메뉴 건너뛰기




Volumn 15, Issue 5, 2017, Pages

Alteration of protein function by a silent polymorphism linked to tRNA abundance

Author keywords

[No Author keywords available]

Indexed keywords

CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR; TRANSFER RNA;

EID: 85020168824     PISSN: 15449173     EISSN: 15457885     Source Type: Journal    
DOI: 10.1371/journal.pbio.2000779     Document Type: Article
Times cited : (109)

References (73)
  • 1
    • 84865790047 scopus 로고    scopus 로고
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome
    • 2295561
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489: 57–74. doi: 10.1038/nature11247 22955616
    • (2012) Nature , vol.489 , pp. 57-74
  • 3
    • 31144465926 scopus 로고    scopus 로고
    • Hearing silence: non-neutral evolution at synonymous sites in mammals
    • 1641874
    • Chamary JV, Parmley JL, Hurst LD, Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet. 2006;7: 98–108. doi: 10.1038/nrg1770 16418745
    • (2006) Nat Rev Genet , vol.7 , pp. 98-108
    • Chamary, J.V.1    Parmley, J.L.2    Hurst, L.D.3
  • 4
    • 84874722535 scopus 로고    scopus 로고
    • Non-optimal codon usage is a mechanism to achieve circadian clock conditionality
    • 2341706
    • Xu Y, Ma P, Shah P, Rokas A, Liu Y, Johnson CH, Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature. 2013;495: 116–20. doi: 10.1038/nature11942 23417065
    • (2013) Nature , vol.495 , pp. 116-120
    • Xu, Y.1    Ma, P.2    Shah, P.3    Rokas, A.4    Liu, Y.5    Johnson, C.H.6
  • 5
    • 84874683740 scopus 로고    scopus 로고
    • Non-optimal codon usage affects expression, structure and function of clock protein FRQ
    • 2341706
    • Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature. 2013;495: 111–5. doi: 10.1038/nature11833 23417067
    • (2013) Nature , vol.495 , pp. 111-115
    • Zhou, M.1    Guo, J.2    Cha, J.3    Chae, M.4    Chen, S.5    Barral, J.M.6
  • 6
    • 84974736018 scopus 로고    scopus 로고
    • Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons
    • 2731881
    • Jacobson GN, Clark PL, Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons. Curr Opin Struct Biol. 2016;38: 102–10. doi: 10.1016/j.sbi.2016.06.002 27318814
    • (2016) Curr Opin Struct Biol , vol.38 , pp. 102-110
    • Jacobson, G.N.1    Clark, P.L.2
  • 7
    • 84961675259 scopus 로고    scopus 로고
    • Synthesis at the speed of codons
    • 2652651
    • Koutmou KS, Radhakrishnan A, Green R, Synthesis at the speed of codons. Trends Biochem Sci. 2015;40: 717–8. doi: 10.1016/j.tibs.2015.10.005 26526516
    • (2015) Trends Biochem Sci , vol.40 , pp. 717-718
    • Koutmou, K.S.1    Radhakrishnan, A.2    Green, R.3
  • 8
    • 84943742690 scopus 로고    scopus 로고
    • Pausing on polyribosomes: make way for elongation in translational control
    • 2645148
    • Richter JD, Coller J, Pausing on polyribosomes: make way for elongation in translational control. Cell. 2015;163: 292–300. doi: 10.1016/j.cell.2015.09.041 26451481
    • (2015) Cell , vol.163 , pp. 292-300
    • Richter, J.D.1    Coller, J.2
  • 9
    • 33845899137 scopus 로고    scopus 로고
    • Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure
    • 1718560
    • Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314: 1930–3. doi: 10.1126/science.1131262 17185601
    • (2006) Science , vol.314 , pp. 1930-1933
    • Nackley, A.G.1    Shabalina, S.A.2    Tchivileva, I.E.3    Satterfield, K.4    Korchynskyi, O.5    Makarov, S.S.6
  • 10
    • 80052964856 scopus 로고    scopus 로고
    • Understanding the contribution of synonymous mutations to human disease
    • 2187896
    • Sauna ZE, Kimchi-Sarfaty C, Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12: 683–91. doi: 10.1038/nrg3051 21878961
    • (2011) Nat Rev Genet , vol.12 , pp. 683-691
    • Sauna, Z.E.1    Kimchi-Sarfaty, C.2
