-
1
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun.
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
2
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
Jan.
-
W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, vol. 2015, Jan. 2015, Art. no. 258619.
-
(2015)
J. Sensors
, vol.2015
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
3
-
-
84979492674
-
Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
-
Aug.
-
W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4544-4554
-
-
Zhao, W.1
Du, S.2
-
4
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Oct.
-
Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.10
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Ghamisi, P.5
-
5
-
-
84988373662
-
Active deep learning for classification of hyperspectral images
-
Feb.
-
P. Liu, H. Zhang, and K. B. Eom, "Active deep learning for classification of hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2, pp. 712-724, Feb. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.2
, pp. 712-724
-
-
Liu, P.1
Zhang, H.2
Eom, K.B.3
-
6
-
-
85016393818
-
Learning to diversify deep belief networks for hyperspectral image classification
-
Jun.
-
P. Zhong, Z. Gong, S. Li, and C.-B. Schönlieb, "Learning to diversify deep belief networks for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 55, no. 6, pp. 3516-3530, Jun. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.55
, Issue.6
, pp. 3516-3530
-
-
Zhong, P.1
Gong, Z.2
Li, S.3
Schönlieb, C.-B.4
-
7
-
-
85027942618
-
Spectral-spatial classification of hyperspectral data based on deep belief network
-
Jun.
-
Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
8
-
-
84983164503
-
Classification of hyperspectral image based on deep belief networks
-
Oct.
-
T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief networks," in Proc. IEEE Conf. Image Process. (ICIP), Oct. 2014, pp. 5132-5136.
-
(2014)
Proc. IEEE Conf. Image Process. (ICIP)
, pp. 5132-5136
-
-
Li, T.1
Zhang, J.2
Zhang, Y.3
-
9
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
K. Pearson, "On lines and planes of closest fit to systems of points in space," Philos. Mag., vol. 2, no. 6, pp. 559-572, 1901.
-
(1901)
Philos. Mag.
, vol.2
, Issue.6
, pp. 559-572
-
-
Pearson, K.1
-
10
-
-
85016580900
-
Dimensionality reduction for hyperspectral data based on pairwise constraint discriminative analysis and nonnegative sparse divergence
-
Apr.
-
X. Wang, Y. Kong, Y. Gao, and Y. Cheng, "Dimensionality reduction for hyperspectral data based on pairwise constraint discriminative analysis and nonnegative sparse divergence," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1552-1562, Apr. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.4
, pp. 1552-1562
-
-
Wang, X.1
Kong, Y.2
Gao, Y.3
Cheng, Y.4
-
11
-
-
84986274465
-
Deep residual learning for image recognition
-
Jun.
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Jun.
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
15
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
-
16
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2012, pp. 1097-1105.
-
(2012)
Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
17
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Jun.
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248-255.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
19
-
-
84872920883
-
Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems
-
Feb.
-
P. Gurram and H. Kwon, "Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 787-802, Feb. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.2
, pp. 787-802
-
-
Gurram, P.1
Kwon, H.2
-
20
-
-
84955620816
-
Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification
-
Jun.
-
Y. Gu, T. Liu, X. Jia, J. A. Benediktsson, and J. Chanussot, "Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3235-3247, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3235-3247
-
-
Gu, Y.1
Liu, T.2
Jia, X.3
Benediktsson, J.A.4
Chanussot, J.5
-
21
-
-
84969326991
-
Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images
-
Jun.
-
F. de Morsier, M. Borgeaud, V. Gass, J.-P. Thiran, and D. Tuia, "Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3410-3420, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3410-3420
-
-
De Morsier, F.1
Borgeaud, M.2
Gass, V.3
Thiran, J.-P.4
Tuia, D.5
-
22
-
-
84949799565
-
Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image classification
-
Apr.
-
J. Liu, Z. Wu, J. Li, A. Plaza, and Y. Yuan, "Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2371-2384, Apr. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.4
, pp. 2371-2384
-
-
Liu, J.1
Wu, Z.2
Li, J.3
Plaza, A.4
Yuan, Y.5
-
23
-
-
84960510316
-
Discriminative multiple kernel learning for hyperspectral image classification
-
Jul.
