메뉴 건너뛰기




Volumn 329, Issue , 2017, Pages 104-110

Neuroprotective effects of astaxanthin in a rat model of spinal cord injury

Author keywords

Apoptosis; Astaxanthin; Neuroprotection; Spinal cord injury

Indexed keywords

ASTAXANTHIN; CASPASE 3; PROTEIN BAX; PROTEIN BCL 2; NEUROPROTECTIVE AGENT; XANTHOPHYLL;

EID: 85018967221     PISSN: 01664328     EISSN: 18727549     Source Type: Journal    
DOI: 10.1016/j.bbr.2017.04.026     Document Type: Article
Times cited : (52)

References (82)
  • 1
    • 84896390606 scopus 로고    scopus 로고
    • From basics to clinical: a comprehensive review on spinal cord injury
    • [1] Silva, N.A., et al. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol. 114 (2014), 25–57.
    • (2014) Prog. Neurobiol. , vol.114 , pp. 25-57
    • Silva, N.A.1
  • 2
    • 84939880330 scopus 로고    scopus 로고
    • PACAP stimulates functional recovery after spinal cord injury through axonal regeneration
    • [2] Tsuchida, M., et al. PACAP stimulates functional recovery after spinal cord injury through axonal regeneration. J. Mol. Neurosci. 54:3 (2014), 380–387.
    • (2014) J. Mol. Neurosci. , vol.54 , Issue.3 , pp. 380-387
    • Tsuchida, M.1
  • 3
    • 84896832607 scopus 로고    scopus 로고
    • In vivo conversion of astrocytes to neurons in the injured adult spinal cord
    • [3] Su, Z., et al. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun., 5, 2014.
    • (2014) Nat. Commun. , vol.5
    • Su, Z.1
  • 4
    • 84954311931 scopus 로고    scopus 로고
    • Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation
    • [4] Nagai, J., et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci. Rep., 5, 2015.
    • (2015) Sci. Rep. , vol.5
    • Nagai, J.1
  • 5
    • 84921973630 scopus 로고    scopus 로고
    • Modern aspects of pathogenesis of the trauma of the spinal cord and trunks of peripheral nerves
    • [5] Shul'ga, A., et al. Modern aspects of pathogenesis of the trauma of the spinal cord and trunks of peripheral nerves. Ross Fiziol Zh Im I M Sechenova 100:2 (2014), 145–160.
    • (2014) Ross Fiziol Zh Im I M Sechenova , vol.100 , Issue.2 , pp. 145-160
    • Shul'ga, A.1
  • 6
    • 84880963379 scopus 로고    scopus 로고
    • Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin: laboratory investigation
    • [6] Ormond, D.R., et al. Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin: laboratory investigation. J. Neurosurg. Spine 16:5 (2012), 497–503.
    • (2012) J. Neurosurg. Spine , vol.16 , Issue.5 , pp. 497-503
    • Ormond, D.R.1
  • 7
    • 84927129630 scopus 로고    scopus 로고
    • Biomarkers of spinal cord injury and ensuing bladder dysfunction
    • [7] Cruz, C.D., et al. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv. Drug. Deliv. Rev. 82 (2015), 153–159.
    • (2015) Adv. Drug. Deliv. Rev. , vol.82 , pp. 153-159
    • Cruz, C.D.1
  • 8
    • 84920653072 scopus 로고    scopus 로고
    • Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease
    • [8] Fatima, G., et al. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spin. Cord 53:1 (2015), 3–6.
    • (2015) Spin. Cord , vol.53 , Issue.1 , pp. 3-6
    • Fatima, G.1
  • 9
    • 84893856237 scopus 로고    scopus 로고
    • In vivo microdialysis of glutamate in ventroposterolateral nucleus of thalamus following electrolytic lesion of spinothalamic tract in rats
    • [9] Ghanbari, A., et al. In vivo microdialysis of glutamate in ventroposterolateral nucleus of thalamus following electrolytic lesion of spinothalamic tract in rats. Exp. Brain Res. 232:2 (2014), 415–421.
    • (2014) Exp. Brain Res. , vol.232 , Issue.2 , pp. 415-421
    • Ghanbari, A.1
  • 10
    • 84957546446 scopus 로고    scopus 로고
    • Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury
