메뉴 건너뛰기




Volumn 38, Issue , 2016, Pages 464-472

Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses

Author keywords

DHA pathway; Glycerol catabolism; NADH; Yeast

Indexed keywords

CARBON; METABOLISM; YEAST;

EID: 84994899494     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2016.10.008     Document Type: Article
Times cited : (36)

References (51)
  • 1
    • 0037196945 scopus 로고    scopus 로고
    • Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast
    • Akada, R., Hirosawa, I., Kawahata, M., Hoshida, H., Nishizawa, Y., Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast 19 (2002), 393-402.
    • (2002) Yeast , vol.19 , pp. 393-402
    • Akada, R.1    Hirosawa, I.2    Kawahata, M.3    Hoshida, H.4    Nishizawa, Y.5
  • 2
    • 0019966113 scopus 로고
    • The relation between the assimilation of methanol and glycerol in yeasts
    • Babel, W., Hofmann, K.H., The relation between the assimilation of methanol and glycerol in yeasts. Arch. Microbiol. 132 (1982), 179-184.
    • (1982) Arch. Microbiol. , vol.132 , pp. 179-184
    • Babel, W.1    Hofmann, K.H.2
  • 4
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol
    • Becker, J., Boles, E., A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol. Appl. Environ. Microbiol. 69 (2003), 4144-4150.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 5
    • 0033987099 scopus 로고    scopus 로고
    • Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model
    • Blomberg, A., Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 182 (2000), 1-8.
    • (2000) FEMS Microbiol Lett. , vol.182 , pp. 1-8
    • Blomberg, A.1
  • 6
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • Borodina, I., Nielsen, J., Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9 (2014), 609-620.
    • (2014) Biotechnol. J. , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 7
    • 56549089702 scopus 로고    scopus 로고
    • HPLC methods for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone
    • Chen, J., Chen, J., Zhou, C., HPLC methods for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J Chromatogr Sci. 46 (2008), 912-916.
    • (2008) J Chromatogr Sci. , vol.46 , pp. 912-916
    • Chen, J.1    Chen, J.2    Zhou, C.3
  • 8
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: a promising and abundant carbon source for industrial microbiology
    • da Silva, G.P., Mack, M., Contiero, J., Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27 (2009), 30-39.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 30-39
    • da Silva, G.P.1    Mack, M.2    Contiero, J.3
  • 11
    • 34247580875 scopus 로고    scopus 로고
    • Yeast genetic strain and plasmid collections
    • Entian, K.D., Kötter, P., Yeast genetic strain and plasmid collections. Yeast Gene Anal. 36 (2007), 629-666.
    • (2007) Yeast Gene Anal. , vol.36 , pp. 629-666
    • Entian, K.D.1    Kötter, P.2
  • 13
    • 70449686525 scopus 로고    scopus 로고
    • Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    • Flagfeldt, D.B., Siewers, V., Huang, L., Nielsen, J., Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26 (2009), 545-551.
    • (2009) Yeast , vol.26 , pp. 545-551
    • Flagfeldt, D.B.1    Siewers, V.2    Huang, L.3    Nielsen, J.4
  • 14
    • 0037105521 scopus 로고    scopus 로고
    • Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase
    • Ford, G., Ellis, E.M., Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 19 (2002), 1087-1096.
    • (2002) Yeast , vol.19 , pp. 1087-1096
    • Ford, G.1    Ellis, E.M.2
  • 15
    • 0014305533 scopus 로고
    • Glycerol metabolism in yeasts. Pathways of utilization and production
    • Gancedo, C., Gancedo, J.M., Sols, A., Glycerol metabolism in yeasts. Pathways of utilization and production. Eur J Biochem. 5 (1968), 165-172.
    • (1968) Eur J Biochem. , vol.5 , pp. 165-172
    • Gancedo, C.1    Gancedo, J.M.2    Sols, A.3
  • 17
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz, R.D., Schiestl, R.H., Willems, A.R., Woods, R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11 (1995), 355-360.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 18
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein, A.L., McCusker, J.H., Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15 (1999), 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 19
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener, U., Heinisch, J., Koehler, G.J., Voss, D., Hegemann, J.H., A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res, 30, 2002, e23.
    • (2002) Nucleic Acids Res , vol.30 , pp. e23
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 20
    • 0023481280 scopus 로고
    • A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli
    • Hoffman, C.S., Winston, F., A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57 (1987), 267-272.
    • (1987) Gene , vol.57 , pp. 267-272
    • Hoffman, C.S.1    Winston, F.2
  • 21
