-
1
-
-
84863380407
-
The role of gut microbiota in immune homeostasis and autoimmunity
-
Wu, H.J., Wu, E., The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3 (2012), 4–14.
-
(2012)
Gut Microbes
, vol.3
, pp. 4-14
-
-
Wu, H.J.1
Wu, E.2
-
2
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh, P.J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (2006), 1027–1131.
-
(2006)
Nature
, vol.444
, pp. 1027-1131
-
-
Turnbaugh, P.J.1
-
3
-
-
84968901892
-
Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
-
Zhernakova, A., et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352 (2016), 565–569.
-
(2016)
Science
, vol.352
, pp. 565-569
-
-
Zhernakova, A.1
-
4
-
-
84968918909
-
Population-level analysis of gut microbiome variation
-
Falony, G., et al. Population-level analysis of gut microbiome variation. Science 352 (2016), 560–564.
-
(2016)
Science
, vol.352
, pp. 560-564
-
-
Falony, G.1
-
5
-
-
84978431877
-
The microbiota in adaptive immune homeostasis and disease
-
Honda, K., Littman, D.R., The microbiota in adaptive immune homeostasis and disease. Nature 535 (2016), 75–84.
-
(2016)
Nature
, vol.535
, pp. 75-84
-
-
Honda, K.1
Littman, D.R.2
-
6
-
-
84978115999
-
The microbiome and innate immunity
-
Thaiss, C.A., et al. The microbiome and innate immunity. Nature 535 (2016), 65–74.
-
(2016)
Nature
, vol.535
, pp. 65-74
-
-
Thaiss, C.A.1
-
7
-
-
84983532855
-
Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis
-
Hergott, C.B., et al. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 127 (2016), 2460–2471.
-
(2016)
Blood
, vol.127
, pp. 2460-2471
-
-
Hergott, C.B.1
-
8
-
-
58749112734
-
A core gut microbiome in obese and lean twins
-
Turnbaugh, P.J., et al. A core gut microbiome in obese and lean twins. Nature 457 (2009), 480–484.
-
(2009)
Nature
, vol.457
, pp. 480-484
-
-
Turnbaugh, P.J.1
-
9
-
-
84910096224
-
Human genetics shape the gut microbiome
-
Goodrich, J.K., et al. Human genetics shape the gut microbiome. Cell 159 (2014), 789–799.
-
(2014)
Cell
, vol.159
, pp. 789-799
-
-
Goodrich, J.K.1
-
10
-
-
84969492201
-
Genetic determinants of the gut microbiome in UK twins
-
Goodrich, J.K., et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19 (2016), 731–743.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 731-743
-
-
Goodrich, J.K.1
-
11
-
-
85006105634
-
Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome
-
Xie, H., et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3 (2016), 572–584.e3.
-
(2016)
Cell Syst.
, vol.3
, pp. 572-584.e3
-
-
Xie, H.1
-
12
-
-
84989943149
-
Association of host genome with intestinal microbial composition in a large healthy cohort
-
Turpin, W., et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48 (2016), 1413–1417.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1413-1417
-
-
Turpin, W.1
-
13
-
-
84907686349
-
The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease
-
Integrative HMP (iHMP) Research Network Consortium, The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16 (2014), 276–289.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 276-289
-
-
Integrative HMP (iHMP) Research Network Consortium1
-
14
-
-
35348968286
-
The human microbiome project
-
Turnbaugh, P.J., et al. The human microbiome project. Nature 449 (2007), 804–810.
-
(2007)
Nature
, vol.449
, pp. 804-810
-
-
Turnbaugh, P.J.1
-
15
-
-
84864722033
-
Gut microbiota composition correlates with diet and health in the elderly
-
Claesson, M.J., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488 (2016), 178–184.
-
(2016)
Nature
, vol.488
, pp. 178-184
-
-
Claesson, M.J.1
-
16
-
-
84873875156
-
Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor
-
Smith, M.I., et al. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science 339 (2013), 548–554.
