메뉴 건너뛰기




Volumn 26, Issue 10, 2017, Pages 4843-4855

Going Deeper with Contextual CNN for Hyperspectral Image Classification

Author keywords

Convolutional neural network (CNN); fully convolutional network (FCN); hyperspectral image classification; multi scale filter bank; residual learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP NEURAL NETWORKS; FILTER BANKS; HYPERSPECTRAL IMAGING; NEURAL NETWORKS; PIXELS; SPECTROSCOPY;

EID: 85023605626     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2017.2725580     Document Type: Article
Times cited : (967)

References (44)
  • 2
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Jan.
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, vol. 2015, Jan. 2015, Art. no. 258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 3
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 4
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 5
    • 84988373662 scopus 로고    scopus 로고
    • Active deep learning for classification of hyperspectral images
    • Feb.
    • P. Liu, H. Zhang, and K. B. Eom, "Active deep learning for classification of hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2, pp. 712-724, Feb. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.2 , pp. 712-724
    • Liu, P.1    Zhang, H.2    Eom, K.B.3
  • 6
    • 85016393818 scopus 로고    scopus 로고
    • Learning to diversify deep belief networks for hyperspectral image classification
    • Jun.
    • P. Zhong, Z. Gong, S. Li, and C.-B. Schönlieb, "Learning to diversify deep belief networks for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 55, no. 6, pp. 3516-3530, Jun. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.55 , Issue.6 , pp. 3516-3530
    • Zhong, P.1    Gong, Z.2    Li, S.3    Schönlieb, C.-B.4
  • 7
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 8
    • 84983164503 scopus 로고    scopus 로고
    • Classification of hyperspectral image based on deep belief networks
    • Oct.
    • T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief networks," in Proc. IEEE Conf. Image Process. (ICIP), Oct. 2014, pp. 5132-5136.
    • (2014) Proc. IEEE Conf. Image Process. (ICIP) , pp. 5132-5136
    • Li, T.1    Zhang, J.2    Zhang, Y.3
  • 9
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson, "On lines and planes of closest fit to systems of points in space," Philos. Mag., vol. 2, no. 6, pp. 559-572, 1901.
    • (1901) Philos. Mag. , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 10
    • 85016580900 scopus 로고    scopus 로고
    • Dimensionality reduction for hyperspectral data based on pairwise constraint discriminative analysis and nonnegative sparse divergence
    • Apr.
    • X. Wang, Y. Kong, Y. Gao, and Y. Cheng, "Dimensionality reduction for hyperspectral data based on pairwise constraint discriminative analysis and nonnegative sparse divergence," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1552-1562, Apr. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.4 , pp. 1552-1562
    • Wang, X.1    Kong, Y.2    Gao, Y.3    Cheng, Y.4
  • 15
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 19
    • 84872920883 scopus 로고    scopus 로고
    • Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems
    • Feb.
    • P. Gurram and H. Kwon, "Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 787-802, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 787-802
    • Gurram, P.1    Kwon, H.2
  • 20
    • 84955620816 scopus 로고    scopus 로고
    • Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification
    • Jun.
    • Y. Gu, T. Liu, X. Jia, J. A. Benediktsson, and J. Chanussot, "Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3235-3247, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3235-3247
    • Gu, Y.1    Liu, T.2    Jia, X.3    Benediktsson, J.A.4    Chanussot, J.5
  • 21
    • 84969326991 scopus 로고    scopus 로고
    • Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images
    • Jun.
    • F. de Morsier, M. Borgeaud, V. Gass, J.-P. Thiran, and D. Tuia, "Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3410-3420, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3410-3420
    • De Morsier, F.1    Borgeaud, M.2    Gass, V.3    Thiran, J.-P.4    Tuia, D.5
  • 22
    • 84949799565 scopus 로고    scopus 로고
    • Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image classification
    • Apr.