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong, K.K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol. Life Sci. 69 (2012), 2671-2690.
    • (2012) Cell Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 22
    • 37549070353 scopus 로고    scopus 로고
    • The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production
    • Johnson, D.T., Taconi, K.A., The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26 (2007), 338-348.
    • (2007) Environ. Prog. , vol.26 , pp. 338-348
    • Johnson, D.T.1    Taconi, K.A.2
  • 23
    • 33646569083 scopus 로고    scopus 로고
    • Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains
    • Karhumaa, K., Wiedemann, B., Hahn-Hagerdal, B., Boles, E., Gorwa-Grauslund, M.F., Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Micro. Cell Fact., 5, 2006, 18.
    • (2006) Micro. Cell Fact. , vol.5 , pp. 18
    • Karhumaa, K.1    Wiedemann, B.2    Hahn-Hagerdal, B.3    Boles, E.4    Gorwa-Grauslund, M.F.5
  • 24
    • 84993995233 scopus 로고    scopus 로고
    • The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae
    • Klein, M., Islam, Z.-u., Knudsen, P.B., Carrillo, M., Swinnen, S., Workman, M., Nevoigt, E., The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae. Metab. Eng. Commun. 3 (2016), 252-257.
    • (2016) Metab. Eng. Commun. , vol.3 , pp. 252-257
    • Klein, M.1    Islam, Z.-U.2    Knudsen, P.B.3    Carrillo, M.4    Swinnen, S.5    Workman, M.6    Nevoigt, E.7
  • 25
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper, M., Hartog, M.M., Toirkens, M.J., Almering, M.J., Winkler, A.A., van Dijken, J.P., Pronk, J.T., Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5 (2005), 399-409.
    • (2005) FEMS Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    van Dijken, J.P.6    Pronk, J.T.7
  • 26
    • 84875149160 scopus 로고    scopus 로고
    • Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus
    • Liu, X., Mortensen, U.H., Workman, M., Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus. Microbiol. Cell Fact. 12 (2013), 27-36.
    • (2013) Microbiol. Cell Fact. , vol.12 , pp. 27-36
    • Liu, X.1    Mortensen, U.H.2    Workman, M.3
  • 27
    • 79952806663 scopus 로고    scopus 로고
    • Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
    • Madsen, K.M., Udatha, G.D., Semba, S., Otero, J.M., Koetter, P., Nielsen, J., Ebizuka, Y., Kushiro, T., Panagiotou, G., Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One, 6, 2011, e14763.
    • (2011) PLoS One , vol.6 , pp. e14763
    • Madsen, K.M.1    Udatha, G.D.2    Semba, S.3    Otero, J.M.4    Koetter, P.5    Nielsen, J.6    Ebizuka, Y.7    Kushiro, T.8    Panagiotou, G.9
  • 28
    • 77953081695 scopus 로고    scopus 로고
    • The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe
    • Matsuzawa, T., Ohashi, T., Hosomi, A., Tanaka, N., Tohda, H., Takegawa, K., The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 87 (2010), 715-727.
    • (2010) Appl Microbiol Biotechnol. , vol.87 , pp. 715-727
    • Matsuzawa, T.1    Ohashi, T.2    Hosomi, A.3    Tanaka, N.4    Tohda, H.5    Takegawa, K.6
  • 29
    • 85027955559 scopus 로고    scopus 로고
    • Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol
    • Merico, A., Ragni, E., Galafassi, S., Popolo, L., Compagno, C., Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol. J. Ind. Microbiol Biotechnol. 38 (2011), 1037-1044.
    • (2011) J. Ind. Microbiol Biotechnol. , vol.38 , pp. 1037-1044
    • Merico, A.1    Ragni, E.2    Galafassi, S.3    Popolo, L.4    Compagno, C.5
  • 30
    • 0037449764 scopus 로고    scopus 로고
    • Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone
    • Molin, M., Norbeck, J., Blomberg, A., Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. J. Biol. Chem. 278 (2003), 1415-1423.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1415-1423
    • Molin, M.1    Norbeck, J.2    Blomberg, A.3
  • 31
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg, D., Muller, R., Funk, M., Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156 (1995), 119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 32
    • 84929142256 scopus 로고    scopus 로고
    • CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites
    • Naito, Y., Hino, K., Bono, H., Ui-Tei, K., CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31 (2015), 1120-1123.
    • (2015) Bioinformatics , vol.31 , pp. 1120-1123
    • Naito, Y.1    Hino, K.2    Bono, H.3    Ui-Tei, K.4
  • 33
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt, E., Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72 (2008), 379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 34
    • 70449727651 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept
    • Nguyen, H.T., Nevoigt, E., Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept. Metab. Eng. 11 (2009), 335-346.
    • (2009) Metab. Eng. , vol.11 , pp. 335-346
    • Nguyen, H.T.1    Nevoigt, E.2
  • 35
