-
4
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
DOI 10.1109/TGRS.2005.846154
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
5
-
-
13144293109
-
Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
-
DOI 10.1109/TGRS.2004.841487
-
H. Kwon and N. M. Nasrabadi, "Kernel rx-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 388-397, Feb. 2005. (Pubitemid 40178510)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.2
, pp. 388-397
-
-
Kwon, H.1
Nasrabadi, N.M.2
-
6
-
-
33644868367
-
Kernel matched subspace detectors for hyperspectral target detection
-
DOI 10.1109/TPAMI.2006.39
-
H. Kwon and N. M. Nasrabadi, "Kernel matched subspace detectors for hyperspectral target detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 178-194, Feb. 2006. (Pubitemid 46395287)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.2
, pp. 178-194
-
-
Kwon, H.1
Nasrabadi, N.M.2
-
7
-
-
0034271110
-
On overfitting, generalization, and randomly expanded training sets
-
Sep
-
G. N. Karystinos and D. A. Pados, "On overfitting, generalization, and randomly expanded training sets," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1050-1057, Sep. 2000.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.5
, pp. 1050-1057
-
-
Karystinos, G.N.1
Pados, D.A.2
-
8
-
-
0030211964
-
Bagging predictors
-
L. Brieman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123- 140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Brieman, L.1
-
9
-
-
0035478854
-
Random forest
-
L. Brieman, "Random forest," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Brieman, L.1
-
10
-
-
60649097672
-
Support vector machine ensemble with bagging
-
H. C Kim, S. Pang, H. M. Je, D. Kim, and S. Y Bang, "Support vector machine ensemble with bagging," Pattern Recog. Support Vector Mach., vol. 2388, pp. 131-141, 2002.
-
(2002)
Pattern Recog. Support Vector Mach.
, vol.2388
, pp. 131-141
-
-
Kim, H.C.1
Pang, S.2
Je, H.M.3
Kim, D.4
Bang, S.Y.5
-
11
-
-
0025448521
-
The strength of weak learnability
-
Jun
-
R. E. Schapire, "The strength of weak learnability," Mach. Learn., vol. 5, no. 2, pp. 197-227, Jun. 1990.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
12
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug. 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000. (Pubitemid 33227445)
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
14
-
-
0031238275
-
Application of majority voting to pattern recognition: An analysis of its behavior and performance
-
PII S1083442797062024
-
L. Lam and C Y Suen, "Application of majority voting to pattern recog- nition: An analysis of its behavior and performance," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 27, no. 5, pp. 553-568, Sep. 1997. (Pubitemid 127770722)
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans.
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Suen, C.Y.2
-
15
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T K. Ho, "The random subspace method for constructing decision forest," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998. (Pubitemid 128741345)
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
16
-
-
33748611921
-
Ensemble based systems in decision making
-
Third Quarter
-
R. Polikar, "Ensemble based systems in decision making," IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, Third Quarter 2006.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
17
-
-
82055172047
-
Feature-based ensemble learning for hyperspectral chemical plume detection
-
Nov
-
H. Kwon and P. Rauss, "Feature-based ensemble learning for hyperspectral chemical plume detection," Int. J. Remote Sens., vol. 32, no. 21, pp. 6631-6652, Nov. 2011.
-
(2011)
Int. J. Remote Sens.
, vol.32
, Issue.21
, pp. 6631-6652
-
-
Kwon, H.1
Rauss, P.2
-
18
-
-
0025507176
-
Neural network ensembles
-
Oct
-
L. K. Hansen and P. Salamon, "Neural network ensembles," IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 10, pp. 993-1001, Oct. 1990.
-
(1990)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
19
-
-
57249084590
-
Simplemkl
-
Nov.
-
A. Rakotomamonjy, F R. Bach, S. Canu, and Y Grandvalet, "Simplemkl," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, Nov. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.R.2
Canu, S.3
Grandvalet, Y.4
-
20
-
-
77953770627
-
Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection
-
Orlando, FL, Apr. 5-9
-
P. Gurram and H. Kwon, "Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection," in Proc SPIE De- fense, Security Sens. Symp., Orlando, FL, Apr. 5-9, 2010, pp. 76951U-1- 76951U-11.
-
(2010)
Proc SPIE De- Fense, Security Sens. Symp.
-
-
Gurram, P.1
Kwon, H.2
-
21
-
-
84872921815
-
Composite kernels for hyperspectral image classification
-
G. Camps-Valls, L. Gomez-Chova, J. M. noz Marí, J. Vila-Francés, and J. Calpe-Maravilla, "Composite kernels for hyperspectral image classification," IEEE Trans. NeuralNetw., vol. 13, no. 5, pp. 93-97, 2002.
-
(2002)
IEEE Trans. NeuralNetw.
, vol.13
, Issue.5
, pp. 93-97
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Noz Marí, J.M.3
Vila-Francés, J.4
Calpe-Maravilla, J.5
-
22
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C J. C Burges, "A tutorial on support vector machines for pattern recog- nition,"DataMining Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
23
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3,pp. 131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
25
-
-
67649789090
-
Gradient optimization for multiple kernel's parameters in support vector machines classification
-
Boston, MA, Jul. 7-11
-
A. Villa, M. Fauvel, J. Chanussot, P. Gamba, and J. A. Benediktsson, "Gradient optimization for multiple kernel's parameters in support vector machines classification,"inProc IEEEIGARSS, Boston, MA, Jul. 7-11, 2008, pp. 224-227.
-
(2008)
Proc IEEEIGARSS
, pp. 224-227
-
-
Villa, A.1
Fauvel, M.2
Chanussot, J.3
Gamba, P.4
Benediktsson, J.A.5
-
26
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Sep
-
V. N. Vapnik and O. Chapelle, "Bounds on error expectation for support vector machines," Neural Comput., vol. 12, no. 9, pp. 2013-2036, Sep. 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.N.1
Chapelle, O.2
-
28
-
-
0036738840
-
Efficient tuning of svm hyperparameters using ra- dius/margin bound and iterative algorithms
-
Sep
-
S. S. Keerthi, "Efficient tuning of svm hyperparameters using ra- dius/margin bound and iterative algorithms," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1225-1229, Sep. 2002.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.5
, pp. 1225-1229
-
-
Keerthi, S.S.1
-
30
-
-
84872915711
-
-
UCI Machine Learning Repository. [Online]
-
UCI Machine Learning Repository. [Online]. Available: http://archive.ics. uci.edu/ml/datasets.html
-
-
-
-
32
-
-
0032636659
-
Support vector machines for hyper- spectral remote sensing classification
-
J. A. Gualtieri and R. F Cromp, "Support vector machines for hyper- spectral remote sensing classification," in Proc SPIE, 1999, vol. 3584, pp. 221-232.
-
(1999)
Proc SPIE
, vol.3584
, pp. 221-232
-
-
Gualtieri, J.A.1
Cromp, R.F.2
|