메뉴 건너뛰기




Volumn 10, Issue 4, 2017, Pages 1552-1562

Dimensionality Reduction for Hyperspectral Data Based on Pairwise Constraint Discriminative Analysis and Nonnegative Sparse Divergence

Author keywords

Dimensionality reduction; hyperspectral data; nonnegative sparse divergence; pairwise constraint; transfer learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DISCRIMINANT ANALYSIS;

EID: 85016580900     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2624303     Document Type: Article
Times cited : (19)

References (53)
  • 2
    • 84947491514 scopus 로고    scopus 로고
    • A multilinear mixing model for nonlinear spectral unmixing
    • Jan
    • R. Heylen and P. Scheunders, "A multilinear mixing model for nonlinear spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 240-251, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.1 , pp. 240-251
    • Heylen, R.1    Scheunders, P.2
  • 3
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Q. Lu, H. Wu, Y. Yuan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.Q.1    Wu, H.2    Yuan, Y.3    Li, X.4
  • 4
    • 84896314517 scopus 로고    scopus 로고
    • Double constrainedNMFfor hyperspectral spectral unmixing
    • May
    • X.Q. Lu, H. Wu, and Y. Yuan, "Double constrainedNMFfor hyperspectral spectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.Q.1    Wu, H.2    Yuan, Y.3
  • 6
    • 85027928326 scopus 로고    scopus 로고
    • Substance dependency constrained sparse NMF for hyperspectral unmixing
    • Jun
    • Y. Yuan, M. Fu, and X. Q. Lu, "Substance dependency constrained sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 2975-2986, Jun. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.6 , pp. 2975-2986
    • Yuan, Y.1    Fu, M.2    Lu, X.Q.3
  • 9
    • 84947033565 scopus 로고    scopus 로고
    • A novel ranking-based clustering approach for hyperspectral band selection
    • Jan
    • S. Jia, G. H. Tang, J. S. Zhu, and Q. Li, "A novel ranking-based clustering approach for hyperspectral band selection," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 88-102, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.1 , pp. 88-102
    • Jia, S.1    Tang, G.H.2    Zhu, J.S.3    Li, Q.4
  • 10
    • 84949674769 scopus 로고    scopus 로고
    • A non-negative sparse semisupervised dimensionality reduction algorithm for hyperspectral data
    • X. S. Wang, Y. Gao, and Y. H. Cheng, "A non-negative sparse semisupervised dimensionality reduction algorithm for hyperspectral data," Neurocomputing, vol. 188, pp. 275-283, 2016.
    • (2016) Neurocomputing , vol.188 , pp. 275-283
    • Wang, X.S.1    Gao, Y.2    Cheng, Y.H.3
  • 11
    • 84946854698 scopus 로고    scopus 로고
    • Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification
    • Jan
    • H. L. Yang and M. M. Crawford, "Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 51-64, Jan. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.1 , pp. 51-64
    • Yang, H.L.1    Crawford, M.M.2
  • 12
    • 84906782734 scopus 로고    scopus 로고
    • Hierarchical unsupervised change detection in multitemporal hyperspectral images
    • Jan
    • S. C. Liu, L. Bruzzone, F. Bovolo, and P. J. Du, "Hierarchical unsupervised change detection in multitemporal hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 244-260, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.1 , pp. 244-260
    • Liu, S.C.1    Bruzzone, L.2    Bovolo, F.3    Du, P.J.4
  • 14
    • 84857746408 scopus 로고    scopus 로고
    • Improving the robustness of cotton status characterization by radiative transfer model inversion of multi-angular CHRIS/PROBA data
    • Feb
    • W. A. Dorigo, "Improving the robustness of cotton status characterization by radiative transfer model inversion of multi-angular CHRIS/PROBA data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 1, pp. 18-29, Feb. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.1 , pp. 18-29
    • Dorigo, W.A.1
  • 16
    • 84857731767 scopus 로고    scopus 로고
    • Multi-modal change detection, application to the detection of flooded areas: Outcome of the 2009-2010 data fusion contest
    • Feb
    • N. Longbotham et al., "Multi-modal change detection, application to the detection of flooded areas: outcome of the 2009-2010 data fusion contest," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 1, pp. 331-342, Feb. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.1 , pp. 331-342
    • Longbotham, N.1
  • 17
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Jan
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 300-312, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 19
    • 84976403023 scopus 로고    scopus 로고
    • Domain adaptation for the classification of remote sensing data: An overview of recent advances
    • Jun
    • D. Tuia, C. Persello, and L. Bruzzone, "Domain adaptation for the classification of remote sensing data: an overview of recent advances," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 41-57, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , Issue.2 , pp. 41-57
