-
1
-
-
4344614511
-
Classification of hyperspectral remote sensingimages with support vector machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensingimages with support vector machines, " IEEE Trans. Geosci. RemoteSens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. RemoteSens
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
2
-
-
84905820825
-
Classification of hyperspectraldata using an AdaBoostSVM technique applied on band clusters
-
Jun.
-
P. Ramzi, F. Samadzadegan., P. Reinartz, "Classification of hyperspectraldata using an AdaBoostSVM technique applied on band clusters, "IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2066-2079, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.7
, Issue.6
, pp. 2066-2079
-
-
Ramzi, P.1
Samadzadegan, F.2
Reinartz, P.3
-
3
-
-
77953710563
-
Learning conditional random fields for classificationof hyperspectral images
-
Jul.
-
P. Zhong and R. S. Wang, "Learning conditional random fields for classificationof hyperspectral images, " IEEE Trans. Image Process., vol. 19, no. 7, pp. 1890-1907, Jul. 2015.
-
(2015)
IEEE Trans. Image Process
, vol.19
, Issue.7
, pp. 1890-1907
-
-
Zhong, P.1
Wang, R.S.2
-
4
-
-
85027937532
-
Active learning withGaussian process classifier for hyperspectral image classification
-
Apr.
-
S. J. Sun, P. Zhong, H. T. Xiao., R. S. Wang, "Active learning withGaussian process classifier for hyperspectral image classification, " IEEETrans. Geosci. Remote Sens., vol. 53, no. 4, pp. 1745-1760, Apr. 2015.
-
(2015)
IEEETrans. Geosci. Remote Sens
, vol.53
, Issue.4
, pp. 1745-1760
-
-
Sun, S.J.1
Zhong, P.2
Xiao, H.T.3
Wang, R.S.4
-
5
-
-
84869489944
-
Semi-supervised hyperspectral imageclassification using soft sparse multinomial logistic regression
-
J. Li, J. M. B. Dias., A. Plaza. Semi-supervised hyperspectral imageclassification using soft sparse multinomial logistic regression. IEEEGeosci. Remote Sens. Lett., vol. 10, no. 2, pp. 318-322, 2013.
-
(2013)
IEEEGeosci. Remote Sens. Lett
, vol.10
, Issue.2
, pp. 318-322
-
-
Li, J.1
Dias, J.M.B.2
Plaza, A.3
-
6
-
-
84901839033
-
Semisupervised classification forhyperspectral imagery with transductive multiple-kernel learning
-
Nov.
-
Z. Sun, C. Wang, D. L. Li., J. Li, "Semisupervised classification forhyperspectral imagery with transductive multiple-kernel learning, " IEEEGeosci. Remote Sens. Lett., vol. 11, no. 11, pp. 1991-1995, Nov. 2014.
-
(2014)
IEEEGeosci. Remote Sens. Lett
, vol.11
, Issue.11
, pp. 1991-1995
-
-
Sun, Z.1
Wang D L Li, C.2
Li, J.3
-
7
-
-
39049145967
-
Semi-supervised graphbasedhyperspectral image classification
-
Oct.
-
C. V. Gustavo, V. B. M. Tatyana., D. Y. Zhou, "Semi-supervised graphbasedhyperspectral image classification, " IEEE Trans. Geosci. RemoteSens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
-
(2007)
IEEE Trans. Geosci. RemoteSens
, vol.45
, Issue.10
, pp. 3044-3054
-
-
Gustavo, C.V.1
Tatyana, V.B.M.2
Zhou, D.Y.3
-
8
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
Jan.
-
G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances., J. Calpe-Maravilla, "Composite kernels for hyperspectral image classification, "IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 1-5, Jan. 2006.
-
(2006)
IEEE Geosci. Remote Sens. Lett
, vol.3
, Issue.1
, pp. 1-5
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Munoz-Mari, J.3
Vila-Frances, J.4
Calpe-Maravilla, J.5
-
9
-
-
84898596788
-
Hyperspectral imageclassification based on relaxed clustering assumption and spatialLaplace regularizer
-
May
-
S. Y. Yang, Y. Qiao, L. Yang, P. Jin., L. Jiao, "Hyperspectral imageclassification based on relaxed clustering assumption and spatialLaplace regularizer, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 901-9055, May 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett
, vol.11
, Issue.5
, pp. 901-9055
-
-
Yang, S.Y.1
Qiao, Y.2
Yang, L.3
Jin, P.4
Jiao, L.5
-
10
-
-
85027956117
-
Extreme learning machine withcomposite kernels for hyperspectral image classification
-
Jun.
