메뉴 건너뛰기




Volumn 54, Issue 6, 2016, Pages 3235-3247

Nonlinear Multiple Kernel Learning with Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification

Author keywords

Classification; extended morphological profile (EMP); hyperspectral images; multiple kernel learning (MKL)

Indexed keywords

CLASSIFICATION (OF INFORMATION); HYPERSPECTRAL IMAGING; INDEPENDENT COMPONENT ANALYSIS; OPTIMIZATION; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84955620816     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2514161     Document Type: Article
Times cited : (224)

References (50)
  • 1
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 2
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Jul
    • J. C. Harsanyi and C. I. Chang, "Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 3
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 5
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. M. Crawford, J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 7
    • 0033540293 scopus 로고    scopus 로고
    • A back-propagation neural network for mineralogical mapping from AVIRIS data
    • Jan
    • H. Yang, F. V. D. Meer, W. Bakker, Z. J. Tan, "A back-propagation neural network for mineralogical mapping from AVIRIS data," Int. J. Remote Sens., vol. 20, no. 1, pp. 97-110, Jan. 1999.
    • (1999) Int. J. Remote Sens , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1    Meer, F.V.D.2    Bakker, W.3    Tan, Z.J.4
  • 8
    • 67949113330 scopus 로고    scopus 로고
    • Some experiments with ensembles of neural networks for classification of hyperspectral images
    • C. Hernández-Espinosa, M. Fernández-Redondo, J. Torres-Sospedra, "Some experiments with ensembles of neural networks for classification of hyperspectral images," in Proc. ISNN, 2004, vol. 1, pp. 912-917.
    • (2004) Proc. ISNN , vol.1 , pp. 912-917
    • Hernández-Espinosa, C.1    Fernández-Redondo, M.2    Torres-Sospedra, J.3
  • 9
    • 67949116286 scopus 로고    scopus 로고
    • Innovative genetic algorithm for hyperspectral image classification
    • C. Vaiphasa, "Innovative genetic algorithm for hyperspectral image classification," in Proc. Int. Conf. MAP Asia, Kuala Lumpur, Malaysia, 2003, vol. 20, p. 45.
    • (2003) Proc. Int. Conf. MAP Asia, Kuala Lumpur, Malaysia , vol.20 , pp. 45
    • Vaiphasa, C.1
  • 10
    • 84876468871 scopus 로고    scopus 로고
    • An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery
    • Mar
    • Y. Zhong and L. Zhang, "An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 894-909, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 894-909
    • Zhong, Y.1    Zhang, L.2
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 13
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • J. A. Gualtieri and R. F. Cromp, "Support vector machines for hyperspectral remote sensing classification," in Proc. SPIE Workshop Adv. Comput. Assisted Recog., 1998, vol. 3584, pp. 221-232.
    • (1998) Proc. SPIE Workshop Adv. Comput. Assisted Recog , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 14
    • 33947659964 scopus 로고    scopus 로고
    • Evaluation of kernels for multiclass classification of hyperspectral remote sensing data
    • May
    • M. Fauvel, J. Chanussot, J. A. Benediktsson, "Evaluation of kernels for multiclass classification of hyperspectral remote sensing data," in Proc. IEEE ICASSP, May 2006, pp. II813-II816.
    • (2006) Proc IEEE ICASSP , pp. II813-II816
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 16
    • 77953139504 scopus 로고    scopus 로고
    • Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images
    • Jul
    • S. Valero, J. Chanussot, J. A. Benediktsson, H. Talbot, B. Waske, "Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images," Pattern Recognit. Lett., vol. 31, no. 10, pp. 1120-1127, Jul. 2010.
    • (2010) Pattern Recognit. Lett , vol.31 , Issue.10 , pp. 1120-1127
    • Valero, S.1    Chanussot, J.2    Benediktsson, J.A.3    Talbot, H.4    Waske, B.5
  • 17
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Feb
    • M. Pesaresi and J. A. Benediktsson, "A new approach for the morphological segmentation of high-resolution satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 18
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Oct
    • M. Fauvel, J. Chanussot, J. A. Benediktsson, J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 3804-3814, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.10 , pp. 3804-3814
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3    Sveinsson, J.R.4
  • 19
    • 23844524154 scopus 로고    scopus 로고
    • A unified framework for map estimation in remote sensing image segmentation
    • Jul
    • A. Farag, R. Mohamed, A. El-Baz, "A unified framework for map estimation in remote sensing image segmentation," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 7, pp. 1617-1634, Jul. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.7 , pp. 1617-1634
    • Farag, A.1    Mohamed, R.2    El-Baz, A.3
  • 20
    • 84902120621 scopus 로고    scopus 로고
    • A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
    • Nov
    • Y. Zhong, J. Zhao, L. Zhang, "A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7023-7037, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.11 , pp. 7023-7037
    • Zhong, Y.1    Zhao, J.2    Zhang, L.3
  • 21
    • 85027924217 scopus 로고    scopus 로고
    • Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels
    • Dec
    • L. Fang, S. Li, W. Duan, J. Ren, J. A. Benediktsson, "Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6663-6674, Dec. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.12 , pp. 6663-6674
    • Fang, L.1    Li, S.2    Duan, W.3    Ren, J.4    Benediktsson, J.A.5
  • 22
    • 84927670473 scopus 로고    scopus 로고