  • 11
    • 46449120581 scopus 로고    scopus 로고
    • Virus attenuation by genome-scale changes in codon pair bias
    • 1858361
    • Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S, Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320: 1784–7. doi: 10.1126/science.1155761 18583614
    • (2008) Science , vol.320 , pp. 1784-1787
    • Coleman, J.R.1    Papamichail, D.2    Skiena, S.3    Futcher, B.4    Wimmer, E.5    Mueller, S.6
  • 12
    • 33846504706 scopus 로고    scopus 로고
    • A "silent" polymorphism in the MDR1 gene changes substrate specificity
    • 1718556
    • Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315: 525–8. doi: 10.1126/science.1135308 17185560
    • (2007) Science , vol.315 , pp. 525-528
    • Kimchi-Sarfaty, C.1    Oh, J.M.2    Kim, I.W.3    Sauna, Z.E.4    Calcagno, A.M.5    Ambudkar, S.V.6
  • 13
    • 84940891331 scopus 로고    scopus 로고
    • Codon usage influences the local rate of translation elongation to regulate co-translational protein folding
    • 2632125
    • Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell. 2015;59: 744–54. doi: 10.1016/j.molcel.2015.07.018 26321254
    • (2015) Mol Cell , vol.59 , pp. 744-754
    • Yu, C.H.1    Dang, Y.2    Zhou, Z.3    Wu, C.4    Zhao, F.5    Sachs, M.S.6
  • 14
    • 77955644289 scopus 로고    scopus 로고
    • Mammalian microRNAs predominantly act to decrease target mRNA levels
    • 2070330
    • Guo H, Ingolia NT, Weissman JS, Bartel DP, Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466: 835–40. doi: 10.1038/nature09267 20703300
    • (2010) Nature , vol.466 , pp. 835-840
    • Guo, H.1    Ingolia, N.T.2    Weissman, J.S.3    Bartel, D.P.4
  • 15
    • 84921690520 scopus 로고    scopus 로고
    • Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation
    • 2553813
    • Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS, et al. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol Syst Biol. 2014;10: 770. doi: 10.15252/msb.20145524 25538139
    • (2014) Mol Syst Biol , vol.10 , pp. 770
    • Pop, C.1    Rouskin, S.2    Ingolia, N.T.3    Han, L.4    Phizicky, E.M.5    Weissman, J.S.6
  • 16
    • 84924192559 scopus 로고    scopus 로고
    • Emerging roles of tRNA in adaptive translation, signalling dynamics and disease
    • 2553432
    • Kirchner S, Ignatova Z, Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 2015;16: 98–112. doi: 10.1038/nrg3861 25534324
    • (2015) Nat Rev Genet , vol.16 , pp. 98-112
    • Kirchner, S.1    Ignatova, Z.2
  • 17
    • 34948856961 scopus 로고    scopus 로고
    • Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis
    • 1789788
    • Fluitt A, Pienaar E, Viljoen H, Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comp Biol Chem. 2007;31: 335–46. doi: 10.1016/j.compbiolchem.2007.07.003 17897886
    • (2007) Comp Biol Chem , vol.31 , pp. 335-346
    • Fluitt, A.1    Pienaar, E.2    Viljoen, H.3
  • 18
    • 78650304100 scopus 로고    scopus 로고
    • Synonymous but not the same: the causes and consequences of codon bias
    • 2110252
    • Plotkin JB, Kudla G, Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12: 32–42. doi: 10.1038/nrg2899 21102527
    • (2011) Nat Rev Genet , vol.12 , pp. 32-42
    • Plotkin, J.B.1    Kudla, G.2
  • 19
    • 84908078106 scopus 로고    scopus 로고
    • A dual program for translation regulation in cellular proliferation and differentiation
    • 2521548
    • Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell. 2014;158: 1281–92. doi: 10.1016/j.cell.2014.08.011 25215487
    • (2014) Cell , vol.158 , pp. 1281-1292
    • Gingold, H.1    Tehler, D.2    Christoffersen, N.R.3    Nielsen, M.M.4    Asmar, F.5    Kooistra, S.M.6
  • 20
    • 33846021292 scopus 로고    scopus 로고
    • Tissue-specific differences in human transfer RNA expression
    • 1719422