-
Y. C. Zhou, J. T. Peng., C. L. P. Chen, "Extreme learning machine withcomposite kernels for hyperspectral image classification, " IEEE J. Select. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2351-2360, Jun. 2015.
-
(2015)
IEEE J. Select. Topics Appl. Earth Observ. Remote Sens
, vol.8
, Issue.6
, pp. 2351-2360
-
-
Zhou, Y.C.1
Peng, J.T.2
Chen, C.L.P.3
-
11
-
-
85027928171
-
Dynamic ensembleselection approach for hyperspectral image classification withjoint spectral and spatial information
-
Jun.
-
B. B. Damodaran, R. R. Nidamanuri., Y. Tarabalka, "Dynamic ensembleselection approach for hyperspectral image classification withjoint spectral and spatial information, " IEEE J. Sel. Topics Appl. EarthObserv. Remote Sens., vol. 8, no. 6, pp. 2405-2417, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. EarthObserv. Remote Sens
, vol.8
, Issue.6
, pp. 2405-2417
-
-
Damodaran, B.B.1
Nidamanuri, R.R.2
Tarabalka, Y.3
-
12
-
-
84883080198
-
Semi-supervised hyperspectralimage classification using spatio-spectral Laplacian support vectormachine
-
Mar.
-
L. X. Yang, S. Y. Yang, P. L. Jin., R. Zhang, "Semi-supervised hyperspectralimage classification using spatio-spectral Laplacian support vectormachine, "IEEE Geosci. Remote Sens. Lett., vol. 11, no. 3, pp. 651-655, Mar. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett
, vol.11
, Issue.3
, pp. 651-655
-
-
Yang, L.X.1
Yang, S.Y.2
Jin, P.L.3
Zhang, R.4
-
13
-
-
84907507036
-
Semi-supervisedclassification for hyperspectral imagery based on spatial-spectral labelpropagation
-
L. G. Wang, S. Y. Hao, Q. M. Wang., Y. Wang, "Semi-supervisedclassification for hyperspectral imagery based on spatial-spectral labelpropagation, " ISPRS J. Photogramm. Remote Sens., vol. 97, pp. 123-137, 2014.
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.97
, pp. 123-137
-
-
Wang, L.G.1
Hao, S.Y.2
Wang, Q.M.3
Wang, Y.4
-
14
-
-
84934983945
-
Semisupervised classification forhyperspectral image based on spatial-spectral clustering
-
L. G. Wang, Y. S. Yang., D. F. Liu, "Semisupervised classification forhyperspectral image based on spatial-spectral clustering, " J. Appl. RemoteSens., vol. 9, no. 1, 2015, Art. no. 096037.
-
(2015)
J. Appl. RemoteSens
, vol.9
, Issue.1
-
-
Wang, L.G.1
Yang, Y.S.2
Liu, D.F.3
-
15
-
-
84959237165
-
Graph-based semi-supervisedlearning for spectral-spatial hyperspectral image classification
-
Nov.
-
L. Ma, A. D. Ma, C. Ju., X. M. Li, "Graph-based semi-supervisedlearning for spectral-spatial hyperspectral image classification, " PatternRecog. Lett., vol. 83, no. 2, pp. 133-142, Nov. 2016.
-
(2016)
PatternRecog. Lett
, vol.83
, Issue.2
, pp. 133-142
-
-
Ma, L.1
Ma C Ju, A.D.2
Li, X.M.3
-
16
-
-
3843096026
-
Robustsupport vector method for hyperspectral data classification and knowledgediscovery
-
Jul.
-
G. Camps-Valls, L. Gomez-Chova., J. Calpe-Maravilla, "Robustsupport vector method for hyperspectral data classification and knowledgediscovery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1530-1542, Jul. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.7
, pp. 1530-1542
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Calpe-Maravilla, J.3
-
17
-
-
84862959226
-
An automatic method for selecting the parameter of thenormalized kernel function to support vector machines
-
C. H. Li et al., "An automatic method for selecting the parameter of thenormalized kernel function to support vector machines, " J. Inf. Sci. Eng., vol. 28, pp. 1-15, 2012.