    • Spatial coherence based batch-mode active learning for remote sensing images classification
    • Jul
    • Q. Shi, B. Du, L. Zhang, "Spatial coherence based batch-mode active learning for remote sensing images classification," IEEE Trans. Image Process., vol. 24, no. 7, pp. 2037-2050, Jul. 2015.
    • (2015) IEEE Trans. Image Process , vol.24 , Issue.7 , pp. 2037-2050
    • Shi, Q.1    Du, B.2    Zhang, L.3
  • 23
    • 0242712308 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral image classification with spectral-based kernels
    • Jul
    • G. Mercier and M. Lennon, "Support vector machines for hyperspectral image classification with spectral-based kernels," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2003, vol. 1, pp. 288-290.
    • (2003) Proc IEEE Int. Geosci. Remote Sens. Symp , vol.1 , pp. 288-290
    • Mercier, G.1    Lennon, M.2
  • 26
    • 44049084715 scopus 로고    scopus 로고
    • Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
    • Jun
    • G. Camps-Valls, L. Gomez-Chova, J. Munõz-Marí, J. L. Rojo-Alvarez, M. Martinez-Ramon, "Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822-1835, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.6 , pp. 1822-1835
    • Camps-Valls, G.1    Gomez-Chova, L.2    Munõz-Marí, J.3    Rojo-Alvarez, J.L.4    Martinez-Ramon, M.5
  • 29
    • 84861148621 scopus 로고    scopus 로고
    • A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection
    • Jun
    • Y.-R. Yeh, T.-C. Lin, Y.-Y. Chung, Y.-C. F. Lin, "A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection," IEEE Trans. Multimedia, vol. 14, no. 1, pp. 563-574, Jun. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.1 , pp. 563-574
    • Yeh, Y.-R.1    Lin, T.-C.2    Chung, Y.-Y.3    Lin, Y.-C.F.4
  • 30
    • 84862993024 scopus 로고    scopus 로고
    • Representative multiple-kernel learning for classification of hyperspectral imagery
    • Jul
    • Y. Gu et al., "Representative multiple-kernel learning for classification of hyperspectral imagery" IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2852-2865, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.7 , pp. 2852-2865
    • Gu, Y.1
  • 31
    • 0036762736 scopus 로고    scopus 로고
    • Advances in mathematical morphology applied to geoscience and remote sensing
    • Sep
    • P. Soille andM. Pesaresi, "Advances in mathematical morphology applied to geoscience and remote sensing," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2042-2055, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.9 , pp. 2042-2055
    • Soille, P.1    Pesaresi, M.2
  • 32
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple-kernel classification
    • Oct
    • D. Tuia, G. Camps-Valls, G. Matasci, M. Kanevski, "Learning relevant image features with multiple-kernel classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 33
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar
    • J. A. Benediktsson, J. A. Palmason, J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 34
    • 85027946946 scopus 로고    scopus 로고
    • Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution
    • Dec
    • Z. Y. Lv, P. Zhang, J. A. Benediktsson, W. Z. Shi, "Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 12, pp. 4644-4652, Dec. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.12 , pp. 4644-4652
    • Lv, Z.Y.1    Zhang, P.2    Benediktsson, J.A.3    Shi, W.Z.4
  • 36
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Dec
    • Y. Qian, F. Yao, S. Jia, "Band selection for hyperspectral imagery using affinity propagation," IET Comput. Vis., vol. 3, no. 4, pp. 213-222, Dec. 2009.
    • (2009) IET Comput. Vis , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 37
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Jul
    • M. Gönen and E. Alpaydn, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, Jul. 2011.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydn, E.2
  • 38
    • 84858743760 scopus 로고    scopus 로고
    • Learning non-linear combinations of kernels
    • C. Cortes, M. Mohri, A. Rostamizadeh, "Learning non-linear combinations of kernels," in Proc. NIPS, 2009, pp. 396-404.
    • (2009) Proc. NIPS , pp. 396-404
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 42
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • P. Gamba, "A collection of data for urban area characterization," in Proc. IEEE IGARSS, Anchorage, AK, USA, 2004, pp. 69-72.
    • (2004) Proc IEEE IGARSS, Anchorage, AK, USA , pp. 69-72
    • Gamba, P.1
  • 43
    • 84991980178 scopus 로고
    • AVIRIS NW Indiana's Indian Pines Data Set. [Online]. Available
    • AVIRIS NW Indiana's Indian Pines 1992 Data Set. [Online]. Available: ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip
    • (1992)
  • 44
    • 84899795478 scopus 로고    scopus 로고
    • A two-stage feature selection framework for hyperspectral image classification using few labeled samples
    • Apr
    • S. Jia, Z. Zhu, L. Shen, Q. Li, "A two-stage feature selection framework for hyperspectral image classification using few labeled samples," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 3, pp. 1023-1035, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.3 , pp. 1023-1035
    • Jia, S.1    Zhu, Z.2    Shen, L.3    Li, Q.4
  • 45
    • 84907456238 scopus 로고    scopus 로고
    • Multiple feature learning for hyperspectral image classification
    • Mar
    • J. Li et al., "Multiple feature learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1592-1606, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.3 , pp. 1592-1606
    • Li, J.1
  • 49
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • May
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004.
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.