-
(2013)
Science
, vol.339
, pp. 548-554
-
-
Smith, M.I.1
-
17
-
-
84896092821
-
The treatment-naive microbiome in new-onset Crohn's disease
-
Gevers, D., et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15 (2014), 382–392.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 382-392
-
-
Gevers, D.1
-
18
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin, J., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 (2012), 55–60.
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
-
19
-
-
84990998440
-
Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota
-
Wang, J., et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48 (2016), 1396–1406.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1396-1406
-
-
Wang, J.1
-
20
-
-
84866146940
-
Diversity, stability and resilience of the human gut microbiota
-
Lozupone, C.A., et al. Diversity, stability and resilience of the human gut microbiota. Nature 489 (2012), 220–230.
-
(2012)
Nature
, vol.489
, pp. 220-230
-
-
Lozupone, C.A.1
-
21
-
-
84944268275
-
Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel
-
Dey, N., et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163 (2015), 95–107.
-
(2015)
Cell
, vol.163
, pp. 95-107
-
-
Dey, N.1
-
22
-
-
41849127118
-
Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
-
Turnbaugh, P.J., et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3 (2008), 213–223.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 213-223
-
-
Turnbaugh, P.J.1
-
23
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David, L.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (2014), 559–563.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
-
24
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura, V.K., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 2013, 1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
-
25
-
-
84877331372
-
Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis
-
Koeth, R.A., et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19 (2013), 576–585.
-
(2013)
Nat. Med.
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
-
26
-
-
84954286591
-
Proton pump inhibitors affect the gut microbiome
-
Imhann, F., et al. Proton pump inhibitors affect the gut microbiome. Gut 65 (2016), 740–748.
-
(2016)
Gut
, vol.65
, pp. 740-748
-
-
Imhann, F.1
-
27
-
-
84865477413
-
Antibiotics in early life alter the murine colonic microbiome and adiposity
-
Cho, I., et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488 (2012), 621–626.
-
(2012)
Nature
, vol.488
, pp. 621-626
-
-
Cho, I.1
-
28
-
-
84923171580
-
Genetic studies of body mass index yield new insights for obesity biology
-
Locke, A.E., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518 (2015), 197–206.
-
(2015)
Nature
, vol.518
, pp. 197-206
-
-
Locke, A.E.1
-
29
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund, K., et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (2015), 262–266.
-
(2015)
Nature
, vol.528
, pp. 262-266
-
-
Forslund, K.1
-
30
-
-
84964682615
-
Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans
-
Vatanen, T., et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165 (2015), 842–853.
-
(2015)
Cell
, vol.165
, pp. 842-853
-
-
Vatanen, T.1
-
31
-
-
84942870086
-
The gut microbiome contributes to a substantial proportion of the variation in blood lipids
-
Fu, J., et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117 (2015), 817–824.
-
(2015)
Circ. Res.
, vol.117
, pp. 817-824
-
-
Fu, J.1
-
32
-
-
84929844611
-
Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets
-
Zhong, Y., et al. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br. J. Nutr. 113 (2015), 1558–1570.
-
(2015)
Br. J. Nutr.
, vol.113
, pp. 1558-1570
-
-
Zhong, Y.1
-
33
-
-
84978081339
-
Human gut microbes impact host serum metabolome and insulin sensitivity
-
Pedersen, H.K., et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535 (2016), 376–381.
-
(2016)
Nature
, vol.535
, pp. 376-381
-
-
Pedersen, H.K.1
-
34
-
-
84866738529
-
Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
-
Vrieze, A., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143 (2012), 913–916.e7.
-
(2012)
Gastroenterology
, vol.143
, pp. 913-916.e7
-
-
Vrieze, A.1
-
35
-
-
53349173070
-
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
-
Ivanov, I.I., et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4 (2008), 337–349.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 337-349
-
-
Ivanov, I.I.1
-
36
-
-
84885018609
-
Systematic identification of trans eQTLs as putative drivers of known disease associations
-
Westra, H.J., et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45 (2013), 1238–1243.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1238-1243
-
-
Westra, H.J.1
-
37
-
-
0032935617
-
Influences of microbiota on intestinal immune system development
-
Cebra, J.J., Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69 (1999), 1046S–1051S.