    • Dittmar KA, Goodenbour JM, Pan T, Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006;2: e221. doi: 10.1371/journal.pgen.0020221 17194224
    • (2006) PLoS Genet , vol.2 , pp. e221
    • Dittmar, K.A.1    Goodenbour, J.M.2    Pan, T.3
  • 21
    • 84904806049 scopus 로고    scopus 로고
    • RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration
    • 2506121
    • Ishimura R, Nagy G, Dotu I, Zhou H, Yang XL, Schimmel P, et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science. 2014;345: 455–9. doi: 10.1126/science.1249749 25061210
    • (2014) Science , vol.345 , pp. 455-459
    • Ishimura, R.1    Nagy, G.2    Dotu, I.3    Zhou, H.4    Yang, X.L.5    Schimmel, P.6
  • 22
    • 33645307384 scopus 로고    scopus 로고
    • The ABC protein turned chloride channel whose failure causes cystic fibrosis
    • 1655480
    • Gadsby DC, Vergani P, Csanady L, The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. 2006;440: 477–83. doi: 10.1038/nature04712 16554808
    • (2006) Nature , vol.440 , pp. 477-483
    • Gadsby, D.C.1    Vergani, P.2    Csanady, L.3
  • 23
    • 84927176500 scopus 로고    scopus 로고
    • Cystic fibrosis genetics: from molecular understanding to clinical application
    • 2540411
    • Cutting GR, Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16: 45–56. doi: 10.1038/nrg3849 25404111
    • (2015) Nat Rev Genet , vol.16 , pp. 45-56
    • Cutting, G.R.1
  • 24
    • 84956613592 scopus 로고    scopus 로고
    • From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations
    • 2682339
    • Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016;27: 424–33. doi: 10.1091/mbc.E14-04-0935 26823392
    • (2016) Mol Biol Cell , vol.27 , pp. 424-433
    • Veit, G.1    Avramescu, R.G.2    Chiang, A.N.3    Houck, S.A.4    Cai, Z.5    Peters, K.W.6
  • 25
    • 0025242929 scopus 로고
    • Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis
    • 169966
    • Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990;63: 827–34. 1699669
    • (1990) Cell , vol.63 , pp. 827-834
    • Cheng, S.H.1    Gregory, R.J.2    Marshall, J.3    Paul, S.4    Souza, D.W.5    White, G.A.6
  • 26
    • 3442898752 scopus 로고    scopus 로고
    • The role of common single-nucleotide polymorphisms on exon 9 and exon 12 skipping in nonmutated CFTR alleles
    • 1524179
    • Steiner B, Truninger K, Sanz J, Schaller A, Gallati S, The role of common single-nucleotide polymorphisms on exon 9 and exon 12 skipping in nonmutated CFTR alleles. Human Mutat. 2004;24: 120–9. doi: 10.1002/humu.20064 15241793
    • (2004) Human Mutat , vol.24 , pp. 120-129
    • Steiner, B.1    Truninger, K.2    Sanz, J.3    Schaller, A.4    Gallati, S.5
  • 27
    • 84878162009 scopus 로고    scopus 로고
    • Combined computational-experimental analyses of CFTR exon strength uncover predictability of exon-skipping level
    • 2342061
    • Aissat A, de Becdelievre A, Golmard L, Vasseur C, Costa C, Chaoui A, et al. Combined computational-experimental analyses of CFTR exon strength uncover predictability of exon-skipping level. Human Mutat. 2013;34: 873–81. doi: 10.1002/humu.22300 23420618
    • (2013) Human Mutat , vol.34 , pp. 873-881
    • Aissat, A.1    de Becdelievre, A.2    Golmard, L.3    Vasseur, C.4    Costa, C.5    Chaoui, A.6
  • 28
    • 84901020910 scopus 로고    scopus 로고
    • Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis
    • 2412943
    • Masvidal L, Igreja S, Ramos MD, Alvarez A, de Gracia J, Ramalho A, et al. Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis. Eur J Human Genet. 2014;22: 784–91. doi: 10.1038/ejhg.2013.238 24129438
    • (2014) Eur J Human Genet , vol.22 , pp. 784-791
    • Masvidal, L.1    Igreja, S.2    Ramos, M.D.3    Alvarez, A.4    de Gracia, J.5    Ramalho, A.6
  • 29
    • 85055958683 scopus 로고    scopus 로고
    • Deep resequencing of CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibrosis disease traits