    • J. Liu, Z. Wu, J. Li, A. Plaza, and Y. Yuan, "Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2371-2384, Apr. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 2371-2384
    • Liu, J.1    Wu, Z.2    Li, J.3    Plaza, A.4    Yuan, Y.5
  • 23
    • 84960510316 scopus 로고    scopus 로고
    • Discriminative multiple kernel learning for hyperspectral image classification
    • Jul.
    • Q. Wang, Y. Gu, and D. Tuia, "Discriminative multiple kernel learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 3912-3927, Jul. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.7 , pp. 3912-3927
    • Wang, Q.1    Gu, Y.2    Tuia, D.3
  • 24
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • Apr.
    • B. Guo, S. R. Gunn, R. I. Demper, and J. D. B. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification," IEEE Trans. Image Process., vol. 17, no. 4, pp. 622-629, Apr. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Demper, R.I.3    Nelson, J.D.B.4
  • 25
    • 85016127121 scopus 로고    scopus 로고
    • Sparse spatiospectral LapSVM with semisupervised kernel propagation for hyperspectral image classification
    • May
    • L. Yang, M. Wang, S. Yang, R. Zhang, and P. Zhang, "Sparse spatiospectral LapSVM with semisupervised kernel propagation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 5, pp. 2046-2054, May 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.5 , pp. 2046-2054
    • Yang, L.1    Wang, M.2    Yang, S.3    Zhang, R.4    Zhang, P.5
  • 26
    • 84945371093 scopus 로고    scopus 로고
    • Shapelet-based sparse representation for landcover classification of hyperspectral images
    • Mar.
    • R. Roscher and B. Waske, "Shapelet-based sparse representation for landcover classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1623-1634, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1623-1634
    • Roscher, R.1    Waske, B.2
  • 27
    • 84971422354 scopus 로고    scopus 로고
    • A probabilistic framework for spectral-spatial classification of hyperspectral images
    • Sep.
    • J. Liu and W. Lu, "A probabilistic framework for spectral-spatial classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5375-5384, Sep. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.9 , pp. 5375-5384
    • Liu, J.1    Lu, W.2
  • 28
    • 84979492313 scopus 로고    scopus 로고
    • Automatic object-based hyperspectral image classification using complex diffusions and a new distance metric
    • Jul.
    • A. Zehtabian and H. Ghassemian, "Automatic object-based hyperspectral image classification using complex diffusions and a new distance metric," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 4106-4114, Jul. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.7 , pp. 4106-4114
    • Zehtabian, A.1    Ghassemian, H.2
  • 29
    • 84955562134 scopus 로고    scopus 로고
    • Gabor cube selection based multitask joint sparse representation for hyperspectral image classification
    • Jun.
    • S. Jia, J. Hu, Y. Xie, L. Shen, X. Jia, and Q. Li, "Gabor cube selection based multitask joint sparse representation for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3174-3187, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3174-3187
    • Jia, S.1    Hu, J.2    Xie, Y.3    Shen, L.4    Jia, X.5    Li, Q.6
  • 30
    • 84944519357 scopus 로고    scopus 로고
    • Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples
    • Mar.
    • J. Xia, J. Chanussot, P. Du, and X. He, "Rotation-based support vector machine ensemble in classification of hyperspectral data with limited training samples," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1519-1531, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1519-1531
    • Xia, J.1    Chanussot, J.2    Du, P.3    He, X.4
  • 31
    • 84979493625 scopus 로고    scopus 로고
    • Efficient multiple feature fusion with hashing for hyperspectral imagery classification: A comparative study
    • Aug.
    • Z. Zhong, B. Fan, K. Ding, H. Li, S. Xiang, and C. Pan, "Efficient multiple feature fusion with hashing for hyperspectral imagery classification: A comparative study," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4461-4478, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4461-4478
    • Zhong, Z.1    Fan, B.2    Ding, K.3    Li, H.4    Xiang, S.5    Pan, C.6
  • 32
    • 84966269022 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using ICA and edge-preserving filter via an ensemble strategy
    • Aug.