    • 0031041461 scopus 로고    scopus 로고
    • Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway
    • Norbeck, J., Blomberg, A., Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272 (1997), 5544-5554.
    • (1997) J. Biol. Chem. , vol.272 , pp. 5544-5554
    • Norbeck, J.1    Blomberg, A.2
  • 37
    • 0027250597 scopus 로고
    • The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization
    • Pavlik, P., Simon, M., Schuster, T., Ruis, H., The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr. Genet 24 (1993), 21-25.
    • (1993) Curr. Genet , vol.24 , pp. 21-25
    • Pavlik, P.1    Simon, M.2    Schuster, T.3    Ruis, H.4
  • 38
    • 0027501168 scopus 로고
    • GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae
    • Ronnow, B., Kielland-Brandt, M.C., GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9 (1993), 1121-1130.
    • (1993) Yeast , vol.9 , pp. 1121-1130
    • Ronnow, B.1    Kielland-Brandt, M.C.2
  • 39
    • 0017381201 scopus 로고
    • Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism
    • Sprague, G.F., Cronan, J.E., Isolation and characterization of Saccharomyces cerevisiae mutants defective in glycerol catabolism. J. Bacteriol. 129 (1977), 1335-1342.
    • (1977) J. Bacteriol. , vol.129 , pp. 1335-1342
    • Sprague, G.F.1    Cronan, J.E.2
  • 40
    • 84962523487 scopus 로고    scopus 로고
    • Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae
    • Swinnen, S., Ho, P.W., Klein, M., Nevoigt, E., Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab. Eng. 36 (2016), 68-79.
    • (2016) Metab. Eng. , vol.36 , pp. 68-79
    • Swinnen, S.1    Ho, P.W.2    Klein, M.3    Nevoigt, E.4
  • 41
    • 84887337602 scopus 로고    scopus 로고
    • Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements
    • Swinnen, S., Klein, M., Carrillo, M., McInnes, J., Nguyen, H.T., Nevoigt, E., Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. Biotechnol. Biofuels, 6, 2013, 157.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 157
    • Swinnen, S.1    Klein, M.2    Carrillo, M.3    McInnes, J.4    Nguyen, H.T.5    Nevoigt, E.6
  • 42
    • 70449705519 scopus 로고
    • Glycerol metabolism in methylotrophic yeasts
    • Tani, Y., Yamada, K., Glycerol metabolism in methylotrophic yeasts. Agric. Biol. Chem. 51 (1987), 1927-1933.
    • (1987) Agric. Biol. Chem. , vol.51 , pp. 1927-1933
    • Tani, Y.1    Yamada, K.2
  • 43
    • 0023129404 scopus 로고
    • Diversity in glycerol metabolism of methylotrophic yeasts
    • Tani, Y., Yamada, K., Diversity in glycerol metabolism of methylotrophic yeasts. Fems Microbiol. Lett. 40 (1987), 151-153.
    • (1987) Fems Microbiol. Lett. , vol.40 , pp. 151-153
    • Tani, Y.1    Yamada, K.2
  • 45
    • 0345869655 scopus 로고    scopus 로고
    • Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
    • van Maris, A.J., Geertman, J.M., Vermeulen, A., Groothuizen, M.K., Winkler, A.A., Piper, M.D., van Dijken, J.P., Pronk, J.T., Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 70 (2004), 159-166.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 159-166
    • van Maris, A.J.1    Geertman, J.M.2    Vermeulen, A.3    Groothuizen, M.K.4    Winkler, A.A.5    Piper, M.D.6    van Dijken, J.P.7    Pronk, J.T.8
  • 46
    • 2442640659 scopus 로고    scopus 로고
    • Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export
    • van Maris, A.J., Winkler, A.A., Porro, D., van Dijken, J.P., Pronk, J.T., Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ. Microbiol 70 (2004), 2898-2905.
    • (2004) Appl Environ. Microbiol , vol.70 , pp. 2898-2905
    • van Maris, A.J.1    Winkler, A.A.2    Porro, D.3    van Dijken, J.P.4    Pronk, J.T.5
  • 47
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P., Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8 (1992), 501-517.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 48
    • 84858056650 scopus 로고    scopus 로고
    • Value-added uses for crude glycerol-a byproduct of biodiesel production
    • Yang, F., Hanna, M.A., Sun, R., Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels, 5, 2012, 13.
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 13
    • Yang, F.1    Hanna, M.A.2    Sun, R.3
  • 49
    • 34249936957 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry
    • Yazdani, S.S., Gonzalez, R., Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18 (2007), 213-219.
    • (2007) Curr. Opin. Biotechnol. , vol.18 , pp. 213-219
    • Yazdani, S.S.1    Gonzalez, R.2
  • 51
    • 84884354323 scopus 로고    scopus 로고
    • Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production
    • Zhang, L., Tang, Y., Guo, Z., Shi, G., Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production. J. Ind. Microbiol Biotechnol. 40 (2013), 1153-1160.
    • (2013) J. Ind. Microbiol Biotechnol. , vol.40 , pp. 1153-1160
    • Zhang, L.1    Tang, Y.2    Guo, Z.3    Shi, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.