    • 2791729
    • Vecchio-Pagan B, Blackman SM, Lee M, Atalar M, Pellicore MJ, Pace RG, et al. Deep resequencing of CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibrosis disease traits. Hum Genome Variat. 2016;3: 16038. doi: 10.1038/hgv.2016.38 27917292
    • (2016) Hum Genome Variat , vol.3 , pp. 16038
    • Vecchio-Pagan, B.1    Blackman, S.M.2    Lee, M.3    Atalar, M.4    Pellicore, M.J.5    Pace, R.G.6
  • 30
    • 77955607650 scopus 로고    scopus 로고
    • Peripheral protein quality control removes unfolded CFTR from the plasma membrane
    • 2059557
    • Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science. 2010;329: 805–10. doi: 10.1126/science.1191542 20595578
    • (2010) Science , vol.329 , pp. 805-810
    • Okiyoneda, T.1    Barriere, H.2    Bagdany, M.3    Rabeh, W.M.4    Du, K.5    Hohfeld, J.6
  • 31
    • 33746675669 scopus 로고    scopus 로고
    • Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator
    • 1690178
    • Younger JM, Chen L, Ren HY, Rosser MF, Turnbull EL, Fan CY, et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell. 2006;126: 571–82. doi: 10.1016/j.cell.2006.06.041 16901789
    • (2006) Cell , vol.126 , pp. 571-582
    • Younger, J.M.1    Chen, L.2    Ren, H.Y.3    Rosser, M.F.4    Turnbull, E.L.5    Fan, C.Y.6
  • 32
    • 0035937847 scopus 로고    scopus 로고
    • Conformational and temperature-sensitive stability defects of the ΔF508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments
    • 1112495
    • Sharma M, Benharouga M, Hu W, Lukacs GL, Conformational and temperature-sensitive stability defects of the ΔF508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J Biol Chem. 2001;276: 8942–50. doi: 10.1074/jbc.M009172200 11124952
    • (2001) J Biol Chem , vol.276 , pp. 8942-8950
    • Sharma, M.1    Benharouga, M.2    Hu, W.3    Lukacs, G.L.4
  • 33
    • 0032912589 scopus 로고    scopus 로고
    • Structure and function of the CFTR chloride channel
    • 992237
    • Sheppard DN, Welsh MJ, Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79: S23–45. 9922375
    • (1999) Physiol Rev , vol.79 , pp. S23-45
    • Sheppard, D.N.1    Welsh, M.J.2
  • 35
    • 0022640471 scopus 로고
    • A large anion-selective channel has seven conductance levels
    • 241712
    • Krouse ME, Schneider GT, Gage PW, A large anion-selective channel has seven conductance levels. Nature. 1986;319: 58–60. doi: 10.1038/319058a0 2417122
    • (1986) Nature , vol.319 , pp. 58-60
    • Krouse, M.E.1    Schneider, G.T.2    Gage, P.W.3
  • 36
    • 36549079005 scopus 로고    scopus 로고
    • 3receptor calcium release channels
    • 1799839
    • Ionescu L, White C, Cheung KH, Shuai J, Parker I, Pearson JE, et al. Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels. J Gen Physiol. 2007;130: 631–45. doi: 10.1085/jgp.200709859 17998395
    • (2007) J Gen Physiol , vol.130 , pp. 631-645
    • Ionescu, L.1    White, C.2    Cheung, K.H.3    Shuai, J.4    Parker, I.5    Pearson, J.E.6
  • 37
    • 84870795585 scopus 로고    scopus 로고
    • Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation
    • 2296601
    • Jih KY, Sohma Y, Hwang TC, Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. J Gen Physiol. 2012;140: 347–59. doi: 10.1085/jgp.201210834 22966014
    • (2012) J Gen Physiol , vol.140 , pp. 347-359
    • Jih, K.Y.1    Sohma, Y.2    Hwang, T.C.3
  • 38
    • 0035424455 scopus 로고    scopus 로고
    • Evidence that CFTR channels can regulate the open duration of other CFTR channels: cooperativity
    • 1154734
    • Krouse ME, Wine JJ, Evidence that CFTR channels can regulate the open duration of other CFTR channels: cooperativity. J Membr Biol. 2001;182: 223–32. 11547345
    • (2001) J Membr Biol , vol.182 , pp. 223-232
    • Krouse, M.E.1    Wine, J.J.2
  • 39
    • 84894318608 scopus 로고    scopus 로고
