메뉴 건너뛰기




Volumn 10, Issue 5, 2017, Pages 2046-2054

Sparse Spatio-Spectral LapSVM with Semisupervised Kernel Propagation for Hyperspectral Image Classification

Author keywords

Hyperspectral image classification (HIC); semisupervised kernel propagation (KP); sparse pruning

Indexed keywords

CLASSIFICATION (OF INFORMATION); HYBRID INTEGRATED CIRCUITS; SPECTROSCOPY;

EID: 85016127121     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2647640     Document Type: Article
Times cited : (10)

References (38)
  • 1
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensingimages with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensingimages with support vector machines, " IEEE Trans. Geosci. RemoteSens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. RemoteSens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 2
    • 84905820825 scopus 로고    scopus 로고
    • Classification of hyperspectraldata using an AdaBoostSVM technique applied on band clusters
    • Jun.
    • P. Ramzi, F. Samadzadegan., P. Reinartz, "Classification of hyperspectraldata using an AdaBoostSVM technique applied on band clusters, "IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2066-2079, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 2066-2079
    • Ramzi, P.1    Samadzadegan, F.2    Reinartz, P.3
  • 3
    • 77953710563 scopus 로고    scopus 로고
    • Learning conditional random fields for classificationof hyperspectral images
    • Jul.
    • P. Zhong and R. S. Wang, "Learning conditional random fields for classificationof hyperspectral images, " IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2015.
    • (2015) IEEE Trans. Image Process , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.S.2
  • 4
    • 85027937532 scopus 로고    scopus 로고
    • Active learning withGaussian process classifier for hyperspectral image classification
    • Apr.
    • S. J. Sun, P. Zhong, H. T. Xiao., R. S. Wang, "Active learning withGaussian process classifier for hyperspectral image classification, " IEEETrans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1745-1760, Apr. 2015.
    • (2015) IEEETrans. Geosci. Remote Sens , vol.53 , Issue.4 , pp. 1745-1760
    • Sun, S.J.1    Zhong, P.2    Xiao, H.T.3    Wang, R.S.4
  • 5
    • 84869489944 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral imageclassification using soft sparse multinomial logistic regression
    • J. Li, J. M. B. Dias., A. Plaza. Semi-supervised hyperspectral imageclassification using soft sparse multinomial logistic regression. IEEEGeosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318-322, 2013.
    • (2013) IEEEGeosci. Remote Sens. Lett , vol.10 , Issue.2 , pp. 318-322
    • Li, J.1    Dias, J.M.B.2    Plaza, A.3
  • 6
    • 84901839033 scopus 로고    scopus 로고
    • Semisupervised classification forhyperspectral imagery with transductive multiple-kernel learning
    • Nov.
    • Z. Sun, C. Wang, D. L. Li., J. Li, "Semisupervised classification forhyperspectral imagery with transductive multiple-kernel learning, " IEEEGeosci. Remote Sens. Lett., vol. 11, no. 11, pp. 1991-1995, Nov. 2014.
    • (2014) IEEEGeosci. Remote Sens. Lett , vol.11 , Issue.11 , pp. 1991-1995
    • Sun, Z.1    Wang D L Li, C.2    Li, J.3
  • 7
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graphbasedhyperspectral image classification
    • Oct.
    • C. V. Gustavo, V. B. M. Tatyana., D. Y. Zhou, "Semi-supervised graphbasedhyperspectral image classification, " IEEE Trans. Geosci. RemoteSens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. RemoteSens , vol.45 , Issue.10 , pp. 3044-3054
    • Gustavo, C.V.1    Tatyana, V.B.M.2    Zhou, D.Y.3
  • 9
    • 84898596788 scopus 로고    scopus 로고
    • Hyperspectral imageclassification based on relaxed clustering assumption and spatialLaplace regularizer
    • May
    • S. Y. Yang, Y. Qiao, L. Yang, P. Jin., L. Jiao, "Hyperspectral imageclassification based on relaxed clustering assumption and spatialLaplace regularizer, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 901-9055, May 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.5 , pp. 901-9055
    • Yang, S.Y.1    Qiao, Y.2    Yang, L.3    Jin, P.4    Jiao, L.5
  • 10
    • 85027956117 scopus 로고    scopus 로고
    • Extreme learning machine withcomposite kernels for hyperspectral image classification
    • Jun.
    • Y. C. Zhou, J. T. Peng., C. L. P. Chen, "Extreme learning machine withcomposite kernels for hyperspectral image classification, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2351-2360, Jun. 2015.