-
Q. Wang, Y. Gu, and D. Tuia, "Discriminative multiple kernel learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 3912-3927, Jul. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.7
, pp. 3912-3927
-
-
Wang, Q.1
Gu, Y.2
Tuia, D.3
-
24
-
-
41849112041
-
Customizing kernel functions for SVM-based hyperspectral image classification
-
Apr.
-
B. Guo, S. R. Gunn, R. I. Demper, and J. D. B. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification," IEEE Trans. Image Process., vol. 17, no. 4, pp. 622-629, Apr. 2008.
-
(2008)
IEEE Trans. Image Process.
, vol.17
, Issue.4
, pp. 622-629
-
-
Guo, B.1
Gunn, S.R.2
Demper, R.I.3
Nelson, J.D.B.4
-
25
-
-
85016127121
-
Sparse spatiospectral LapSVM with semisupervised kernel propagation for hyperspectral image classification
-
May
-
L. Yang, M. Wang, S. Yang, R. Zhang, and P. Zhang, "Sparse spatiospectral LapSVM with semisupervised kernel propagation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 2046-2054, May 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.5
, pp. 2046-2054
-
-
Yang, L.1
Wang, M.2
Yang, S.3
Zhang, R.4
Zhang, P.5
-
26
-
-
84945371093
-
Shapelet-based sparse representation for landcover classification of hyperspectral images
-
Mar.
-
R. Roscher and B. Waske, "Shapelet-based sparse representation for landcover classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1623-1634, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1623-1634
-
-
Roscher, R.1
Waske, B.2
-
27
-
-
84971422354
-
A probabilistic framework for spectral-spatial classification of hyperspectral images
-
Sep.
-
J. Liu and W. Lu, "A probabilistic framework for spectral-spatial classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5375-5384, Sep. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.9
, pp. 5375-5384
-
-
Liu, J.1
Lu, W.2
-
28
-
-
84979492313
-
Automatic object-based hyperspectral image classification using complex diffusions and a new distance metric
-
Jul.
-
A. Zehtabian and H. Ghassemian, "Automatic object-based hyperspectral image classification using complex diffusions and a new distance metric," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 4106-4114, Jul. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.7
, pp. 4106-4114
-
-
Zehtabian, A.1
Ghassemian, H.2
-
29
-
-
84955562134
-
Gabor cube selection based multitask joint sparse representation for hyperspectral image classification
-
Jun.
-
S. Jia, J. Hu, Y. Xie, L. Shen, X. Jia, and Q. Li, "Gabor cube selection based multitask joint sparse representation for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3174-3187, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3174-3187
-
-
Jia, S.1
Hu, J.2
Xie, Y.3
Shen, L.4
Jia, X.5
Li, Q.6
-
30
-
-
84944519357
-
Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples
-
Mar.
-
J. Xia, J. Chanussot, P. Du, and X. He, "Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1519-1531, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1519-1531
-
-
Xia, J.1
Chanussot, J.2
Du, P.3
He, X.4
-
31
-
-
84979493625
-
Efficient multiple feature fusion with hashing for hyperspectral imagery classification: A comparative study
-
Aug.
-
Z. Zhong, B. Fan, K. Ding, H. Li, S. Xiang, and C. Pan, "Efficient multiple feature fusion with hashing for hyperspectral imagery classification: A comparative study," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4461-4478, Aug. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4461-4478
-
-
Zhong, Z.1
Fan, B.2
Ding, K.3
Li, H.4
Xiang, S.5
Pan, C.6
-
32
-
-
84966269022
-
Spectral-spatial classification of hyperspectral images using ICA and edge-preserving filter via an ensemble strategy
-
Aug.