-
(1999)
Am. J. Clin. Nutr.
, vol.69
, pp. 1046S-1051S
-
-
Cebra, J.J.1
-
38
-
-
84992702870
-
Linking the microbiota, chronic disease, and the immune system
-
Hand, T.W., et al. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol. Metab. 27 (2016), 831–843.
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 831-843
-
-
Hand, T.W.1
-
39
-
-
85009695239
-
Regulation of immune cell function by short-chain fatty acids
-
Corrêa-Oliveira, R., et al. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol., 5, 2016, e73.
-
(2016)
Clin. Transl. Immunol.
, vol.5
, pp. e73
-
-
Corrêa-Oliveira, R.1
-
40
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav, E., et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145 (2011), 745–757.
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
-
41
-
-
84864886608
-
Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides
-
Frantz, A.L., et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 5 (2012), 501–512.
-
(2012)
Mucosal Immunol.
, vol.5
, pp. 501-512
-
-
Frantz, A.L.1
-
42
-
-
77950250064
-
Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5
-
Vijay-Kumar, M., et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328 (2010), 228–231.
-
(2010)
Science
, vol.328
, pp. 228-231
-
-
Vijay-Kumar, M.1
-
43
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg, G.F., et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336 (2012), 1321–1325.
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
-
44
-
-
84966430254
-
Characterization of the gut microbiome using 16S or shotgun metagenomics
-
Jovel, J., et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol., 7, 2016, 459.
-
(2016)
Front. Microbiol.
, vol.7
, pp. 459
-
-
Jovel, J.1
-
45
-
-
84964994621
-
MetaPhlAn2 for enhanced metagenomic taxonomic profiling
-
Truong, D.T., et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12 (2015), 902–903.
-
(2015)
Nat. Methods
, vol.12
, pp. 902-903
-
-
Truong, D.T.1
-
46
-
-
84862141704
-
Human gut microbiome viewed across age and geography
-
Yatsunenko, T., et al. Human gut microbiome viewed across age and geography. Nature 486 (2012), 222–227.
-
(2012)
Nature
, vol.486
, pp. 222-227
-
-
Yatsunenko, T.1
-
47
-
-
84950978760
-
Genome-wide association studies of the human gut microbiota
-
Davenport, E.R., et al. Genome-wide association studies of the human gut microbiota. PLoS One 10 (2015), 1–22.
-
(2015)
PLoS One
, vol.10
, pp. 1-22
-
-
Davenport, E.R.1
-
48
-
-
78449296237
-
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors
-
Benson, A.K., et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 18933–18938.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 18933-18938
-
-
Benson, A.K.1
-
49
-
-
84862491799
-
Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits
-
McKnite, A.M., et al. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One, 7, 2012, e39191.
-
(2012)
PLoS One
, vol.7
, pp. e39191
-
-
McKnite, A.M.1
-
50
-
-
84942846589
-
Genetic and environmental control of host-gut microbiota interactions
-
Org, E., et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 25 (2015), 1558–1569.
-
(2015)
Genome Res.
, vol.25
, pp. 1558-1569
-
-
Org, E.1
-
51
-
-
84924203445
-
Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome
-
Wang, J., et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat. Commun., 6, 2015, 6440.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6440
-
-
Wang, J.1
-
52
-
-
84908234204
-
Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism
-
Tong, M., et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8 (2014), 1–14.
-
(2014)
ISME J.
, vol.8
, pp. 1-14
-
-
Tong, M.1
-
53
-
-
51849086745
-
Predominant role of host genetics in controlling the composition of gut microbiota
-
Khachatryan, Z.A., et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One, 3, 2008, e3064.
-
(2008)
PLoS One
, vol.3
, pp. e3064
-
-
Khachatryan, Z.A.1
-
54
-
-
84925541323
-
Complex host genetics influence the microbiome in inflammatory bowel disease
-
Knights, D., et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med., 6, 2014, 107.
-
(2014)
Genome Med.
, vol.6
, pp. 107
-
-
Knights, D.1
-
55
-
-
84941647822
-
Host genetic variation impacts microbiome composition across human body sites
-
Blekhman, R., et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol., 16, 2015, 191.