    • [10] Faden, A.I., et al. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br. J. Pharmacol. 173:4 (2016), 681–691.
    • (2016) Br. J. Pharmacol. , vol.173 , Issue.4 , pp. 681-691
    • Faden, A.I.1
  • 11
    • 84921326492 scopus 로고    scopus 로고
    • Lipid peroxidation in brain or spinal cord mitochondria after injury
    • [11] Hall, E.D., et al. Lipid peroxidation in brain or spinal cord mitochondria after injury. J. Bioenerg. Biomembr. 48:2 (2016), 169–174.
    • (2016) J. Bioenerg. Biomembr. , vol.48 , Issue.2 , pp. 169-174
    • Hall, E.D.1
  • 12
    • 85027940071 scopus 로고    scopus 로고
    • Neurophysiological assessment of the injured spinal cord: an intraoperative approach
    • [12] Costa, P., et al. Neurophysiological assessment of the injured spinal cord: an intraoperative approach. Spin. Cord 2:10 (2014), 749–757.
    • (2014) Spin. Cord , vol.2 , Issue.10 , pp. 749-757
    • Costa, P.1
  • 13
    • 84876270838 scopus 로고    scopus 로고
    • Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury
    • [13] Wu, Y., et al. Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J. Neurotrauma 30:6 (2013), 441–452.
    • (2013) J. Neurotrauma , vol.30 , Issue.6 , pp. 441-452
    • Wu, Y.1
  • 14
    • 84938209286 scopus 로고    scopus 로고
    • Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal NSPCs from SCI rats
    • [14] Chu, W., et al. Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal NSPCs from SCI rats. Neurochem. Res. 40:7 (2015), 1472–1486.
    • (2015) Neurochem. Res. , vol.40 , Issue.7 , pp. 1472-1486
    • Chu, W.1
  • 15
    • 84939255043 scopus 로고    scopus 로고
    • Neuroprotective effects of direct intrathecal administration of granulocyte colony-stimulating factor in rats with spinal cord injury
    • [15] Chen, W.F., et al. Neuroprotective effects of direct intrathecal administration of granulocyte colony-stimulating factor in rats with spinal cord injury. CNS Neurosci. Ther. 21:9 (2015), 698–707.
    • (2015) CNS Neurosci. Ther. , vol.21 , Issue.9 , pp. 698-707
    • Chen, W.F.1
  • 16
    • 84969857225 scopus 로고    scopus 로고
    • Methylprednisolone for the treatment of patients with acute spinal cord injuries: a propensity score-matched cohort study from a canadian multi-center spinal cord injury registry
    • [16] Hall, E.D., Methylprednisolone for the treatment of patients with acute spinal cord injuries: a propensity score-matched cohort study from a canadian multi-center spinal cord injury registry. J. Neurotrauma 33:10 (2016), 972–974.
    • (2016) J. Neurotrauma , vol.33 , Issue.10 , pp. 972-974
    • Hall, E.D.1
  • 17
    • 84976320726 scopus 로고    scopus 로고
    • Patient-reported adverse effects of high-dose intravenous methylprednisolone treatment: a prospective web-based multi-center study in multiple sclerosis patients with a relapse
    • [17] Jongen, P.J., et al. Patient-reported adverse effects of high-dose intravenous methylprednisolone treatment: a prospective web-based multi-center study in multiple sclerosis patients with a relapse. J. Neurol., 2016, 1–11.
    • (2016) J. Neurol. , pp. 1-11
    • Jongen, P.J.1
  • 18
    • 84869504817 scopus 로고    scopus 로고
    • Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients
    • e2
    • [18] Bastani, N.E., et al. Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients. Arch. Phys. Med. Rehabil. 93:12 (2012), 2223–2228 e2.
    • (2012) Arch. Phys. Med. Rehabil. , vol.93 , Issue.12 , pp. 2223-2228
    • Bastani, N.E.1
  • 19
    • 79951670641 scopus 로고    scopus 로고
    • Pharmacokinetics and first-pass metabolism of astaxanthin in rats
    • [19] Choi, H.D., et al. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. Br. J. Nutr. 105:02 (2011), 220–227.
    • (2011) Br. J. Nutr. , vol.105 , Issue.2 , pp. 220-227
    • Choi, H.D.1
  • 20
    • 69749120073 scopus 로고    scopus 로고