    • Ribosome profiling: new views of translation, from single codons to genome scale
    • 2446869
    • Ingolia NT, Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 2014;15: 205–13. doi: 10.1038/nrg3645 24468696
    • (2014) Nat Rev Genet , vol.15 , pp. 205-213
    • Ingolia, N.T.1
  • 40
    • 84900489620 scopus 로고    scopus 로고
    • Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments
    • 2484299
    • Lareau LF, Hite DH, Hogan GJ, Brown PO, Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife. 2014;3: e01257doi: 10.7554/eLife.01257 24842990
    • (2014) eLife , vol.3 , pp. e01257
    • Lareau, L.F.1    Hite, D.H.2    Hogan, G.J.3    Brown, P.O.4
  • 41
    • 84957689489 scopus 로고    scopus 로고
    • Synonymous codons direct cotranslational folding toward different protein conformations
    • 2684919
    • Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell. 2016;61: 341–51. doi: 10.1016/j.molcel.2016.01.008 26849192
    • (2016) Mol Cell , vol.61 , pp. 341-351
    • Buhr, F.1    Jha, S.2    Thommen, M.3    Mittelstaet, J.4    Kutz, F.5    Schwalbe, H.6
  • 42
    • 84892981871 scopus 로고    scopus 로고
    • Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design
    • 2439293
    • Sander IM, Chaney JL, Clark PL, Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. J Am Chem Soc. 2014;136: 858–61. doi: 10.1021/ja411302m 24392935
    • (2014) J Am Chem Soc , vol.136 , pp. 858-861
    • Sander, I.M.1    Chaney, J.L.2    Clark, P.L.3
  • 43
    • 62049083910 scopus 로고    scopus 로고
    • Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
    • 1919859
    • Zhang G, Hubalewska M, Ignatova Z, Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Stuct Mol Biol. 2009;16: 274–80. doi: 10.1038/nsmb.1554 19198590
    • (2009) Nat Stuct Mol Biol , vol.16 , pp. 274-280
    • Zhang, G.1    Hubalewska, M.2    Ignatova, Z.3
  • 44
    • 77956537712 scopus 로고    scopus 로고
    • A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein
    • 2062805
    • Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, Kappes J, et al. A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J Biol Chem. 2010;285: 28741–8. doi: 10.1074/jbc.M110.154575 20628052
    • (2010) J Biol Chem , vol.285 , pp. 28741-28748
    • Bartoszewski, R.A.1    Jablonsky, M.2    Bartoszewska, S.3    Stevenson, L.4    Dai, Q.5    Kappes, J.6
  • 45
    • 26944503059 scopus 로고    scopus 로고
    • Folding of CFTR is predominantly cotranslational
    • 1624672
    • Kleizen B, van Vlijmen T, de Jonge HR, Braakman I, Folding of CFTR is predominantly cotranslational. Mol Cell. 2005;20: 277–87. doi: 10.1016/j.molcel.2005.09.007 16246729
    • (2005) Mol Cell , vol.20 , pp. 277-287
    • Kleizen, B.1    van Vlijmen, T.2    de Jonge, H.R.3    Braakman, I.4
  • 46
    • 84928385447 scopus 로고    scopus 로고
    • Protein folding. Translational tuning optimizes nascent protein folding in cells
    • 2590882
    • Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM, et al. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science. 2015;348: 444–8. doi: 10.1126/science.aaa3974 25908822
    • (2015) Science , vol.348 , pp. 444-448
    • Kim, S.J.1    Yoon, J.S.2    Shishido, H.3    Yang, Z.4    Rooney, L.A.5    Barral, J.M.6
  • 47
    • 65249147217 scopus 로고    scopus 로고
    • Cooperative assembly and misfolding of CFTR domains in vivo
    • 1917675
    • Du K, Lukacs GL, Cooperative assembly and misfolding of CFTR domains in vivo. Mol Biol Cell. 2009;20: 1903–15. doi: 10.1091/mbc.E08-09-0950 19176754
    • (2009) Mol Biol Cell , vol.20 , pp. 1903-1915
    • Du, K.1    Lukacs, G.L.2
  • 48
    • 84862909346 scopus 로고    scopus 로고
    • Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences
    • 2226540
    • Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, et al. Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Cell. 2012;148: 164–74. doi: 10.1016/j.cell.2011.11.023 22265409
