메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

N-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA

Author keywords

ABE fermentation; acetyl CoA; Coenzyme A; n butanol; Pantothenate; Saccharomyces

Indexed keywords

ACETALDEHYDE; AVAILABILITY; COENZYMES; ENZYMES; ESCHERICHIA COLI; ETHANOL; FERMENTATION; GENE ENCODING; GENES; GLUCOSE; GLYCEROL; ISOMERS; YEAST;

EID: 84959330458     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0456-7     Document Type: Article
Times cited : (66)

References (44)
  • 1
    • 84907546229 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    • 1:CAS:528:DC%2BC2cXhs1Gms7jF
    • Generoso WC, Schadeweg V, Oreb M, Boles E. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin in Biotechnol. 2015;33:1-7.
    • (2015) Curr Opin in Biotechnol , vol.33 , pp. 1-7
    • Generoso, W.C.1    Schadeweg, V.2    Oreb, M.3    Boles, E.4
  • 2
    • 77954383990 scopus 로고    scopus 로고
    • Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass
    • 1:CAS:528:DC%2BC3cXos1yms7w%3D
    • Huang H, Liu H, Gan Y. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv. 2010;28:651-7.
    • (2010) Biotechnol Adv , vol.28 , pp. 651-657
    • Huang, H.1    Liu, H.2    Gan, Y.3
  • 6
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • 1:CAS:528:DC%2BD1cXhsVKrt7jM
    • Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng. 2008;10:312-20.
    • (2008) Metab Eng , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 7
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • 1:CAS:528:DC%2BC3MXhtVeju7fO
    • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microb. 2011;77:2905-15.
    • (2011) Appl Environ Microb , vol.77 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3    Baez, A.4    Cho, K.M.5    Liao, J.C.6
  • 8
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • 1:CAS:528:DC%2BC3sXnvFamtw%3D%3D
    • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48-54.
    • (2013) Metab Eng , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 9
    • 84884351687 scopus 로고    scopus 로고
    • Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
    • 1:CAS:528:DC%2BC3sXht1Crur7P
    • Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol. 2013;40:1051-6.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1051-1056
    • Krivoruchko, A.1    Serrano-Amatriain, C.2    Chen, Y.3    Siewers, V.4    Nielsen, J.5
  • 10
  • 11
    • 84893502214 scopus 로고    scopus 로고
    • Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2cXjslOmurk%3D
    • Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng. 2014;22:60-8.
    • (2014) Metab Eng , vol.22 , pp. 60-68
    • Si, T.1    Luo, Y.2    Xiao, H.3    Zhao, H.4
  • 12
    • 84876976847 scopus 로고    scopus 로고
    • A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXpsFeltLk%3D
    • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:68.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 68
    • Branduardi, P.1    Longo, V.2    Berterame, N.M.3    Rossi, G.4    Porro, D.5
  • 13
    • 84937209203 scopus 로고    scopus 로고
    • Butanol production in S. Cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance
    • Swidah R, Wang H, Reid PJ, Ahmed HZ, Pisanelli AM, Persaud KC, Grant CM, Ashe MP. Butanol production in S. Cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol Biofuels. 2015;8:188.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 188
    • Swidah, R.1    Wang, H.2    Reid, P.J.3    Ahmed, H.Z.4    Pisanelli, A.M.5    Persaud, K.C.6    Grant, C.M.7    Ashe, M.P.8
  • 14
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • 1:CAS:528:DC%2BC3MXhtVOkurbN
    • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476:355-9.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 15
    • 84925666935 scopus 로고    scopus 로고
    • Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
    • 1:CAS:528:DC%2BC2cXhtVaksrzI
    • Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol. 2015;4:332-41.
    • (2015) ACS Synth Biol , vol.4 , pp. 332-341
    • Lian, J.1    Zhao, H.2
  • 17
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • 1:CAS:528:DC%2BC2cXhtFansrrK
    • Lian J, Si T, Nair NU, Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng. 2014;24:139-49.