    • (2015) IEEE J. Select. Topics Appl. Earth Observ. Remote Sens , vol.8 , Issue.6 , pp. 2351-2360
    • Zhou, Y.C.1    Peng, J.T.2    Chen, C.L.P.3
  • 11
    • 85027928171 scopus 로고    scopus 로고
    • Dynamic ensembleselection approach for hyperspectral image classification withjoint spectral and spatial information
    • Jun.
    • B. B. Damodaran, R. R. Nidamanuri., Y. Tarabalka, "Dynamic ensembleselection approach for hyperspectral image classification withjoint spectral and spatial information, " IEEE J. Sel. Topics Appl. EarthObserv. Remote Sens., vol. 8, no. 6, pp. 2405-2417, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. EarthObserv. Remote Sens , vol.8 , Issue.6 , pp. 2405-2417
    • Damodaran, B.B.1    Nidamanuri, R.R.2    Tarabalka, Y.3
  • 12
    • 84883080198 scopus 로고    scopus 로고
    • Semi-supervised hyperspectralimage classification using spatio-spectral Laplacian support vectormachine
    • Mar.
    • L. X. Yang, S. Y. Yang, P. L. Jin., R. Zhang, "Semi-supervised hyperspectralimage classification using spatio-spectral Laplacian support vectormachine, "IEEE Geosci. Remote Sens. Lett., vol. 11, no. 3, pp. 651-655, Mar. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , Issue.3 , pp. 651-655
    • Yang, L.X.1    Yang, S.Y.2    Jin, P.L.3    Zhang, R.4
  • 13
    • 84907507036 scopus 로고    scopus 로고
    • Semi-supervisedclassification for hyperspectral imagery based on spatial-spectral labelpropagation
    • L. G. Wang, S. Y. Hao, Q. M. Wang., Y. Wang, "Semi-supervisedclassification for hyperspectral imagery based on spatial-spectral labelpropagation, " ISPRS J. Photogramm. Remote Sens., vol. 97, pp. 123-137, 2014.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.97 , pp. 123-137
    • Wang, L.G.1    Hao, S.Y.2    Wang, Q.M.3    Wang, Y.4
  • 14
    • 84934983945 scopus 로고    scopus 로고
    • Semisupervised classification forhyperspectral image based on spatial-spectral clustering
    • L. G. Wang, Y. S. Yang., D. F. Liu, "Semisupervised classification forhyperspectral image based on spatial-spectral clustering, " J. Appl. RemoteSens., vol. 9, no. 1, 2015, Art. no. 096037.
    • (2015) J. Appl. RemoteSens , vol.9 , Issue.1
    • Wang, L.G.1    Yang, Y.S.2    Liu, D.F.3
  • 15
    • 84959237165 scopus 로고    scopus 로고
    • Graph-based semi-supervisedlearning for spectral-spatial hyperspectral image classification
    • Nov.
    • L. Ma, A. D. Ma, C. Ju., X. M. Li, "Graph-based semi-supervisedlearning for spectral-spatial hyperspectral image classification, " PatternRecog. Lett., vol. 83, no. 2, pp. 133-142, Nov. 2016.
    • (2016) PatternRecog. Lett , vol.83 , Issue.2 , pp. 133-142
    • Ma, L.1    Ma C Ju, A.D.2    Li, X.M.3
  • 16
    • 3843096026 scopus 로고    scopus 로고
    • Robustsupport vector method for hyperspectral data classification and knowledgediscovery
    • Jul.
    • G. Camps-Valls, L. Gomez-Chova., J. Calpe-Maravilla, "Robustsupport vector method for hyperspectral data classification and knowledgediscovery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1530-1542, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.7 , pp. 1530-1542
    • Camps-Valls, G.1    Gomez-Chova, L.2    Calpe-Maravilla, J.3
  • 17
    • 84862959226 scopus 로고    scopus 로고
    • An automatic method for selecting the parameter of thenormalized kernel function to support vector machines
    • C. H. Li et al., "An automatic method for selecting the parameter of thenormalized kernel function to support vector machines, " J. Inf. Sci. Eng., vol. 28, pp. 1-15, 2012.
    • (2012) J. Inf. Sci. Eng , vol.28 , pp. 1-15
    • Li, C.H.1
  • 18
    • 84962526417 scopus 로고    scopus 로고
    • A nonlinear feature selection methodbased on kernel separability measure for hyperspectral image classification
    • Milan, Italy
    • P. J. Hsieh, C. H. Li., B. C. Kuo, "A nonlinear feature selection methodbased on kernel separability measure for hyperspectral image classification, "in Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp., Milan, Italy, 2015, pp. 461-464.
    • (2015) Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp , pp. 461-464
    • Hsieh C H Li, P.J.1    Kuo, B.C.2
  • 19
    • 85027950997 scopus 로고    scopus 로고
    • Support vector machinewith parameter optimization by a novel hybrid method and its applicationto fault diagnosis
    • X. Y. Zhang, D. Y. Qiu., F. A. Chen, "Support vector machinewith parameter optimization by a novel hybrid method and its applicationto fault diagnosis, " Neurocomputing, vol. 149, pp. 641-651, 2015.