-
(2012)
J. Inf. Sci. Eng
, vol.28
, pp. 1-15
-
-
Li, C.H.1
-
18
-
-
84962526417
-
A nonlinear feature selection methodbased on kernel separability measure for hyperspectral image classification
-
Milan, Italy
-
P. J. Hsieh, C. H. Li., B. C. Kuo, "A nonlinear feature selection methodbased on kernel separability measure for hyperspectral image classification, "in Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp., Milan, Italy, 2015, pp. 461-464.
-
(2015)
Proc. 2015 IEEE Int. Geosci. Remote Sens. Symp
, pp. 461-464
-
-
Hsieh C H Li, P.J.1
Kuo, B.C.2
-
19
-
-
85027950997
-
Support vector machinewith parameter optimization by a novel hybrid method and its applicationto fault diagnosis
-
X. Y. Zhang, D. Y. Qiu., F. A. Chen, "Support vector machinewith parameter optimization by a novel hybrid method and its applicationto fault diagnosis, " Neurocomputing, vol. 149, pp. 641-651, 2015.
-
(2015)
Neurocomputing
, vol.149
, pp. 641-651
-
-
Zhang, X.Y.1
Qiu, D.Y.2
Chen, F.A.3
-
20
-
-
84964612333
-
Kernel parameter selection by gap maximizationbetween intra and inter-class samples
-
Hong Kong
-
J. Yang, H. Lee., N. Kwak, "Kernel parameter selection by gap maximizationbetween intra and inter-class samples, " in Proc. 2016 Int. Conf. Big Data and Smart Comput., Hong Kong, 2016, pp. 349-352.
-
(2016)
Proc. 2016 Int. Conf. Big Data and Smart Comput.
, pp. 349-352
-
-
Yang, J.1
Lee, H.2
Kwak, N.3
-
21
-
-
0742290039
-
Wavelet support vector machine
-
Feb.
-
L. Zhang, W. D. Zhou., L. C. Jiao, "Wavelet support vector machine, "IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 34-39, Feb. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern
, vol.34
, Issue.1
, pp. 34-39
-
-
Zhang, L.1
Zhou, W.D.2
Jiao, L.C.3
-
22
-
-
51049096780
-
Kernel methods in machinelearning
-
T. Hofmann, B. Schölkopf., A. J. Smola, "Kernel methods in machinelearning, " Ann. Statist., vol. 36, no. 3, pp. 1171-1220, 2008.
-
(2008)
Ann. Statist
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
23
-
-
33750537410
-
Conditionally positivedefinite kernels for SVM based image recognition
-
S. Boughorbel, J. P. Tarel., N. Boujemaa, "Conditionally positivedefinite kernels for SVM based image recognition, " In Proc. IEEE Int. Conf. Multimedia Expo., 2005, pp. 113-116.
-
(2005)
Proc. IEEE Int. Conf. Multimedia Expo
, pp. 113-116
-
-
Boughorbel, S.1
Tarel, J.P.2
Boujemaa, N.3
-
24
-
-
33749268008
-
Generalized histogramintersection kernel for image recognition
-
S. Boughorbel, J. P. Tarel., N. Boujemaa, "Generalized histogramintersection kernel for image recognition, " In Proc. IEEE Int. Conf. ImageProcess., 2005, pp. 161-164.
-
(2005)
Proc. IEEE Int. Conf. ImageProcess
, pp. 161-164
-
-
Boughorbel, S.1
Tarel, J.P.2
Boujemaa, N.3
-
25
-
-
84923357983
-
A framework for optimal kernel-based manifoldembedding of medical image data
-
V. A. Zimmer et al., "A framework for optimal kernel-based manifoldembedding of medical image data, " Comput. Med. Imag. Graph., vol. 41, pp. 93-107, 2015.
-
(2015)
Comput. Med. Imag. Graph
, vol.41
, pp. 93-107
-
-
Zimmer, V.A.1
-
26
-
-
33646417903
-
Model-based transductivelearning of the kernel matrix
-
Mar.
