-
1
-
-
84907546229
-
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
-
1:CAS:528:DC%2BC2cXhs1Gms7jF
-
Generoso WC, Schadeweg V, Oreb M, Boles E. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin in Biotechnol. 2015;33:1-7.
-
(2015)
Curr Opin in Biotechnol
, vol.33
, pp. 1-7
-
-
Generoso, W.C.1
Schadeweg, V.2
Oreb, M.3
Boles, E.4
-
2
-
-
77954383990
-
Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass
-
1:CAS:528:DC%2BC3cXos1yms7w%3D
-
Huang H, Liu H, Gan Y. Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv. 2010;28:651-7.
-
(2010)
Biotechnol Adv
, vol.28
, pp. 651-657
-
-
Huang, H.1
Liu, H.2
Gan, Y.3
-
3
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
1:CAS:528:DC%2BD1cXhtFChtbvK
-
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by Clostridia. Biotechnol Bioeng. 2008;101:209-28.
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
Nielsen, L.K.4
Kim, J.5
Jung, K.S.6
-
4
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
1:CAS:528:DC%2BD1cXhsVKrt7vF
-
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008;10:305-11.
-
(2008)
Metab Eng
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
Chou, K.J.7
Hanai, T.8
Liao, J.C.9
-
5
-
-
38049162218
-
Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
-
1:CAS:528:DC%2BD1cXhsFSjtrk%3D
-
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol. 2008;77:1305-16.
-
(2008)
Appl Microbiol Biotechnol
, vol.77
, pp. 1305-1316
-
-
Inui, M.1
Suda, M.2
Kimura, S.3
Yasuda, K.4
Suzuki, H.5
Toda, H.6
Yamamoto, S.7
Okino, S.8
Suzuki, N.9
Yukawa, H.10
-
6
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
1:CAS:528:DC%2BD1cXhsVKrt7jM
-
Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng. 2008;10:312-20.
-
(2008)
Metab Eng
, vol.10
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
7
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
1:CAS:528:DC%2BC3MXhtVeju7fO
-
Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microb. 2011;77:2905-15.
-
(2011)
Appl Environ Microb
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
8
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
1:CAS:528:DC%2BC3sXnvFamtw%3D%3D
-
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48-54.
-
(2013)
Metab Eng
, vol.15
, pp. 48-54
-
-
Chen, Y.1
Daviet, L.2
Schalk, M.3
Siewers, V.4
Nielsen, J.5
-
9
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
1:CAS:528:DC%2BC3sXht1Crur7P
-
Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol. 2013;40:1051-6.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 1051-1056
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
10
-
-
77955558633
-
Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
-
1:CAS:528:DC%2BC3cXotVWmsbk%3D
-
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87:1303-15.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 1303-1315
-
-
Weber, C.1
Farwick, A.2
Benisch, F.3
Brat, D.4
Dietz, H.5
Subtil, T.6
Boles, E.7
-
11
-
-
84893502214
-
Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC2cXjslOmurk%3D
-
Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng. 2014;22:60-8.
-
(2014)
Metab Eng
, vol.22
, pp. 60-68
-
-
Si, T.1
Luo, Y.2
Xiao, H.3
Zhao, H.4
-
12
-
-
84876976847
-
A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3sXpsFeltLk%3D
-
Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:68.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 68
-
-
Branduardi, P.1
Longo, V.2
Berterame, N.M.3
Rossi, G.4
Porro, D.5
-
13
-
-
84937209203
-
Butanol production in S. Cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance
-
Swidah R, Wang H, Reid PJ, Ahmed HZ, Pisanelli AM, Persaud KC, Grant CM, Ashe MP. Butanol production in S. Cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol Biofuels. 2015;8:188.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 188
-
-
Swidah, R.1
Wang, H.2
Reid, P.J.3
Ahmed, H.Z.4
Pisanelli, A.M.5
Persaud, K.C.6
Grant, C.M.7
Ashe, M.P.8
-
14
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
1:CAS:528:DC%2BC3MXhtVOkurbN
-
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476:355-9.
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
15
-
-
84925666935
-
Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
-
1:CAS:528:DC%2BC2cXhtVaksrzI
-
Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol. 2015;4:332-41.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 332-341
-
-
Lian, J.1
Zhao, H.2
-
16
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact. 2008;7:36.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
17
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
1:CAS:528:DC%2BC2cXhtFansrrK
-
Lian J, Si T, Nair NU, Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng. 2014;24:139-49.