-
(2015)
Genome Biol.
, vol.16
, pp. 191
-
-
Blekhman, R.1
-
56
-
-
84989832355
-
The effect of host genetics on the gut microbiome
-
Bonder, M.J., et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48 (2016), 1407–1412.
-
(2016)
Nat. Genet.
, vol.48
, pp. 1407-1412
-
-
Bonder, M.J.1
-
57
-
-
84930273502
-
Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome
-
Jin, D., et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin. Ther. 37 (2015), 996–1009.e7.
-
(2015)
Clin. Ther.
, vol.37
, pp. 996-1009.e7
-
-
Jin, D.1
-
58
-
-
84989894301
-
A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition
-
Li, D., et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition. Gastroenterology 151 (2016), 724–732.
-
(2016)
Gastroenterology
, vol.151
, pp. 724-732
-
-
Li, D.1
-
59
-
-
84991759922
-
Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease
-
Published online October 8, 2016.
-
Imhann, F., et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut, 2016, 10.1136/gutjnl-2016-312135 Published online October 8, 2016.
-
(2016)
Gut
-
-
Imhann, F.1
-
60
-
-
84896064402
-
Gut microbiota promote hematopoiesis to control bacterial infection
-
Khosravi, A., et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15 (2014), 374–381.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 374-381
-
-
Khosravi, A.1
-
61
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama, N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29 (2008), 958–970.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
-
62
-
-
57849117363
-
RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells
-
Sanos, S.L., et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells. Nat. Immunol. 10 (2009), 83–91.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
-
63
-
-
79955664245
-
Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice
-
Kellermayer, R., et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J. 25 (2011), 1449–1460.
-
(2011)
FASEB J.
, vol.25
, pp. 1449-1460
-
-
Kellermayer, R.1
-
64
-
-
85052274979
-
Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota
-
Lynch, S.V., et al. Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes 4 (2013), 41–47.
-
(2013)
Gut Microbes
, vol.4
, pp. 41-47
-
-
Lynch, S.V.1
-
65
-
-
80055017767
-
Caspase deficiency alters the murine gut microbiome
-
Brinkman, B.M., et al. Caspase deficiency alters the murine gut microbiome. Cell Death Dis., 2, 2011, e220.
-
(2011)
Cell Death Dis.
, vol.2
, pp. e220
-
-
Brinkman, B.M.1
-
66
-
-
84949818660
-
Dysbiotic gut microbiome: a key element of Crohn's disease
-
Øyri, S.F., et al. Dysbiotic gut microbiome: a key element of Crohn's disease. Comp. Immunol. Microbiol. Infect. Dis. 43 (2015), 36–49.
-
(2015)
Comp. Immunol. Microbiol. Infect. Dis.
, vol.43
, pp. 36-49
-
-
Øyri, S.F.1
-
67
-
-
84981250455
-
The human microbiome in rheumatic autoimmune diseases: a comprehensive review
-
Coit, P., Sawalha, A.H., The human microbiome in rheumatic autoimmune diseases: a comprehensive review. Clin. Immunol. 170 (2016), 70–79.
-
(2016)
Clin. Immunol.
, vol.170
, pp. 70-79
-
-
Coit, P.1
Sawalha, A.H.2
-
68
-
-
84976612100
-
Alterations of the human gut microbiome in multiple sclerosis
-
Jangi, S., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun., 7, 2016, 12015.
-
(2016)
Nat. Commun.
, vol.7
, pp. 12015
-
-
Jangi, S.1
-
69
-
-
70349468054
-
Nod2 is required for the regulation of commensal microbiota in the intestine
-
Petnicki-Ocwieja, T., et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 15813–15818.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 15813-15818
-
-
Petnicki-Ocwieja, T.1
-
70
-
-
80052580369
-
Nod2 is essential for temporal development of intestinal microbial communities
-
Rehman, A., et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 60 (2011), 1354–1362.
-
(2011)
Gut
, vol.60
, pp. 1354-1362
-
-
Rehman, A.1
-
71
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi, K.S., Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307 (2005), 731–734.