    • Tuia, D.1    Persello, C.2    Bruzzone, L.3
  • 20
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximumlikelihood classifier for the analysis of multitemporal remote-sensing images
    • Feb
    • L. Bruzzone and D. F. Prieto, "Unsupervised retraining of a maximumlikelihood classifier for the analysis of multitemporal remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 21
    • 0036762743 scopus 로고    scopus 로고
    • A multiple cascade-classifier system for a robust a partially unsupervised updating of land-covermaps
    • Sep
    • L. Bruzzone and R. Cossu, "A multiple cascade-classifier system for a robust a partially unsupervised updating of land-covermaps," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 22
    • 78049256476 scopus 로고    scopus 로고
    • Adaptive classification for hyperspectral image data using manifold regularization kernel machines
    • Nov
    • W. Kim and M. M. Crawford, "Adaptive classification for hyperspectral image data using manifold regularization kernel machines," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4110-4121, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4110-4121
    • Kim, W.1    Crawford, M.M.2
  • 24
    • 84938531264 scopus 로고    scopus 로고
    • Domain adaptation with preservation of manifold geometry for hyperspectral image classification
    • Feb
    • H. L. Yang and M. M. Crawford, "Domain adaptation with preservation of manifold geometry for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 543-555, Feb. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.9 , Issue.2 , pp. 543-555
    • Yang, H.L.1    Crawford, M.M.2
  • 26
    • 84901851364 scopus 로고    scopus 로고
    • Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification
    • Oct
    • C. Persello, A. Boularis, M. Dalponte, T. Naesset, and B. Scholkopf, "Cost-sensitive active learning with lookahead: optimizing field surveys for remote sensing data classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6652-6664, Oct. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.10 , pp. 6652-6664
    • Persello, C.1    Boularis, A.2    Dalponte, M.3    Naesset, T.4    Scholkopf, B.5
  • 27
    • 85027933210 scopus 로고    scopus 로고
    • Land-cover classification of remotely sensed images using compressive sensing having severe scarcity of labeled patterns
    • Jun
    • M. Roy, F. Melgani, A. Ghosh, E. Blanzieri, and S. Ghosh, "Land-cover classification of remotely sensed images using compressive sensing having severe scarcity of labeled patterns," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1257-1261, Jun. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.6 , pp. 1257-1261
    • Roy, M.1    Melgani, F.2    Ghosh, A.3    Blanzieri, E.4    Ghosh, S.5
  • 29
    • 84951310856 scopus 로고    scopus 로고
    • Kernel-based domain-invariant feature selection in hyperspectral images for transfer learning
    • May
    • C. Persello and L. Bruzzone, "Kernel-based domain-invariant feature selection in hyperspectral images for transfer learning," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2615-2626, May 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.5 , pp. 2615-2626
    • Persello, C.1    Bruzzone, L.2
  • 31
    • 84879901809 scopus 로고    scopus 로고
    • Learn multiple kernel SVMs for domain adaptation in hyperspectral data
    • Sep
    • Z. Sun, C. Wang, H. Wang, and J. Li, "Learn multiple kernel SVMs for domain adaptation in hyperspectral data," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1224-1228, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.5 , pp. 1224-1228
    • Sun, Z.1    Wang, C.2    Wang, H.3    Li, J.4
  • 32
    • 85027954921 scopus 로고    scopus 로고
    • Semisupervised transfer component analysis for domain adaptation in remote sensing image classification
    • Jul
    • G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia, "Semisupervised transfer component analysis for domain adaptation in remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3550-3564, Jul. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.7 , pp. 3550-3564
    • Matasci, G.1    Volpi, M.2    Kanevski, M.3    Bruzzone, L.4    Tuia, D.5
  • 33
    • 84949946854 scopus 로고    scopus 로고
    • Transfer sparse subspace analysis for unsupervised cross-view scene model adaptation
    • Jul
    • H. Sun, S. Liu, S. Zhou, and H. Zhou, "Transfer sparse subspace analysis for unsupervised cross-view scene model adaptation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 7, pp. 2901-2909, Jul. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.9 , Issue.7 , pp. 2901-2909
    • Sun, H.1    Liu, S.2    Zhou, S.3    Zhou, H.4
  • 34
    • 84866441188 scopus 로고    scopus 로고
    • A general framework for transfer sparse subspace learning
    • Oct
    • S. Z. Yang, M. Lin, C. P. Hou, C. S. Hou, C. S. Zhang, and Y. Wu, "A general framework for transfer sparse subspace learning," Neural Comput. Appl., vol. 21, no. 7, pp. 1801-1817, Oct. 2012.