    • (2012) Cell , vol.148 , pp. 164-174
    • Mendoza, J.L.1    Schmidt, A.2    Li, Q.3    Nuvaga, E.4    Barrett, T.5    Bridges, R.J.6
  • 49
    • 84862908028 scopus 로고    scopus 로고
    • Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function
    • 2226540
    • Rabeh WM, Bossard F, Xu H, Okiyoneda T, Bagdany M, Mulvihill CM, et al. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell. 2012;148: 150–63. doi: 10.1016/j.cell.2011.11.024 22265408
    • (2012) Cell , vol.148 , pp. 150-163
    • Rabeh, W.M.1    Bossard, F.2    Xu, H.3    Okiyoneda, T.4    Bagdany, M.5    Mulvihill, C.M.6
  • 50
    • 78149270037 scopus 로고    scopus 로고
    • The cystic fibrosis-causing mutation ΔF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis
    • 2066782
    • Thibodeau PH, Richardson JM, 3rdWang W, Millen L, Watson J, Mendoza JL, et al. The cystic fibrosis-causing mutation ΔF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem. 2010;285: 35825–35. doi: 10.1074/jbc.M110.131623 20667826
    • (2010) J Biol Chem , vol.285 , pp. 35825-35835
    • Thibodeau, P.H.1    Richardson, J.M.2    Wang, W.3    Millen, L.4    Watson, J.5    Mendoza, J.L.6
  • 51
    • 0035886655 scopus 로고    scopus 로고
    • A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating
    • 1160068
    • Fu J, Ji HL, Naren AP, Kirk KL, A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. J Physiol. 2001;536: 459–70. doi: 10.1111/j.1469-7793.2001.0459c.xd 11600681
    • (2001) J Physiol , vol.536 , pp. 459-470
    • Fu, J.1    Ji, H.L.2    Naren, A.P.3    Kirk, K.L.4
  • 52
    • 85002497913 scopus 로고    scopus 로고
    • Atomic structure of the cystic fibrosis transmembrane conductance regulator
    • 2791206
    • Zhang Z, Chen J, Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell. 2016;167: 1586–97. doi: 10.1016/j.cell.2016.11.014 27912062
    • (2016) Cell , vol.167 , pp. 1586-1597
    • Zhang, Z.1    Chen, J.2
  • 53
    • 84883454123 scopus 로고    scopus 로고
    • Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions
    • 2382688
    • Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD, Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J. 2013;280: 4407–16. doi: 10.1111/febs.12422 23826884
    • (2013) FEBS J , vol.280 , pp. 4407-4416
    • Bozoky, Z.1    Krzeminski, M.2    Chong, P.A.3    Forman-Kay, J.D.4
  • 54
    • 84863377687 scopus 로고    scopus 로고
    • Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis
    • 2227874
    • Liang X, Da Paula AC, Bozoky Z, Zhang H, Bertrand CA, Peters KW, et al. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Mol Biol Cell. 2012;23: 996–1009. doi: 10.1091/mbc.E11-08-0662 22278744
    • (2012) Mol Biol Cell , vol.23 , pp. 996-1009
    • Liang, X.1    Da Paula, A.C.2    Bozoky, Z.3    Zhang, H.4    Bertrand, C.A.5    Peters, K.W.6
  • 55
    • 84856857888 scopus 로고    scopus 로고
    • Genetic variation and clinical heterogeneity in cystic fibrosis
    • 2201758
    • Drumm ML, Ziady AG, Davis PB, Genetic variation and clinical heterogeneity in cystic fibrosis. Annu Rev Pathol. 2012;7: 267–82. doi: 10.1146/annurev-pathol-011811-120900 22017581
    • (2012) Annu Rev Pathol , vol.7 , pp. 267-282
    • Drumm, M.L.1    Ziady, A.G.2    Davis, P.B.3
  • 56
    • 0027730638 scopus 로고
    • Detection of 98.5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene
    • 750841
    • Cuppens H, Marynen P, De Boeck C, Cassiman JJ, Detection of 98.5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene. Genomics. 1993;18: 693–7. 7508414
    • (1993) Genomics , vol.18 , pp. 693-697
    • Cuppens, H.1    Marynen, P.2    De Boeck, C.3    Cassiman, J.J.4
  • 57
    • 84874659320 scopus 로고    scopus 로고
    • CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated?