    • (2015) Neurocomputing , vol.149 , pp. 641-651
    • Zhang, X.Y.1    Qiu, D.Y.2    Chen, F.A.3
  • 20
    • 84964612333 scopus 로고    scopus 로고
    • Kernel parameter selection by gap maximizationbetween intra and inter-class samples
    • Hong Kong
    • J. Yang, H. Lee., N. Kwak, "Kernel parameter selection by gap maximizationbetween intra and inter-class samples, " in Proc. 2016 Int. Conf. Big Data and Smart Comput., Hong Kong, 2016, pp. 349-352.
    • (2016) Proc. 2016 Int. Conf. Big Data and Smart Comput. , pp. 349-352
    • Yang, J.1    Lee, H.2    Kwak, N.3
  • 22
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machinelearning
    • T. Hofmann, B. Schölkopf., A. J. Smola, "Kernel methods in machinelearning, " Ann. Statist., vol. 36, no. 3, pp. 1171-1220, 2008.
    • (2008) Ann. Statist , vol.36 , Issue.3 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 25
    • 84923357983 scopus 로고    scopus 로고
    • A framework for optimal kernel-based manifoldembedding of medical image data
    • V. A. Zimmer et al., "A framework for optimal kernel-based manifoldembedding of medical image data, " Comput. Med. Imag. Graph., vol. 41, pp. 93-107, 2015.
    • (2015) Comput. Med. Imag. Graph , vol.41 , pp. 93-107
    • Zimmer, V.A.1
  • 26
    • 33646417903 scopus 로고    scopus 로고
    • Model-based transductivelearning of the kernel matrix
    • Mar.
    • Z. H. Zhang, J. T. Kwok., D. Y. Yeung, "Model-based transductivelearning of the kernel matrix, " Mach. Learn., vol. 63, no. 1, pp. 69-101, Mar. 2006.
    • (2006) Mach. Learn , vol.63 , Issue.1 , pp. 69-101
    • Zhang, Z.H.1    Kwok, J.T.2    Yeung, D.Y.3
  • 27
    • 78149357397 scopus 로고    scopus 로고
    • Semisupervised kernel matrixlearning by kernel propagation
    • Nov.
    • E. Hu, S. Chen, D. Zhang., X. Yin, "Semisupervised kernel matrixlearning by kernel propagation, " IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1831-1841, Nov. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.11 , pp. 1831-1841
    • Hu, E.1    Chen, S.2    Zhang, D.3    Yin, X.4
  • 30
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples
    • Nov.
    • M. Belkin, P. Niyogi., V. Sindhwani, "Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples, "J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 31
    • 0001300995 scopus 로고
    • Regularization of incorrectly posed problems
    • A. N. Tikhonov, "Regularization of incorrectly posed problems. Numer. Funct. Anal. Optim., vol. 21 no. 4, pp. 1624-1627, 1963.
    • (1963) Numer. Funct. Anal. Optim , vol.21 , Issue.4 , pp. 1624-1627
    • Tikhonov, A.N.1
  • 32
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained inthe primal
    • Mar.
    • S. Melacci and M. Belkin, "Laplacian support vector machines trained inthe primal, " J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, Mar. 2011.
    • (2011) J. Mach. Learn. Res , vol.12 , Issue.3 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 33
    • 0003621102 scopus 로고
    • An introduction to the conjugate gradient methodwithout the agonizing pain
    • CarnegieMellon University, Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125
    • J. R. Shewchuk, "An introduction to the conjugate gradient methodwithout the agonizing pain, " School of Computer Science, CarnegieMellon University, Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125, 1994.
    • (1994) School of Computer Science
    • Shewchuk, J.R.1
  • 34
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneoussparse approximation. Part I: Greedy pursuit
    • Mar.
    • J. A. Tropp, A. C. Gilbert., M. J. Strauss, "Algorithms for simultaneoussparse approximation. Part I: Greedy pursuit, " Signal Process., vol. 86, no. 3, pp. 572-588, Mar. 2006.
    • (2006) Signal Process , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 36
    • 0033295981 scopus 로고    scopus 로고
    • CSDP, a C library for semidefinite programming
    • B. Borchers, "CSDP, a C library for semidefinite programming, " Optim. Methods Softw., vol. 11, no. 1-4, pp. 613-623, 1999.
    • (1999) Optim. Methods Softw , vol.11 , Issue.1-4 , pp. 613-623
    • Borchers, B.1
  • 37
    • 85017881897 scopus 로고    scopus 로고
    • [Online]. Available
    • 2011. [Online]. Available: Http://www.ehu.eus/ccwintco/index.phptitle=Hyperspectral-Remote-Sensing-Scenes
    • (2011)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.