메뉴 건너뛰기




Volumn 51, Issue 2, 2013, Pages 787-802

Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems

Author keywords

Chemical plume detection; ensemble learning; kernel parameter optimization; sparse kernel learning; support vector machine (SVM)

Indexed keywords

AGGREGATION PROCESS; BACKGROUND CLUTTER; BANDWIDTH PARAMETERS; BINARY CLASSIFICATION; CHEMICAL PLUMES; CORRESPONDING WEIGHTS; CROSS VALIDATION; DATA SETS; ENSEMBLE LEARNING; ENSEMBLE LEARNING ALGORITHM; ENSEMBLE TECHNIQUES; GAUSSIAN KERNELS; HYPER-SPECTRAL CLASSIFICATION; HYPERSPECTRAL; HYPERSPECTRAL DATA; INDIVIDUAL CLASSIFIERS; INPUT DATAS; KERNEL MATRICES; KERNEL PARAMETER; KERNEL PARAMETER OPTIMIZATION; L1 NORM; RADIUS-MARGIN BOUND; ROBUST CLASSIFICATION; SEPARATING HYPERPLANE; SPARSE KERNELS; SPECTRAL FEATURE; SVM CLASSIFIERS; WEAK CLASSIFIERS; WEIGHTING COEFFICIENT;

EID: 84872920883     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2203603     Document Type: Article
Times cited : (30)

References (34)
  • 4
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 5
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • DOI 10.1109/TGRS.2004.841487
    • H. Kwon and N. M. Nasrabadi, "Kernel rx-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 388-397, Feb. 2005. (Pubitemid 40178510)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 6
    • 33644868367 scopus 로고    scopus 로고
    • Kernel matched subspace detectors for hyperspectral target detection
    • DOI 10.1109/TPAMI.2006.39
    • H. Kwon and N. M. Nasrabadi, "Kernel matched subspace detectors for hyperspectral target detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 178-194, Feb. 2006. (Pubitemid 46395287)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.2 , pp. 178-194
    • Kwon, H.1    Nasrabadi, N.M.2
  • 7
    • 0034271110 scopus 로고    scopus 로고
    • On overfitting, generalization, and randomly expanded training sets
    • Sep
    • G. N. Karystinos and D. A. Pados, "On overfitting, generalization, and randomly expanded training sets," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1050-1057, Sep. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.5 , pp. 1050-1057
    • Karystinos, G.N.1    Pados, D.A.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Brieman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123- 140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Brieman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • L. Brieman, "Random forest," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Brieman, L.1
  • 11
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Jun
    • R. E. Schapire, "The strength of weak learnability," Mach. Learn., vol. 5, no. 2, pp. 197-227, Jun. 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 12
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug. 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000. (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • PII S1083442797062024
    • L. Lam and C Y Suen, "Application of majority voting to pattern recog- nition: An analysis of its behavior and performance," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 27, no. 5, pp. 553-568, Sep. 1997. (Pubitemid 127770722)
    • (1997) IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans. , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Suen, C.Y.2
  • 15
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T K. Ho, "The random subspace method for constructing decision forest," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 16
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Third Quarter
    • R. Polikar, "Ensemble based systems in decision making," IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quarter 2006.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 17
    • 82055172047 scopus 로고    scopus 로고
    • Feature-based ensemble learning for hyperspectral chemical plume detection
    • Nov
    • H. Kwon and P. Rauss, "Feature-based ensemble learning for hyperspectral chemical plume detection," Int. J. Remote Sens., vol. 32, no. 21, pp. 6631-6652, Nov. 2011.
    • (2011) Int. J. Remote Sens. , vol.32 , Issue.21 , pp. 6631-6652
    • Kwon, H.1    Rauss, P.2
  • 20
    • 77953770627 scopus 로고    scopus 로고
    • Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection
    • Orlando, FL, Apr. 5-9
    • P. Gurram and H. Kwon, "Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection," in Proc SPIE De- fense, Security Sens. Symp., Orlando, FL, Apr. 5-9, 2010, pp. 76951U-1- 76951U-11.
    • (2010) Proc SPIE De- Fense, Security Sens. Symp.
    • Gurram, P.1    Kwon, H.2
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C J. C Burges, "A tutorial on support vector machines for pattern recog- nition,"DataMining Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 23
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3,pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 25
    • 67649789090 scopus 로고    scopus 로고
    • Gradient optimization for multiple kernel's parameters in support vector machines classification
    • Boston, MA, Jul. 7-11
    • A. Villa, M. Fauvel, J. Chanussot, P. Gamba, and J. A. Benediktsson, "Gradient optimization for multiple kernel's parameters in support vector machines classification,"inProc IEEEIGARSS, Boston, MA, Jul. 7-11, 2008, pp. 224-227.
    • (2008) Proc IEEEIGARSS , pp. 224-227
    • Villa, A.1    Fauvel, M.2    Chanussot, J.3    Gamba, P.4    Benediktsson, J.A.5
  • 26
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Sep
    • V. N. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machines," Neural Comput., vol. 12, no. 9, pp. 2013-2036, Sep. 2000.
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.N.1    Chapelle, O.2
  • 28
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of svm hyperparameters using ra- dius/margin bound and iterative algorithms
    • Sep
    • S. S. Keerthi, "Efficient tuning of svm hyperparameters using ra- dius/margin bound and iterative algorithms," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1225-1229, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 30
    • 84872915711 scopus 로고    scopus 로고
    • UCI Machine Learning Repository. [Online]
    • UCI Machine Learning Repository. [Online]. Available: http://archive.ics. uci.edu/ml/datasets.html
  • 32
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyper- spectral remote sensing classification
    • J. A. Gualtieri and R. F Cromp, "Support vector machines for hyper- spectral remote sensing classification," in Proc SPIE, 1999, vol. 3584, pp. 221-232.
    • (1999) Proc SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.