y.4
Lannoy, V.5
Decobecq, M.E.6
Brezillon, S.7
Dupriez, V.8
Vassart, G.9
Van Damme, J.10
-
78
-
-
59149094602
-
Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor
-
Liu, C.; Wu, J.; Zhu, J.; Kuei, C.; Yu, J.; Shelton, J.; Sutton, S.W.; Li, X.; Yun, S.J.; Mirzadegan, T.; et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor. J. Biol. Chem. 2009, 284, 2811–2822. [CrossRef] [PubMed]
-
(2009)
J. Biol. Chem
, vol.284
, pp. 2811-2822
-
-
Liu, C.1
Wu, J.2
Zhu, J.3
Kuei, C.4
Yu, J.5
Shelton, J.6
Sutton, S.W.7
Li, X.8
Yun, S.J.9
Mirzadegan, T.10
-
79
-
-
2442649129
-
Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors
-
He, W.; Miao, F.J.; Lin, D.C.; Schwandner, R.T.; Wang, Z.; Gao, J.; Chen, J.L.; Tian, H.; Ling, L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004, 429, 188–193. [CrossRef] [PubMed]
-
(2004)
Nature
, vol.429
, pp. 188-193
-
-
He, W.1
Miao, F.J.2
Lin, D.C.3
Schwandner, R.T.4
Wang, Z.5
Gao, J.6
Chen, J.L.7
Tian, H.8
Ling, L.9
-
80
-
-
85021811792
-
Indoleacrylic acid produced by commensal Peptostrreptococcus species suppresses inflammation
-
Wlodarska, M.; Luo, C.; Kolde, R.; d’Hennezel, E.; Annand, J.W.; Heim, C.E.; Krastel, P.; Schmitt, E.K.; Omar, A.S.; Creasey, E.A.; et al. Indoleacrylic acid produced by commensal Peptostrreptococcus species suppresses inflammation. Cell Host Microbe 2017, 22, 25–37. [CrossRef] [PubMed]
-
(2017)
Cell Host Microbe
, vol.22
, pp. 25-37
-
-
Wlodarska, M.1
Luo, C.2
Kolde, R.3
D’Hennezel, E.4
Annand, J.W.5
Heim, C.E.6
Krastel, P.7
Schmitt, E.K.8
Omar, A.S.9
Creasey, E.A.10
-
81
-
-
80054041992
-
An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor
-
Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478, 197–203. [CrossRef] [PubMed]
-
(2011)
Nature
, vol.478
, pp. 197-203
-
-
Opitz, C.A.1
Litzenburger, U.M.2
Sahm, F.3
Ott, M.4
Tritschler, I.5
Trump, S.6
Schumacher, T.7
Jestaedt, L.8
Schrenk, D.9
Weller, M.10
-
82
-
-
84861862615
-
Pregnane X receptor as a target for treatment of inflammatory bowel disorders
-
Cheng, J.; Shah, Y.M.; Gonzalez, F.J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci. 2012, 33, 323–330. [CrossRef] [PubMed]
-
(2012)
Trends Pharmacol. Sci
, vol.33
, pp. 323-330
-
-
Cheng, J.1
Shah, Y.M.2
Gonzalez, F.J.3
-
83
-
-
84908296747
-
Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colitis
-
Cheng, J.; Fang, Z.Z.; Nagaoka, K.; Okamoto, M.; Qu, A.; Tanaka, N.; Kimura, S.; Gonzalez, F.J. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colitis. J. Pharmacol. Exp. Ther. 2014, 351, 559–567. [CrossRef] [PubMed]
-
(2014)
J. Pharmacol. Exp. Ther
, vol.351
, pp. 559-567
-
-
Cheng, J.1
Fang, Z.Z.2
Nagaoka, K.3
Okamoto, M.4
Qu, A.5
Tanaka, N.6
Kimura, S.7
Gonzalez, F.J.8
-
84
-
-
57149118460
-
Nuclear bile acid receptor FXR protects against intestinal tumorigenesis
-
Modica, S.; Murzilli, S.; Salvatore, L.; Schmidt, D.R.; Moschetta, A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res. 2008, 68, 9589–9594. [CrossRef] [PubMed]
-
(2008)
Cancer Res
, vol.68
, pp. 9589-9594
-
-
Modica, S.1
Murzilli, S.2
Salvatore, L.3
Schmidt, D.R.4
Moschetta, A.5
-
85
-
-
59649084903
-
Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development
-
Maran, R.R.; Thomas, A.; Roth, M.; Sheng, Z.; Esterly, N.; Pinson, D.; Gao, X.; Zhang, Y.; Ganapathy, V.; Gonzalez, F.J.; et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J. Pharmacol. Exp. Ther. 2009, 328, 469–477. [CrossRef] [PubMed]