-
Z. H. Zhang, J. T. Kwok., D. Y. Yeung, "Model-based transductivelearning of the kernel matrix, " Mach. Learn., vol. 63, no. 1, pp. 69-101, Mar. 2006.
-
(2006)
Mach. Learn
, vol.63
, Issue.1
, pp. 69-101
-
-
Zhang, Z.H.1
Kwok, J.T.2
Yeung, D.Y.3
-
27
-
-
78149357397
-
Semisupervised kernel matrixlearning by kernel propagation
-
Nov.
-
E. Hu, S. Chen, D. Zhang., X. Yin, "Semisupervised kernel matrixlearning by kernel propagation, " IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1831-1841, Nov. 2010.
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.11
, pp. 1831-1841
-
-
Hu, E.1
Chen, S.2
Zhang, D.3
Yin, X.4
-
29
-
-
0003408420
-
-
Cambridge, MA, USA: MIT Press
-
B. Scholkopf and A. Smola, Learning with Kernels-Support VectorMachines, Regularization, Optimization and Beyond. Cambridge, MA, USA: MIT Press, 2002.
-
(2002)
Learning with Kernels-Support VectorMachines, Regularization, Optimization and beyond
-
-
Scholkopf, B.1
Smola, A.2
-
30
-
-
33750729556
-
Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples
-
Nov.
-
M. Belkin, P. Niyogi., V. Sindhwani, "Manifold regularization: Ageometric framework for learning from labeled and unlabeled examples, "J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
31
-
-
0001300995
-
Regularization of incorrectly posed problems
-
A. N. Tikhonov, "Regularization of incorrectly posed problems. Numer. Funct. Anal. Optim., vol. 21 no. 4, pp. 1624-1627, 1963.
-
(1963)
Numer. Funct. Anal. Optim
, vol.21
, Issue.4
, pp. 1624-1627
-
-
Tikhonov, A.N.1
-
32
-
-
79955855934
-
Laplacian support vector machines trained inthe primal
-
Mar.
-
S. Melacci and M. Belkin, "Laplacian support vector machines trained inthe primal, " J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, Mar. 2011.
-
(2011)
J. Mach. Learn. Res
, vol.12
, Issue.3
, pp. 1149-1184
-
-
Melacci, S.1
Belkin, M.2
-
33
-
-
0003621102
-
An introduction to the conjugate gradient methodwithout the agonizing pain
-
CarnegieMellon University, Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125
-
J. R. Shewchuk, "An introduction to the conjugate gradient methodwithout the agonizing pain, " School of Computer Science, CarnegieMellon University, Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125, 1994.
-
(1994)
School of Computer Science
-
-
Shewchuk, J.R.1
-
34
-
-
30844445842
-
Algorithms for simultaneoussparse approximation. Part I: Greedy pursuit
-
Mar.
-
J. A. Tropp, A. C. Gilbert., M. J. Strauss, "Algorithms for simultaneoussparse approximation. Part I: Greedy pursuit, " Signal Process., vol. 86, no. 3, pp. 572-588, Mar. 2006.
-
(2006)
Signal Process
, vol.86
, Issue.3
, pp. 572-588
-
-
Tropp, J.A.1
Gilbert, A.C.2
Strauss, M.J.3
-
35
-
-
78049364222
-
A training algorithm for sparseLS-SVM using compressive sampling
-
Dallas, TX, USA
-
J. Yang, A. Bouzerdoum., S. Phung, "A training algorithm for sparseLS-SVM using compressive sampling, " in Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 2010, Dallas, TX, USA, pp. 2054-2057.
-
(2010)
Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process
, pp. 2054-2057
-
-
Yang, J.1
Bouzerdoum, A.2
Phung, S.3
-
36
-
-
0033295981
-
CSDP, a C library for semidefinite programming
-
B. Borchers, "CSDP, a C library for semidefinite programming, " Optim. Methods Softw., vol. 11, no. 1-4, pp. 613-623, 1999.
-
(1999)
Optim. Methods Softw
, vol.11
, Issue.1-4
, pp. 613-623
-
-
Borchers, B.1
-
37
-
-
85017881897
-
-
[Online]. Available
-
2011. [Online]. Available: Http://www.ehu.eus/ccwintco/index.phptitle=Hyperspectral-Remote-Sensing-Scenes
-
(2011)
-
-
|