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
-
72
-
-
84902588358
-
NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen
-
Nordlander, S., et al. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 7 (2014), 775–785.
-
(2014)
Mucosal Immunol.
, vol.7
, pp. 775-785
-
-
Nordlander, S.1
-
73
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia, J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482 (2012), 179–185.
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
-
74
-
-
84966526506
-
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
-
Lamas, B., et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22 (2016), 598–605.
-
(2016)
Nat. Med.
, vol.22
, pp. 598-605
-
-
Lamas, B.1
-
75
-
-
55949124035
-
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
-
Sokol, H., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 16731–16736.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16731-16736
-
-
Sokol, H.1
-
76
-
-
84929223565
-
Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut
-
Singh, V., et al. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat. Commun., 6, 2015, 7113.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7113
-
-
Singh, V.1
-
77
-
-
70349213245
-
The dectin-2 family of C-type lectins in immunity and homeostasis
-
Graham, L.M., Brown, G.D., The dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine 48 (2009), 148–155.
-
(2009)
Cytokine
, vol.48
, pp. 148-155
-
-
Graham, L.M.1
Brown, G.D.2
-
78
-
-
84920896754
-
C-type lectins in immunity: recent developments
-
Dambuza, I.M., Brown, G.D., C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32 (2015), 21–27.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 21-27
-
-
Dambuza, I.M.1
Brown, G.D.2
-
79
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
Shan, M., et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342 (2013), 447–453.
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
-
80
-
-
84899411280
-
A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides
-
Wang, X.W., et al. A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J. Biol. Chem. 289 (2014), 11779–11790.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 11779-11790
-
-
Wang, X.W.1
-
81
-
-
85011403124
-
Mosquito C-type lectins maintain gut microbiome homeostasis
-
Pang, X., et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol., 1, 2016, 16023.
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 16023
-
-
Pang, X.1
-
82
-
-
84861964286
-
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
-
Iliev, I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336 (2012), 1314–1317.
-
(2012)
Science
, vol.336
, pp. 1314-1317
-
-
Iliev, I.D.1
-
83
-
-
84874691463
-
Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity
-
Dimitriu, P.A., et al. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environ. Microbiol. Rep. 5 (2013), 200–210.
-
(2013)
Environ. Microbiol. Rep.
, vol.5
, pp. 200-210
-
-
Dimitriu, P.A.1
-
84
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu, H.J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 (2010), 815–827.
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
-
85
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
Sivan, A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350 (2015), 1084–1089.
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
-
86
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi, K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500 (2013), 232–236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
-
87
-
-
84976536578
-
Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls
-
Chen, J., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep., 6, 2016, 28484.
-
(2016)
Sci. Rep.
, vol.6
, pp. 28484
-
-
Chen, J.1
-
88
-
-
84938817346
-
The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment
-
Zhang, X., et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21 (2015), 895–905.
-
(2015)
Nat. Med.
, vol.21
, pp. 895-905
-
-
Zhang, X.1
-
89
-
-
84907300008
-
Immunoglobulin a coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm, N.W., et al. Immunoglobulin a coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158 (2014), 1000–1010.
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
-
90
-
-
84996863601
-
MicrobiomeGWAS: a tool for identifying host genetic variants associated with microbiome composition
-
Hua, X., et al. MicrobiomeGWAS: a tool for identifying host genetic variants associated with microbiome composition. bioRxiv, 2015, 10.1101/031187.
-
(2015)
bioRxiv
-
-
Hua, X.1
-
91
-
-
84940398787
-
Assessment and selection of competing models for zero-inflated microbiome data
-
Xu, L., et al. Assessment and selection of competing models for zero-inflated microbiome data. PLoS One, 10, 2015, e0129606.
-
(2015)
PLoS One
, vol.10
, pp. e0129606
-
-
Xu, L.1
-
92
-
-
84904804929
-
Biological insights from 108 schizophrenia-associated genetic loci
-
Ripke, S., et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511 (2014), 421–427.
-
(2014)
Nature
, vol.511
, pp. 421-427
-
-
Ripke, S.1
|