-
(2009)
J. Pharmacol. Exp. Ther
, vol.328
, pp. 469-477
-
-
Maran, R.R.1
Thomas, A.2
Roth, M.3
Sheng, Z.4
Esterly, N.5
Pinson, D.6
Gao, X.7
Zhang, Y.8
Ganapathy, V.9
Gonzalez, F.J.10
-
86
-
-
84866774883
-
The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease
-
Stojancevic, M.; Stankov, K.; Mikov, M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can. J. Gastroenterol. 2012, 26, 631–637. [CrossRef] [PubMed]
-
(2012)
Can. J. Gastroenterol
, vol.26
, pp. 631-637
-
-
Stojancevic, M.1
Stankov, K.2
Mikov, M.3
-
87
-
-
0037352280
-
PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect
-
Tunaru, S.; Kero, J.; Schaub, A.; Wufka, C.; Blaukat, A.; Pfeffer, K.; Offermanns, S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 2003, 9, 352–355. [CrossRef] [PubMed]
-
(2003)
Nat. Med
, vol.9
, pp. 352-355
-
-
Tunaru, S.1
Kero, J.2
Schaub, A.3
Wufka, C.4
Blaukat, A.5
Pfeffer, K.6
Offermanns, S.7
-
88
-
-
0003293442
-
Molecular identification of high and low affinity receptors for nicotinic acid
-
Wise, A.; Foord, S.M.; Fraser, N.J.; Barnes, A.A.; Elshourbagy, N.; Eilert, M.; Ignar, D.M.; Murdock, P.R.; Steplewski, K.; Green, A.; et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003, 278, 9869–9874. [CrossRef] [PubMed]
-
(2003)
J. Biol. Chem
, vol.278
, pp. 9869-9874
-
-
Wise, A.1
Foord, S.M.2
Fraser, N.J.3
Barnes, A.A.4
Elshourbagy, N.5
Eilert, M.6
Ignar, D.M.7
Murdock, P.R.8
Steplewski, K.9
Green, A.10
-
89
-
-
0037470749
-
Molecular identification of nicotinic acid receptor
-
Soga, T.; Kamohara, M.; Takasaki, J.; Matsumoto, S.; Saito, T.; Ohishi, T.; Hiyama, H.; Matsuo, A.; Matsushime, H.; Furuichi, K. Molecular identification of nicotinic acid receptor. Biochem. Biophys. Res. Commun. 2003, 303, 364–369. [CrossRef]
-
(2003)
Biochem. Biophys. Res. Commun
, vol.303
, pp. 364-369
-
-
Soga, T.1
Kamohara, M.2
Takasaki, J.3
Matsumoto, S.4
Saito, T.5
Ohishi, T.6
Hiyama, H.7
Matsuo, A.8
Matsushime, H.9
Furuichi, K.10
-
90
-
-
38149033577
-
Nicotinic acid: Pharmacological effects and mechanisms of action
-
Gille, A.; Bodor, E.T.; Ahmed, K.; Offermanns, S. Nicotinic acid: Pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 79–106. [CrossRef] [PubMed]
-
(2008)
Annu. Rev. Pharmacol. Toxicol
, vol.48
, pp. 79-106
-
-
Gille, A.1
Bodor, E.T.2
Ahmed, K.3
Offermanns, S.4
-
91
-
-
80052648068
-
Biological and pharmacological roles of HCA receptors
-
Blad, C.C.; Ahmed, K.; IJzerman, A.P.; Offermanns, S. Biological and pharmacological roles of HCA receptors. Adv. Pharmacol. 2011, 62, 219–250. [PubMed]
-
(2011)
Adv. Pharmacol
, vol.62
, pp. 219-250
-
-
Blad, C.C.1
Ahmed, K.2
Ijzerman, A.P.3
Offermanns, S.4
-
92
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [CrossRef] [PubMed]
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
Brady, E.4
Padia, R.5
Shi, H.6
Thangaraju, M.7
Prasad, P.D.8
Manicassamy, S.9
Munn, D.H.10
-
93
-
-
84926367699
-
Ian McKenzie, C.; Hijikata, A.; Wong, C.; et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
-
Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; Ian McKenzie, C.; Hijikata, A.; Wong, C.; et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 2015, 6, 6734. [CrossRef] [PubMed]
-
(2015)
Nat. Commun
, vol.6
, pp. 6734
-
-
Macia, L.1
Tan, J.2
Vieira, A.T.3
Leach, K.4
Stanley, D.5
Luong, S.6
Maruya, M.7
-
94