-
(2014)
Metab Eng
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
18
-
-
84920161779
-
Synthetic biology for engineering acetyl coenzyme A metabolism in yeast
-
1:CAS:528:DC%2BC2MXjvFGrtrk%3D
-
Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio. 2014;5:e02153.
-
(2014)
MBio
, vol.5
, pp. e02153
-
-
Nielsen, J.1
-
19
-
-
78649892486
-
Intracellular acetyl unit transport in fungal carbon metabolism
-
1:CAS:528:DC%2BC3MXhtFKisQ%3D%3D
-
Strijbis K, Distel B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell. 2010;9:1809-15.
-
(2010)
Eukaryot Cell
, vol.9
, pp. 1809-1815
-
-
Strijbis, K.1
Distel, B.2
-
20
-
-
84908409797
-
Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC2MXhslKisLY%3D
-
Kozak BU, van Rossum HM, Luttik MAH, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran J, Pronk JT, van Maris AJA. Engineering acetyl coenzyme A supply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio. 2014;5:e01696.
-
(2014)
MBio
, vol.5
, pp. e01696
-
-
Kozak, B.U.1
Van Rossum, H.M.2
Luttik, M.A.H.3
Akeroyd, M.4
Benjamin, K.R.5
Wu, L.6
De Vries, S.7
Daran, J.8
Pronk, J.T.9
Van Maris, A.J.A.10
-
22
-
-
84896932547
-
Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
-
Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JG, Pronk JT, van Maris AJA. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng. 2013;21:1051-6.
-
(2013)
Metab Eng
, vol.21
, pp. 1051-1056
-
-
Kozak, B.U.1
Van Rossum, H.M.2
Benjamin, K.R.3
Wu, L.4
Daran, J.G.5
Pronk, J.T.6
Van Maris, A.J.A.7
-
23
-
-
67349203977
-
Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: Identification of a conditional mutation in the pantothenate kinase gene CAB1
-
1:CAS:528:DC%2BD1MXktlGlsLs%3D
-
Olzhausen J, Schübbe S, Schüller H. Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: Identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr Genet. 2009;55:163-73.
-
(2009)
Curr Genet
, vol.55
, pp. 163-173
-
-
Olzhausen, J.1
Schübbe, S.2
Schüller, H.3
-
24
-
-
0033603605
-
The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H +-pantothenate symporter
-
1:CAS:528:DyaK1MXkt1Sit7s%3D
-
Stolz J, Sauer N. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H +-pantothenate symporter. J Biol Chem. 1999;274:18747-52.
-
(1999)
J Biol Chem
, vol.274
, pp. 18747-18752
-
-
Stolz, J.1
Sauer, N.2
-
25
-
-
2342590693
-
Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli
-
1:CAS:528:DC%2BD2cXjtl2mtrk%3D
-
Vadali RV, Bennett GN, San K. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng. 2004;6:133-9.
-
(2004)
Metab Eng
, vol.6
, pp. 133-139
-
-
Vadali, R.V.1
Bennett, G.N.2
San, K.3
-
26
-
-
84925467359
-
Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration
-
de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol. 2015;42:477-86.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 477-486
-
-
De Jong, B.W.1
Shi, S.2
Valle-Rodríguez, J.O.3
Siewers, V.4
Nielsen, J.5
-
27
-
-
68049135724
-
Engineering alternative butanol production platforms in heterologous bacteria
-
1:CAS:528:DC%2BD1MXps1Wqu7Y%3D
-
Nielsen DR, Leonard E, Yoon S, Tseng H, Yuan C, Prather K. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng. 2009;11:262-73.
-
(2009)
Metab Eng
, vol.11
, pp. 262-273
-
-
Nielsen, D.R.1
Leonard, E.2
Yoon, S.3
Tseng, H.4
Yuan, C.5
Prather, K.6
-
28
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
1:CAS:528:DC%2BC38Xmt12mt7k%3D
-
Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA. 2012;109:6018-23.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 6018-6023
-
-
Lan, E.I.1
Liao, J.C.2
-
29
-
-
0028808264
-
Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli
-
1:CAS:528:DyaK2MXpsFeku7k%3D
-
Wallace KK, Bao Z, Dai H, Digate R, Schuler G, Speedie MK, Reynolds KA. Purification of crotonyl-CoA reductase from Streptomyces collinus and cloning, sequencing and expression of the corresponding gene in Escherichia coli. Eur J Biochem. 1995;233:954-62.