    • Astaxanthin, oxidative stress, inflammation and cardiovascular disease
    • [20] Fassett, R.G., Coombes, J.S., Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol. 5:4 (2009), 333–342.
    • (2009) Future Cardiol. , vol.5 , Issue.4 , pp. 333-342
    • Fassett, R.G.1    Coombes, J.S.2
  • 21
    • 67649352604 scopus 로고    scopus 로고
    • Astaxanthin reduces ischemic brain injury in adult rats
    • [21] Shen, H., et al. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 3:6 (2009), 1958–1968.
    • (2009) FASEB J. , vol.3 , Issue.6 , pp. 1958-1968
    • Shen, H.1
  • 22
    • 84892855353 scopus 로고    scopus 로고
    • Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – a review
    • [22] Ambati, R.R., et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications – a review. Mar. Drugs 12:1 (2014), 128–152.
    • (2014) Mar. Drugs , vol.12 , Issue.1 , pp. 128-152
    • Ambati, R.R.1
  • 23
    • 0037407158 scopus 로고    scopus 로고
    • Haematococcus astaxanthin: applications for human health and nutrition
    • [23] Guerin, M., Huntley, M.E., Olaizola, M., Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:5 (2003), 210–216.
    • (2003) Trends Biotechnol. , vol.21 , Issue.5 , pp. 210-216
    • Guerin, M.1    Huntley, M.E.2    Olaizola, M.3
  • 24
    • 84857404002 scopus 로고    scopus 로고
    • Astaxanthin, cell membrane nutrient with diverseclinical benefits and anti-aging potential
    • [24] Kidd, P., Astaxanthin, cell membrane nutrient with diverseclinical benefits and anti-aging potential. Altern. Med. Rev. 16:4 (2011), 355–364.
    • (2011) Altern. Med. Rev. , vol.16 , Issue.4 , pp. 355-364
    • Kidd, P.1
  • 25
    • 56749107503 scopus 로고    scopus 로고
    • Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells
    • [25] Ikeda, Y., et al. Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J. Neurochem. 107:6 (2008), 1730–1740.
    • (2008) J. Neurochem. , vol.107 , Issue.6 , pp. 1730-1740
    • Ikeda, Y.1
  • 26
    • 84928634195 scopus 로고    scopus 로고
    • Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus
    • [26] Lu, Y., et al. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus. Neurosci. Lett. 597 (2015), 49–53.
    • (2015) Neurosci. Lett. , vol.597 , pp. 49-53
    • Lu, Y.1
  • 27
    • 44749088415 scopus 로고    scopus 로고
    • Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: a prospective, randomized, double blind, and placebo-controlled study
    • [27] Kupcinskas, L., et al. Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: a prospective, randomized, double blind, and placebo-controlled study. Phytomedicine 15:6 (2008), 391–399.
    • (2008) Phytomedicine , vol.15 , Issue.6 , pp. 391-399
    • Kupcinskas, L.1
  • 28
    • 77950289867 scopus 로고    scopus 로고
    • Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans
    • [28] Park, J.S., et al. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. (Lond.), 7(1), 2010, 1.
    • (2010) Nutr. Metab. (Lond.) , vol.7 , Issue.1 , pp. 1
    • Park, J.S.1
  • 29
    • 84911165025 scopus 로고    scopus 로고
    • Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway
    • [29] Song, X., et al. Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway. J. Cell. Mol. Med. 18:11 (2014), 2198–2212.
    • (2014) J. Cell. Mol. Med. , vol.18 , Issue.11 , pp. 2198-2212
    • Song, X.1
  • 30
    • 77954886020 scopus 로고    scopus 로고
    • Astaxanthin inhibits glutamate release in rat cerebral cortex nerve terminals via suppression of voltage-dependent Ca2+ entry and mitogen-activated protein kinase signaling pathway
    • [30] Lin, T.Y., Lu, C.W., Wang, S.J., Astaxanthin inhibits glutamate release in rat cerebral cortex nerve terminals via suppression of voltage-dependent Ca2+ entry and mitogen-activated protein kinase signaling pathway. J. Agric. Food Chem. 58:14 (2010), 8271–8278.