    • (2012) Neural Comput. Appl , vol.21 , Issue.7 , pp. 1801-1817
    • Yang, S.Z.1    Lin, M.2    Hou, C.P.3    Hou, C.S.4    Zhang, C.S.5    Wu, Y.6
  • 35
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • Feb
    • L. F. Zhang, L. P. Zhang, D. C. Tao, and X. Huang, "Sparse transfer manifold embedding for hyperspectral target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.2 , pp. 1030-1043
    • Zhang, L.F.1    Zhang, L.P.2    Tao, D.C.3    Huang, X.4
  • 36
    • 82355168811 scopus 로고    scopus 로고
    • Limitations of subspace LDAin hyperspectral target recognition applications
    • S. Prasad and L.M. Bruce, "Limitations of subspace LDAin hyperspectral target recognition applications," in Proc. IEEE Int. Geosci. Remote Sens. Symp. 2007, pp. 4049-4052.
    • (2007) Proc. IEEE Int. Geosci. Remote Sens. Symp , pp. 4049-4052
    • Prasad, S.1    Bruce, L.M.2
  • 37
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential SDP relaxation for dimension reduction
    • May
    • W. Bian and D. C. Tao, "Max-min distance analysis by using sequential SDP relaxation for dimension reduction," IEEE Trans. Pattern Anal.Mach. Intell., vol. 33, no. 5, pp. 1037-1050, May 2011.
    • (2011) IEEE Trans. Pattern Anal.Mach. Intell , vol.33 , Issue.5 , pp. 1037-1050
    • Bian, W.1    Tao, D.C.2
  • 38
    • 65049088007 scopus 로고    scopus 로고
    • Orthogonal bases approach for the decomposition of mixed pixels in hyperspectral imagery
    • Apr
    • X. T. Tao, B. Wang, and L.M. Zhang, "Orthogonal bases approach for the decomposition of mixed pixels in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 219-223, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.2 , pp. 219-223
    • Tao, X.T.1    Wang, B.2    Zhang, L.M.3
  • 39
    • 85016672386 scopus 로고    scopus 로고
    • Sparse transfer learning for interactive video search reranking
    • Jul
    • X. M. Tian, D. C. Tao, and Y. Rui, "Sparse transfer learning for interactive video search reranking," ACM Trans. Multimedia Comput. Commun. Appl., vol. 8, no. 3, pp. 1-19, Jul. 2012.
    • (2012) ACM Trans. Multimedia Comput. Commun. Appl , vol.8 , Issue.3 , pp. 1-19
    • Tian, X.M.1    Tao, D.C.2    Rui, Y.3
  • 40
    • 84960376740 scopus 로고    scopus 로고
    • Pairwise constraint-guided sparse learning for feature selection
    • Jan
    • M. X. Liu and D. Q. Zhang, "Pairwise constraint-guided sparse learning for feature selection," IEEE Trans. Cybern., vol. 46, no. 1, pp. 298-310, Jan. 2016.