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 18
    • 84920161779 scopus 로고    scopus 로고
    • Synthetic biology for engineering acetyl coenzyme A metabolism in yeast
    • 1:CAS:528:DC%2BC2MXjvFGrtrk%3D
    • Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio. 2014;5:e02153.
    • (2014) MBio , vol.5 , pp. e02153
    • Nielsen, J.1
  • 19
    • 78649892486 scopus 로고    scopus 로고
    • Intracellular acetyl unit transport in fungal carbon metabolism
    • 1:CAS:528:DC%2BC3MXhtFKisQ%3D%3D
    • Strijbis K, Distel B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell. 2010;9:1809-15.
    • (2010) Eukaryot Cell , vol.9 , pp. 1809-1815
    • Strijbis, K.1    Distel, B.2
  • 20
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2MXhslKisLY%3D
    • Kozak BU, van Rossum HM, Luttik MAH, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran J, Pronk JT, van Maris AJA. Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio. 2014;5:e01696.
    • (2014) MBio , vol.5 , pp. e01696
    • Kozak, B.U.1    Van Rossum, H.M.2    Luttik, M.A.H.3    Akeroyd, M.4    Benjamin, K.R.5    Wu, L.6    De Vries, S.7    Daran, J.8    Pronk, J.T.9    Van Maris, A.J.A.10
  • 22
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JG, Pronk JT, van Maris AJA. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng. 2013;21:1051-6.
    • (2013) Metab Eng , vol.21 , pp. 1051-1056
    • Kozak, B.U.1    Van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.G.5    Pronk, J.T.6    Van Maris, A.J.A.7
  • 23
    • 67349203977 scopus 로고    scopus 로고
    • Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: Identification of a conditional mutation in the pantothenate kinase gene CAB1
    • 1:CAS:528:DC%2BD1MXktlGlsLs%3D
    • Olzhausen J, Schübbe S, Schüller H. Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: Identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr Genet. 2009;55:163-73.
    • (2009) Curr Genet , vol.55 , pp. 163-173
    • Olzhausen, J.1    Schübbe, S.2    Schüller, H.3
  • 24
    • 0033603605 scopus 로고    scopus 로고
    • The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H +-pantothenate symporter
    • 1:CAS:528:DyaK1MXkt1Sit7s%3D
    • Stolz J, Sauer N. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H +-pantothenate symporter. J Biol Chem. 1999;274:18747-52.
    • (1999) J Biol Chem , vol.274 , pp. 18747-18752
    • Stolz, J.1    Sauer, N.2
  • 25
    • 2342590693 scopus 로고    scopus 로고
    • Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli
    • 1:CAS:528:DC%2BD2cXjtl2mtrk%3D
    • Vadali RV, Bennett GN, San K. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng. 2004;6:133-9.
    • (2004) Metab Eng , vol.6 , pp. 133-139
    • Vadali, R.V.1    Bennett, G.N.2    San, K.3
  • 26
    • 84925467359 scopus 로고    scopus 로고
    • Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration
    • de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol. 2015;42:477-86.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 477-486
    • De Jong, B.W.1    Shi, S.2    Valle-Rodríguez, J.O.3    Siewers, V.4    Nielsen, J.5
  • 27
    • 68049135724 scopus 로고    scopus 로고
    • Engineering alternative butanol production platforms in heterologous bacteria
    • 1:CAS:528:DC%2BD1MXps1Wqu7Y%3D
    • Nielsen DR, Leonard E, Yoon S, Tseng H, Yuan C, Prather K. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng. 2009;11:262-73.
    • (2009) Metab Eng , vol.11 , pp. 262-273
    • Nielsen, D.R.1    Leonard, E.2    Yoon, S.3    Tseng, H.4    Yuan, C.5    Prather, K.6
  • 28
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • 1:CAS:528:DC%2BC38Xmt12mt7k%3D
    • Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA. 2012;109:6018-23.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 29
    • 0028808264 scopus 로고
    • Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli
    • 1:CAS:528:DyaK2MXpsFeku7k%3D
    • Wallace KK, Bao Z, Dai H, Digate R, Schuler G, Speedie MK, Reynolds KA. Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli. Eur J Biochem. 1995;233:954-62.
    • (1995) Eur J Biochem , vol.233 , pp. 954-962
    • Wallace, K.K.1    Bao, Z.2    Dai, H.3    Digate, R.4    Schuler, G.5    Speedie, M.K.6    Reynolds, K.A.7