-
J. Xia, L. Bombrun, T. Adali, Y. Berthoumieu, and C. Germain, "Spectral-spatial classification of hyperspectral images using ICA and edge-preserving filter via an ensemble strategy," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4971-4982, Aug. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4971-4982
-
-
Xia, J.1
Bombrun, L.2
Adali, T.3
Berthoumieu, Y.4
Germain, C.5
-
33
-
-
84946854698
-
Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification
-
Jan.
-
H. L. Yang and M. M. Crawford, "Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 51-64, Jan. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.1
, pp. 51-64
-
-
Yang, H.L.1
Crawford, M.M.2
-
34
-
-
84961877291
-
Hyperspectral image classification via basic thresholding classifier
-
Jul.
-
M. A. Toksöz and I. Ulusoy, "Hyperspectral image classification via basic thresholding classifier," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 4039-4051, Jul. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.7
, pp. 4039-4051
-
-
Toksöz, M.A.1
Ulusoy, I.2
-
35
-
-
77953710563
-
Learning conditional random fields for classification of hyperspectral images
-
Jul.
-
P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.7
, pp. 1890-1907
-
-
Zhong, P.1
Wang, R.2
-
36
-
-
84859048363
-
Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
-
Apr.
-
K. Bernard, Y. Tarabaika, J. Angulo, J. Chanussot, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.4
, pp. 2008-2021
-
-
Bernard, K.1
Tarabaika, Y.2
Angulo, J.3
Chanussot, J.4
Benediktsson, J.A.5
-
37
-
-
84901402355
-
Hyperspectral image classification through bilayer graph-based learning
-
Jul.
-
Y. Gao, R. Ji, P. Cui, Q. Dai, and G. Hua, "Hyperspectral image classification through bilayer graph-based learning," IEEE Trans. Image Process., vol. 23, no. 7, pp. 2769-2778, Jul. 2014.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.7
, pp. 2769-2778
-
-
Gao, Y.1
Ji, R.2
Cui, P.3
Dai, Q.4
Hua, G.5
-
38
-
-
85012977527
-
Hyperspectral and lidar intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration
-
May
-
M. Brell, K. Segl, L. Guanter, and B. Bookhagen, "Hyperspectral and lidar intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2799-2810, May 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.5
, pp. 2799-2810
-
-
Brell, M.1
Segl, K.2
Guanter, L.3
Bookhagen, B.4
-
39
-
-
85010661767
-
Three-dimensional local binary patterns for hyperspectral imagery classification
-
Apr.
-
S. Jia, J. Hu, J. Zhu, X. Jia, and Q. Li, "Three-dimensional local binary patterns for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2399-2413, Apr. 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.4
, pp. 2399-2413
-
-
Jia, S.1
Hu, J.2
Zhu, J.3
Jia, X.4
Li, Q.5
-
40
-
-
85010680266
-
Superpixel-based multitask learning framework for hyperspectral image classification
-
May
-
S. Jia, B. Deng, J. Zhu, X. Jia, and Q. Li, "Superpixel-based multitask learning framework for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2575-2588, May 2017.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.5
, pp. 2575-2588
-
-
Jia, S.1
Deng, B.2
Zhu, J.3
Jia, X.4
Li, Q.5
-
41
-
-
85011305647
-
Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain
-
to be published
-
S. Mei, Q. Bi, J. Ji, J. Hou, and Q. Du, "Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., to be published. [Online.] Available: https://doi.org/10.1109/JSTARS.2017.2650939, doi: 10.1109/JSTARS.2017.2650939.
-
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
-
-
Mei, S.1
Bi, Q.2
Ji, J.3
Hou, J.4
Du, Q.5
-
42
-
-
84981724952
-
Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification
-
Jan.
-
H. Su, Y. Cai, and Q. Du, "Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 1, pp. 309-320, Jan. 2017.
-
(2017)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.10
, Issue.1
, pp. 309-320
-
-
Su, H.1
Cai, Y.2
Du, Q.3
-
44
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Multimedia (ACMMM), 2014, pp. 675-678.
-
(2014)
Proc. ACM Multimedia (ACMMM)
, pp. 675-678
-
-
Jia, Y.1
|