    • (2016) IEEE Trans. Cybern , vol.46 , Issue.1 , pp. 298-310
    • Liu, M.X.1    Zhang, D.Q.2
  • 41
    • 80051544749 scopus 로고    scopus 로고
    • Non-negative patch alignment framework
    • Aug
    • N. Y. Guan, D. C. Tao, Z. G. Luo, and B. Yuan, "Non-negative patch alignment framework," IEEE Trans. Neural Netw., vol. 22, no. 8, pp. 1218-1230, Aug. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.8 , pp. 1218-1230
    • Guan, N.Y.1    Tao, D.C.2    Luo, Z.G.3    Yuan, B.4
  • 42
    • 85027931296 scopus 로고    scopus 로고
    • Dimensionality reduction for hyperspectral data based on class-aware tensor neighborhood graph and patch alignment
    • Aug
    • Y. Gao, X. S. Wang, Y. H. Cheng, and Z. J. Wang, "Dimensionality reduction for hyperspectral data based on class-aware tensor neighborhood graph and patch alignment," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8, pp. 1582-1593, Aug. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.8 , pp. 1582-1593
    • Gao, Y.1    Wang, X.S.2    Cheng, Y.H.3    Wang, Z.J.4
  • 44
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Feb
    • S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 45
    • 83655184715 scopus 로고    scopus 로고
    • Discover latent discriminant information for dimensionality reduction: Non-negative sparseness preserving
    • Apr
    • W. K. Wong, "Discover latent discriminant information for dimensionality reduction: non-negative sparseness preserving," Pattern Recognit., vol. 45, no. 4, pp. 1511-1523, Apr. 2012.
    • (2012) Pattern Recognit , vol.45 , Issue.4 , pp. 1511-1523
    • Wong, W.K.1
  • 46
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 47
    • 84928473457 scopus 로고    scopus 로고
    • Signal recovery from random measurements via extended orthogonal matching pursuit
    • May
    • S. K. Sahoo and A. Makur, "Signal recovery from random measurements via extended orthogonal matching pursuit," IEEE Trans. Signal Process., vol. 63, no. 10, pp. 2572-2581, May. 2015.
    • (2015) IEEE Trans. Signal Process , vol.63 , Issue.10 , pp. 2572-2581
    • Sahoo, S.K.1    Makur, A.2
  • 48
    • 84884945640 scopus 로고    scopus 로고
    • Two-stage sparse representation for robust recognition on large-scale database
    • Jan
    • R. He, W. S. Zheng, B. G. Hu, and X. W. Kong, "Two-stage sparse representation for robust recognition on large-scale database," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 35-46, Jan. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.1 , pp. 35-46
    • He, R.1    Zheng, W.S.2    Hu, B.G.3    Kong, X.W.4
  • 49
    • 79957511061 scopus 로고    scopus 로고
    • Statistical inference in PCA for hyperspectral images
    • Jun
    • P. Bajorski, "Statistical inference in PCA for hyperspectral images," IEEE J. Sel. Topics Signal Process., vol. 5, no 3, pp. 438-445, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 438-445
    • Bajorski, P.1
  • 50
    • 84874669419 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based onSVMoptimized by clonal selection
    • Mar
    • Q. J. Liu, L. H. Jing, M. F. Wang, and Q. Z. Lin, "Hyperspectral remote sensing image classification based onSVMoptimized by clonal selection," Spectroscopy Spectral Anal., vol. 33, no. 3, pp. 746-751, Mar. 2013.
    • (2013) Spectroscopy Spectral Anal , vol.33 , Issue.3 , pp. 746-751
    • Liu, Q.J.1    Jing, L.H.2    Wang, M.F.3    Lin, Q.Z.4
  • 51
    • 84940705051 scopus 로고    scopus 로고
    • GPU parallel implementation of support vector machines for hyperspectral image classification
    • Oct
    • K. Tan, J. P. Zhang, Q. Du, and X. S. Wang, "GPU parallel implementation of support vector machines for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4647-4656, Oct. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.8 , Issue.10 , pp. 4647-4656
    • Tan, K.1    Zhang, J.P.2    Du, Q.3    Wang, X.S.4
  • 52
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Oct
    • L. F. Zhang, Q. Zhang, L. P. Zhang, D. C. Tao, X. Huang, and B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, Oct. 2015.
    • (2015) Pattern Recognit , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.F.1    Zhang, Q.2    Zhang, L.P.3    Tao, D.C.4    Huang, X.5    Du, B.6
  • 53
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun
    • L. P. Zhang, L. F. Zhang, and B. Du, "Deep learning for remote sensing data: a technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.P.1    Zhang, L.F.2    Du, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.