  • 30
    • 0033954772 scopus 로고    scopus 로고
    • Pantothenate kinase regulation of the intracellular concentration of coenzyme A
    • 1:CAS:528:DC%2BD3cXntleltg%3D%3D
    • Rock CO, Calder RB, Karim MA, Jackowski S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem. 2000;275:1377-83.
    • (2000) J Biol Chem , vol.275 , pp. 1377-1383
    • Rock, C.O.1    Calder, R.B.2    Karim, M.A.3    Jackowski, S.4
  • 31
    • 0028586017 scopus 로고
    • Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression
    • 1:CAS:528:DyaK2MXjtlGit74%3D
    • Mumberg D, Müller R, Funk M. Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994;22:5767-8.
    • (1994) Nucleic Acids Res , vol.22 , pp. 5767-5768
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 32
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • 1:CAS:528:DC%2BD2sXhvVyktb0%3D
    • Shiba Y, Paradise EM, Kirby J, Ro D, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9:160-8.
    • (2007) Metab Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.4    Keasling, J.D.5
  • 33
    • 0034721882 scopus 로고    scopus 로고
    • Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins
    • 1:CAS:528:DC%2BD3cXnvVyjt7g%3D
    • Membrillo-Hernandez J. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem. 2000;275:33869-75.
    • (2000) J Biol Chem , vol.275 , pp. 33869-33875
    • Membrillo-Hernandez, J.1
  • 34
    • 0027463082 scopus 로고
    • Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product
    • Weimer E, Rao E, Brendel M. Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol Gen Genet. 1993;237:351-8.
    • (1993) Mol Gen Genet , vol.237 , pp. 351-358
    • Weimer, E.1    Rao, E.2    Brendel, M.3
  • 35
    • 0030908893 scopus 로고    scopus 로고
    • The two isoenzymes for yeast NAD +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • 1:CAS:528:DyaK2sXjsV2nu74%3D
    • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997;16:2179-87.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 36
    • 84940033066 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
    • 1:CAS:528:DC%2BC2MXht1Kgur7F
    • Kim S, Hahn J. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng. 2015;31:94-101.
    • (2015) Metab Eng , vol.31 , pp. 94-101
    • Kim, S.1    Hahn, J.2
  • 37
    • 42049123423 scopus 로고    scopus 로고
    • Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXks1anur0%3D
    • Wiedemann B, Boles E. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043-50.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2043-2050
    • Wiedemann, B.1    Boles, E.2
  • 38
    • 14244270196 scopus 로고    scopus 로고
    • Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis
    • Hoffmeister M. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem. 2004;280:4329-38.
    • (2004) J Biol Chem , vol.280 , pp. 4329-4338
    • Hoffmeister, M.1
  • 40
    • 34347260322 scopus 로고    scopus 로고
    • Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
    • 1:CAS:528:DC%2BD2sXhtFGntb%2FP
    • Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1-4.
    • (2007) Nat Protoc , vol.2 , pp. 1-4
    • Gietz, R.D.1    Schiestl, R.H.2
  • 41
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • 1:CAS:528:DC%2BD2sXhtFGntb%2FL
    • Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31-4.
    • (2007) Nat Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 42
    • 0030754153 scopus 로고    scopus 로고
    • A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes
    • 1:CAS:528:DyaK2sXlsVSrtro%3D
    • Han L, Reynolds KA. A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol. 1997;179:5157-64.
    • (1997) J Bacteriol , vol.179 , pp. 5157-5164
    • Han, L.1    Reynolds, K.A.2
  • 43
    • 33644941225 scopus 로고    scopus 로고
    • System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD28XntVSksw%3D%3D
    • Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 2006;40:73-8.
    • (2006) Biotechniques , vol.40 , pp. 73-78
    • Taxis, C.1    Knop, M.2
  • 44
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • 1:CAS:528:DC%2BC2cXkslCqs78%3D
    • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci USA. 2014;111:5159-64.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.