    • 2242723
    • Rosendahl J, Landt O, Bernadova J, Kovacs P, Teich N, Bodeker H, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated?Gut. 2013;62: 582–92. doi: 10.1136/gutjnl-2011-300645 22427236
    • (2013) Gut , vol.62 , pp. 582-592
    • Rosendahl, J.1    Landt, O.2    Bernadova, J.3    Kovacs, P.4    Teich, N.5    Bodeker, H.6
  • 58
    • 79958122789 scopus 로고    scopus 로고
    • Recommendations for the classification of diseases as CFTR-related disorders
    • Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibr. 2011;10Suppl 2: S86–102.
    • (2011) J Cyst Fibr , vol.10 , pp. S86-102
    • Bombieri, C.1    Claustres, M.2    De Boeck, K.3    Derichs, N.4    Dodge, J.5    Girodon, E.6
  • 59
    • 77649251221 scopus 로고    scopus 로고
    • Independent contribution of common CFTR variants to chronic pancreatitis
    • 1981252
    • de Cid R, Ramos MD, Aparisi L, Garcia C, Mora J, Estivill X, et al. Independent contribution of common CFTR variants to chronic pancreatitis. Pancreas. 2010; 39: 209–15. doi: 10.1097/MPA.0b013e3181bab679 19812525
    • (2010) Pancreas , vol.39 , pp. 209-215
    • de Cid, R.1    Ramos, M.D.2    Aparisi, L.3    Garcia, C.4    Mora, J.5    Estivill, X.6
  • 60
    • 0035070082 scopus 로고    scopus 로고
    • CFTR gene mutations—including three novel nucleotide substitutions—and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease
    • 1135463
    • Tzetis M, Efthymiadou A, Strofalis S, Psychou P, Dimakou A, Pouliou E, et al. CFTR gene mutations—including three novel nucleotide substitutions—and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Human Genet. 2001;108: 216–21. 11354633
    • (2001) Human Genet , vol.108 , pp. 216-221
    • Tzetis, M.1    Efthymiadou, A.2    Strofalis, S.3    Psychou, P.4    Dimakou, A.5    Pouliou, E.6
  • 61
    • 84974795103 scopus 로고    scopus 로고
    • A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator
    • 2633691
    • Bali V, Lazrak A, Guroji P, Fu L, Matalon S, Bebok Z, A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator. FASEB J. 2016;30: 201–13. doi: 10.1096/fj.15-273714 26336913
    • (2016) FASEB J , vol.30 , pp. 201-213
    • Bali, V.1    Lazrak, A.2    Guroji, P.3    Fu, L.4    Matalon, S.5    Bebok, Z.6
  • 62
    • 84924063047 scopus 로고    scopus 로고
    • Synonymous codon usage affects the expression of wild type and F508del CFTR
    • 2567631
    • Shah K, Cheng Y, Hahn B, Bridges R, Bradbury NA, Mueller DM, Synonymous codon usage affects the expression of wild type and F508del CFTR. J Mol Biol. 2015;427: 1464–79. doi: 10.1016/j.jmb.2015.02.003 25676312
    • (2015) J Mol Biol , vol.427 , pp. 1464-1479
    • Shah, K.1    Cheng, Y.2    Hahn, B.3    Bridges, R.4    Bradbury, N.A.5    Mueller, D.M.6
  • 63
    • 84971520499 scopus 로고    scopus 로고
    • Ribosomal stalk protein silencing partially corrects the ΔF508-CFTR functional expression defect
    • 2716840
    • Veit G, Oliver K, Apaja PM, Perdomo D, Bidaud-Meynard A, Lin ST, et al. Ribosomal stalk protein silencing partially corrects the ΔF508-CFTR functional expression defect. PLoS Biol. 2016;14(5): e1002462. doi: 10.1371/journal.pbio.1002462 27168400
    • (2016) PLoS Biol , vol.14 , Issue.5 , pp. e1002462
    • Veit, G.1    Oliver, K.2    Apaja, P.M.3    Perdomo, D.4    Bidaud-Meynard, A.5    Lin, S.T.6
  • 64
    • 84929956909 scopus 로고    scopus 로고
    • -channel with enhanced conductance and ATP-dependent gating
    • 2576356
    • Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, et al. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. J Physiol. 2015;593: 2427–46. doi: 10.1113/JP270227 25763566
    • (2015) J Physiol , vol.593 , pp. 2427-2446
    • Cai, Z.1    Palmai-Pallag, T.2    Khuituan, P.3    Mutolo, M.J.4    Boinot, C.5    Liu, B.6
  • 65
    • 85020189584 scopus 로고    scopus 로고
    • Upregulating tRNAs in mammalian cells through transfection of in vitro transcribed tRNAs
    • Kirchner S, Rauscher R, Czech A, Ignatova Z
    • Kirchner S, Rauscher R, Czech A, Ignatova Z. Upregulating tRNAs in mammalian cells through transfection of in vitro transcribed tRNAs. Protocols.io. 2017. doi: 10.17504/protocols.io.hetb3en
    • (2017) Protocols.io.