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav, E.; Strowig, T.; Kau, A.L.; Henao-Mejia, J.; Thaiss, C.A.; Booth, C.J.; Peaper, D.R.; Bertin, J.; Eisenbarth, S.C.; Gordon, J.I.; et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011, 145, 745–757. [CrossRef] [PubMed]
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
Henao-Mejia, J.4
Thaiss, C.A.5
Booth, C.J.6
Peaper, D.R.7
Bertin, J.8
Eisenbarth, S.C.9
Gordon, J.I.10
-
95
-
-
0031581088
-
A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1
-
Sawzdargo, M.; George, S.R.; Nguyen, T.; Xu, S.; Kolakowski, L.F.; O’Dowd, B.F. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem. Biophys. Res. Commun. 1997, 239, 543–547. [CrossRef] [PubMed]
-
(1997)
Biochem. Biophys. Res. Commun
, vol.239
, pp. 543-547
-
-
Sawzdargo, M.1
George, S.R.2
Nguyen, T.3
Xu, S.4
Kolakowski, L.F.5
O’Dowd, B.F.6
-
96
-
-
0037307761
-
LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3
-
Senga, T.; Iwamoto, S.; Yoshida, T.; Yokota, T.; Adachi, K.; Azuma, E.; Hamaguchi, M.; Iwamoto, T. LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 2003, 101, 1185–1187. [CrossRef] [PubMed]
-
(2003)
Blood
, vol.101
, pp. 1185-1187
-
-
Senga, T.1
Iwamoto, S.2
Yoshida, T.3
Yokota, T.4
Adachi, K.5
Azuma, E.6
Hamaguchi, M.7
Iwamoto, T.8
-
97
-
-
71849088409
-
Identification of transforming activity of free fatty acid receptor 2 by retroviral expression screening
-
Hatanaka, H.; Tsukui, M.; Takada, S.; Kurashina, K.; Choi, Y.L.; Soda, M.; Yamashita, Y.; Haruta, H.; Hamada, T.; Ueno, T.; et al. Identification of transforming activity of free fatty acid receptor 2 by retroviral expression screening. Cancer Sci. 2010, 101, 54–59. [CrossRef] [PubMed]
-
(2010)
Cancer Sci
, vol.101
, pp. 54-59
-
-
Hatanaka, H.1
Tsukui, M.2
Takada, S.3
Kurashina, K.4
Choi, Y.L.5
Soda, M.6
Yamashita, Y.7
Haruta, H.8
Hamada, T.9
Ueno, T.10
-
98
-
-
79958812655
-
SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor
-
Vinolo, M.A.; Ferguson, G.J.; Kulkarni, S.; Damoulakis, G.; Anderson, K.; Bohlooly, Y.M.; Stephens, L.; Hawkins, P.T.; Curi, R. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 2011, 6, e21205. [CrossRef] [PubMed]
-
(2011)
Plos ONE
, vol.6
-
-
Vinolo, M.A.1
Ferguson, G.J.2
Kulkarni, S.3
Damoulakis, G.4
Anderson, K.5
Bohlooly, Y.M.6
Stephens, L.7
Hawkins, P.T.8
Curi, R.9
-
99
-
-
73349123182
-
G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation
-
Sina, C.; Gavrilova, O.; Förster, M.; Till, A.; Derer, S.; Hildebrand, F.; Raabe, B.; Chalaris, A.; Scheller, J.; Rehmann, A.; et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 2009, 183, 7514–7522. [CrossRef] [PubMed]
-
(2009)
J. Immunol
, vol.183
, pp. 7514-7522
-
-
Sina, C.1
Gavrilova, O.2
Förster, M.3
Till, A.4
Derer, S.5
Hildebrand, F.6
Raabe, B.7
Chalaris, A.8
Scheller, J.9
Rehmann, A.10
-
100
-
-
78650618692
-
G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer
-
Tang, Y.; Chen, Y.; Jiang, H.; Robbins, G.T.; Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 2011, 128, 847–856. [CrossRef] [PubMed]
-
(2011)
Int. J. Cancer
, vol.128
, pp. 847-856
-
-
Tang, Y.1
Chen, Y.2
Jiang, H.3
Robbins, G.T.4
Nie, D.5
-
101
-
-
84893794477
-
G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells
-
Masui, R.; Sasaki, M.; Funaki, Y.; Ogasawara, N.; Mizuno, M.; Iida, A.; Izawa, S.; Kondo, Y.; Ito, Y.; Tamura, Y.; et al. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel Dis. 2013, 19, 2848–2856. [CrossRef] [PubMed]