-
(1995)
Eur J Biochem
, vol.233
, pp. 954-962
-
-
Wallace, K.K.1
Bao, Z.2
Dai, H.3
Digate, R.4
Schuler, G.5
Speedie, M.K.6
Reynolds, K.A.7
-
30
-
-
0033954772
-
Pantothenate kinase regulation of the intracellular concentration of coenzyme A
-
1:CAS:528:DC%2BD3cXntleltg%3D%3D
-
Rock CO, Calder RB, Karim MA, Jackowski S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem. 2000;275:1377-83.
-
(2000)
J Biol Chem
, vol.275
, pp. 1377-1383
-
-
Rock, C.O.1
Calder, R.B.2
Karim, M.A.3
Jackowski, S.4
-
31
-
-
0028586017
-
Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression
-
1:CAS:528:DyaK2MXjtlGit74%3D
-
Mumberg D, Müller R, Funk M. Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994;22:5767-8.
-
(1994)
Nucleic Acids Res
, vol.22
, pp. 5767-5768
-
-
Mumberg, D.1
Müller, R.2
Funk, M.3
-
32
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
1:CAS:528:DC%2BD2sXhvVyktb0%3D
-
Shiba Y, Paradise EM, Kirby J, Ro D, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9:160-8.
-
(2007)
Metab Eng
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.4
Keasling, J.D.5
-
33
-
-
0034721882
-
Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins
-
1:CAS:528:DC%2BD3cXnvVyjt7g%3D
-
Membrillo-Hernandez J. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem. 2000;275:33869-75.
-
(2000)
J Biol Chem
, vol.275
, pp. 33869-33875
-
-
Membrillo-Hernandez, J.1
-
34
-
-
0027463082
-
Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product
-
Weimer E, Rao E, Brendel M. Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol Gen Genet. 1993;237:351-8.
-
(1993)
Mol Gen Genet
, vol.237
, pp. 351-358
-
-
Weimer, E.1
Rao, E.2
Brendel, M.3
-
35
-
-
0030908893
-
The two isoenzymes for yeast NAD +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
-
1:CAS:528:DyaK2sXjsV2nu74%3D
-
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. The two isoenzymes for yeast NAD +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997;16:2179-87.
-
(1997)
EMBO J
, vol.16
, pp. 2179-2187
-
-
Ansell, R.1
Granath, K.2
Hohmann, S.3
Thevelein, J.M.4
Adler, L.5
-
36
-
-
84940033066
-
Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
-
1:CAS:528:DC%2BC2MXht1Kgur7F
-
Kim S, Hahn J. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng. 2015;31:94-101.
-
(2015)
Metab Eng
, vol.31
, pp. 94-101
-
-
Kim, S.1
Hahn, J.2
-
37
-
-
42049123423
-
Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1cXks1anur0%3D
-
Wiedemann B, Boles E. Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043-50.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 2043-2050
-
-
Wiedemann, B.1
Boles, E.2
-
38
-
-
14244270196
-
Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis
-
Hoffmeister M. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem. 2004;280:4329-38.
-
(2004)
J Biol Chem
, vol.280
, pp. 4329-4338
-
-
Hoffmeister, M.1
-
39
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
1:CAS:528:DC%2BD1MXksVemsbw%3D
-
Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343-5.
-
(2009)
Nat Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
Young, L.2
Chuang, R.3
Venter, J.C.4
Hutchison, C.A.5
Smith, H.O.6
-
40
-
-
34347260322
-
Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method
-
1:CAS:528:DC%2BD2sXhtFGntb%2FP
-
Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:1-4.
-
(2007)
Nat Protoc
, vol.2
, pp. 1-4
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
41
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
1:CAS:528:DC%2BD2sXhtFGntb%2FL
-
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31-4.
-
(2007)
Nat Protoc
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
42
-
-
0030754153
-
A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes
-
1:CAS:528:DyaK2sXlsVSrtro%3D
-
Han L, Reynolds KA. A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol. 1997;179:5157-64.
-
(1997)
J Bacteriol
, vol.179
, pp. 5157-5164
-
-
Han, L.1
Reynolds, K.A.2
-
43
-
-
33644941225
-
System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XntVSksw%3D%3D
-
Taxis C, Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 2006;40:73-8.
-
(2006)
Biotechniques
, vol.40
, pp. 73-78
-
-
Taxis, C.1
Knop, M.2
-
44
-
-
84898053053
-
Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
-
1:CAS:528:DC%2BC2cXkslCqs78%3D
-
Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci USA. 2014;111:5159-64.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
Oreb, M.4
Boles, E.5
|