    • J. Xia, L. Bombrun, T. Adali, Y. Berthoumieu, and C. Germain, "Spectral-spatial classification of hyperspectral images using ICA and edge-preserving filter via an ensemble strategy," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4971-4982, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4971-4982
    • Xia, J.1    Bombrun, L.2    Adali, T.3    Berthoumieu, Y.4    Germain, C.5
  • 33
    • 84946854698 scopus 로고    scopus 로고
    • Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification
    • Jan.
    • H. L. Yang and M. M. Crawford, "Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 51-64, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.1 , pp. 51-64
    • Yang, H.L.1    Crawford, M.M.2
  • 34
    • 84961877291 scopus 로고    scopus 로고
    • Hyperspectral image classification via basic thresholding classifier
    • Jul.
    • M. A. Toksöz and I. Ulusoy, "Hyperspectral image classification via basic thresholding classifier," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 4039-4051, Jul. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.7 , pp. 4039-4051
    • Toksöz, M.A.1    Ulusoy, I.2
  • 35
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classification of hyperspectral images
    • Jul.
    • P. Zhong and R. Wang, "Learning conditional random fields for classification of hyperspectral images," IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2
  • 36
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Apr.
    • K. Bernard, Y. Tarabaika, J. Angulo, J. Chanussot, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabaika, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 37
    • 84901402355 scopus 로고    scopus 로고
    • Hyperspectral image classification through bilayer graph-based learning
    • Jul.
    • Y. Gao, R. Ji, P. Cui, Q. Dai, and G. Hua, "Hyperspectral image classification through bilayer graph-based learning," IEEE Trans. Image Process., vol. 23, no. 7, pp. 2769-2778, Jul. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.7 , pp. 2769-2778
    • Gao, Y.1    Ji, R.2    Cui, P.3    Dai, Q.4    Hua, G.5
  • 38
    • 85012977527 scopus 로고    scopus 로고
    • Hyperspectral and lidar intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration
    • May
    • M. Brell, K. Segl, L. Guanter, and B. Bookhagen, "Hyperspectral and lidar intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2799-2810, May 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.5 , pp. 2799-2810
    • Brell, M.1    Segl, K.2    Guanter, L.3    Bookhagen, B.4
  • 39
    • 85010661767 scopus 로고    scopus 로고
    • Three-dimensional local binary patterns for hyperspectral imagery classification
    • Apr.
    • S. Jia, J. Hu, J. Zhu, X. Jia, and Q. Li, "Three-dimensional local binary patterns for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2399-2413, Apr. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.4 , pp. 2399-2413
    • Jia, S.1    Hu, J.2    Zhu, J.3    Jia, X.4    Li, Q.5
  • 40
    • 85010680266 scopus 로고    scopus 로고
    • Superpixel-based multitask learning framework for hyperspectral image classification
    • May
    • S. Jia, B. Deng, J. Zhu, X. Jia, and Q. Li, "Superpixel-based multitask learning framework for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2575-2588, May 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.5 , pp. 2575-2588
    • Jia, S.1    Deng, B.2    Zhu, J.3    Jia, X.4    Li, Q.5
  • 41
    • 85011305647 scopus 로고    scopus 로고
    • Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain
    • to be published
    • S. Mei, Q. Bi, J. Ji, J. Hou, and Q. Du, "Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., to be published. [Online.] Available: https://doi.org/10.1109/JSTARS.2017.2650939, doi: 10.1109/JSTARS.2017.2650939.
    • IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
    • Mei, S.1    Bi, Q.2    Ji, J.3    Hou, J.4    Du, Q.5
  • 42
    • 84981724952 scopus 로고    scopus 로고
    • Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification
    • Jan.
    • H. Su, Y. Cai, and Q. Du, "Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 1, pp. 309-320, Jan. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.1 , pp. 309-320
    • Su, H.1    Cai, Y.2    Du, Q.3
  • 44
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Multimedia (ACMMM), 2014, pp. 675-678.
    • (2014) Proc. ACM Multimedia (ACMMM) , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.