-
(2013)
Inflamm. Bowel Dis
, vol.19
, pp. 2848-2856
-
-
Masui, R.1
Sasaki, M.2
Funaki, Y.3
Ogasawara, N.4
Mizuno, M.5
Iida, A.6
Izawa, S.7
Kondo, Y.8
Ito, Y.9
Tamura, Y.10
-
102
-
-
84997629668
-
An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis
-
Sivaprakasam, S.; Gurav, A.; Paschall, A.V.; Coe, G.L.; Chaudhary, K.; Cai, Y.; Kolhe, R.; Martin, P.; Browning, D.; Huang, L.; et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016, 5, e238. [CrossRef] [PubMed]
-
(2016)
Oncogenesis
, vol.5
-
-
Sivaprakasam, S.1
Gurav, A.2
Paschall, A.V.3
Coe, G.L.4
Chaudhary, K.5
Cai, Y.6
Kolhe, R.7
Martin, P.8
Browning, D.9
Huang, L.10
-
103
-
-
84924700879
-
The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents
-
Psichas, A.; Sleeth, M.L.; Murphy, K.G.; Brooks, L.; Bewick, G.A.; Hanyaloglu, A.C.; Ghatei, M.A.; Bloom, S.R.; Frost, G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 2015, 39, 424–429. [CrossRef] [PubMed]
-
(2015)
Int. J. Obes
, vol.39
, pp. 424-429
-
-
Psichas, A.1
Sleeth, M.L.2
Murphy, K.G.3
Brooks, L.4
Bewick, G.A.5
Hanyaloglu, A.C.6
Ghatei, M.A.7
Bloom, S.R.8
Frost, G.9
-
104
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
-
Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [CrossRef] [PubMed]
-
(2012)
Diabetes
, vol.61
, pp. 364-371
-
-
Tolhurst, G.1
Heffron, H.2
Lam, Y.S.3
Parker, H.E.4
Habib, A.M.5
Diakogiannaki, E.6
Cameron, J.7
Grosse, J.8
Reimann, F.9
Gribble, F.M.10
-
105
-
-
84893140500
-
Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release
-
Kaji, I.; Karaki, S.; Kuwahara, A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 2014, 89, 31–36. [CrossRef] [PubMed]
-
(2014)
Digestion
, vol.89
, pp. 31-36
-
-
Kaji, I.1
Karaki, S.2
Kuwahara, A.3
-
106
-
-
70149102106
-
Expression of short-chain fatty acid receptor GPR41 in the human colon
-
Tazoe, H.; Otomo, Y.; Karaki, S.; Kato, I.; Fukami, Y.; Terasaki, M.; Kuwahara, A. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 2009, 30, 149–156. [CrossRef] [PubMed]
-
(2009)
Biomed. Res
, vol.30
, pp. 149-156
-
-
Tazoe, H.1
Otomo, Y.2
Karaki, S.3
Kato, I.4
Fukami, Y.5
Terasaki, M.6
Kuwahara, A.7
-
107
-
-
79956348319
-
Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)
-
Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 8030-8035
-
-
Kimura, I.1
Inoue, D.2
Maeda, T.3
Hara, T.4
Ichimura, A.5
Miyauchi, S.6
Kobayashi, M.7
Hirasawa, A.8
Tsujimoto, G.9
-
108
-
-
84896935541
-
The aryl hydrocarbon receptor: Multitasking in the immune system
-
Stockinger, B.; Di Meglio, P.; Gialitakis, M.; Duarte, J.H. The aryl hydrocarbon receptor: Multitasking in the immune system. Annu. Rev. Immunol. 2014, 32, 403–432. [CrossRef] [PubMed]
-
(2014)
Annu. Rev. Immunol
, vol.32
, pp. 403-432
-
-
Stockinger, B.1
Di Meglio, P.2
Gialitakis, M.3
Duarte, J.H.4
-
109
-
-
84938538411
-
Role of the aryl hydrocarbon receptor in colon neoplasia
-
Xie, G.; Raufman, J.P. Role of the aryl hydrocarbon receptor in colon neoplasia. Cancers 2015, 7, 1436–1446. [CrossRef] [PubMed]
-
(2015)
Cancers
, vol.7
, pp. 1436-1446
-
-
Xie, G.1
Raufman, J.P.2
-
110
-
-
84959292227
-
IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance
-
Munn, D.H.; Mellor, A.L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol. 2016, 37, 193–207. [CrossRef] [PubMed]
-
(2016)
Trends Immunol
, vol.37
, pp. 193-207
-
-
Munn, D.H.1
Mellor, A.L.2
|