  • 66
    • 33644863604 scopus 로고    scopus 로고
    • -channel
    • 1631124
    • Cai Z, Taddei A, Sheppard DN, Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. J Biol Chem. 2006;281: 1970–7. doi: 10.1074/jbc.M510576200 16311240
    • (2006) J Biol Chem , vol.281 , pp. 1970-1977
    • Cai, Z.1    Taddei, A.2    Sheppard, D.N.3
  • 67
    • 0026576291 scopus 로고
    • Multichannel recordings from membranes which contain gap junctions
    • 137170
    • Manivannan K, Ramanan SV, Mathias RT, Brink PR, Multichannel recordings from membranes which contain gap junctions. Biophys J. 1992;61: 216–27. doi: 10.1016/S0006-3495(92)81828-3 1371704
    • (1992) Biophys J , vol.61 , pp. 216-227
    • Manivannan, K.1    Ramanan, S.V.2    Mathias, R.T.3    Brink, P.R.4
  • 68
    • 85020167671 scopus 로고    scopus 로고
    • Microarray-based quantification of cellular tRNAs
    • Kirchner S, Rauscher R, Czech A, Ignatova Z
    • Kirchner S, Rauscher R, Czech A, Ignatova Z. Microarray-based quantification of cellular tRNAs. Protocols.io. 2017. doi: 10.17504/protocols.io.hfcb3iw
    • (2017) Protocols.io.
  • 69
    • 0033527628 scopus 로고    scopus 로고
    • An adenosine deaminase that generates inosine at the wobble position of tRNAs
    • 1055005
    • Gerber AP, Keller W, An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. 1999;286: 1146–9. 10550050
    • (1999) Science , vol.286 , pp. 1146-1149
    • Gerber, A.P.1    Keller, W.2
  • 70
    • 85020166184 scopus 로고    scopus 로고
    • tRNA Knock-down in mammalian cells using short hairpin RNAs
    • Kirchner S, Rauscher R, Czech A, Ignatova Z
    • Kirchner S, Rauscher R, Czech A, Ignatova Z. tRNA Knock-down in mammalian cells using short hairpin RNAs. Protocols.io. 2017. doi: 10.17504/protocols.io.hgfb3tn
    • (2017) Protocols.io.
  • 71
    • 84958115189 scopus 로고    scopus 로고
    • Clarifying the translational pausing landscape in bacteria by ribosome profiling
    • 2677651
    • Mohammad F, Woolstenhulme CJ, Green R, Buskirk AR, Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep. 2016;14: 686–94. doi: 10.1016/j.celrep.2015.12.073 26776510
    • (2016) Cell Rep , vol.14 , pp. 686-694
    • Mohammad, F.1    Woolstenhulme, C.J.2    Green, R.3    Buskirk, A.R.4
  • 72
    • 70349847830 scopus 로고    scopus 로고
    • Molecular models of the open and closed states of the whole human CFTR protein
    • 1970785
    • Mornon JP, Lehn P, Callebaut I, Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci. 2009;66: 3469–86. doi: 10.1007/s00018-009-0133-0 19707853
    • (2009) Cell Mol Life Sci , vol.66 , pp. 3469-3486
    • Mornon, J.P.1    Lehn, P.2    Callebaut, I.3
  • 73
    • 78449232308 scopus 로고    scopus 로고
    • Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier
    • 2094907
    • Hinzpeter A, Aissat A, Sondo E, Costa C, Arous N, Gameiro C, et al. Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 2010;6:e1001153. doi: 10.1371/journal.pgen.1001153 20949073
    • (2010) PLoS Genet , vol.6 , pp. e1001153
    • Hinzpeter, A.1    Aissat, A.2    Sondo, E.3    Costa, C.4    Arous, N.5    Gameiro, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.