    • (2010) J. Agric. Food Chem. , vol.58 , Issue.14 , pp. 8271-8278
    • Lin, T.Y.1    Lu, C.W.2    Wang, S.J.3
  • 31
    • 71549114866 scopus 로고    scopus 로고
    • Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways
    • [31] Kim, J.-H., et al. Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways. J. Microbiol. Biotechnol. 19:11 (2009), 1355–1363.
    • (2009) J. Microbiol. Biotechnol. , vol.19 , Issue.11 , pp. 1355-1363
    • Kim, J.-H.1
  • 32
    • 69749118947 scopus 로고    scopus 로고
    • Antioxidative and Anti‐Inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12Cells
    • [32] Chan, K.C., Mong, M.C., Yin, M.C.C., Antioxidative and Anti‐Inflammatory neuroprotective effects of astaxanthin and canthaxanthin in nerve growth factor differentiated PC12Cells. J. Food Sci. 74:7 (2009), H225–H231.
    • (2009) J. Food Sci. , vol.74 , Issue.7 , pp. H225-H231
    • Chan, K.C.1    Mong, M.C.2    Yin, M.C.C.3
  • 33
    • 67650246073 scopus 로고    scopus 로고
    • Astaxanthin protects neuronal cells against oxidative damage and is a potent candidate for brain food
    • [33] Liu, X., Osawa, T., Astaxanthin protects neuronal cells against oxidative damage and is a potent candidate for brain food. Forum Nutr., 2009.
    • (2009) Forum Nutr.
    • Liu, X.1    Osawa, T.2
  • 34
    • 58549103079 scopus 로고    scopus 로고
    • Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism
    • [34] Liu, X., et al. Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Res. 1254 (2009), 18–27.
    • (2009) Brain Res. , vol.1254 , pp. 18-27
    • Liu, X.1
  • 35
    • 84900474788 scopus 로고    scopus 로고
    • The protective effect of astaxanthin on fetal alcohol spectrum disorder in mice
    • [35] Zheng, D., et al. The protective effect of astaxanthin on fetal alcohol spectrum disorder in mice. Neuropharmacology 84 (2014), 13–18.
    • (2014) Neuropharmacology , vol.84 , pp. 13-18
    • Zheng, D.1
  • 36
    • 84890893327 scopus 로고    scopus 로고
    • Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels
    • [36] Wu, W., et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food. Funct. 5:1 (2014), 158–166.
    • (2014) Food. Funct. , vol.5 , Issue.1 , pp. 158-166
    • Wu, W.1
  • 37
    • 84928632581 scopus 로고    scopus 로고
    • Protective effect of astaxanthin against multiple organ injury in a rat model of sepsis
    • [37] Zhou, L., et al. Protective effect of astaxanthin against multiple organ injury in a rat model of sepsis. J. Surg. Res. 195:2 (2015), 559–567.
    • (2015) J. Surg. Res. , vol.195 , Issue.2 , pp. 559-567
    • Zhou, L.1
  • 38
    • 84893801454 scopus 로고    scopus 로고
    • Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes
    • [38] Chen, W.-P., et al. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes. Int. Immunopharmacol. 19:1 (2014), 174–177.
    • (2014) Int. Immunopharmacol. , vol.19 , Issue.1 , pp. 174-177
    • Chen, W.-P.1
  • 39
    • 77953756431 scopus 로고    scopus 로고
    • Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25–35: its molecular action targets
    • [39] Chang, C.-H., et al. Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25–35: its molecular action targets. J. Med. Food 13:3 (2010), 548–556.
    • (2010) J. Med. Food , vol.13 , Issue.3 , pp. 548-556
    • Chang, C.-H.1
  • 40
    • 84924663649 scopus 로고    scopus 로고
    • Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism
    • [40] Al-Amin, M.M., et al. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res. 286 (2015), 112–121.
    • (2015) Behav. Brain Res. , vol.286 , pp. 112-121
    • Al-Amin, M.M.1
  • 41
    • 0026802223 scopus 로고
    • A monitored contusion model of spinal cord injury in the rat
    • [41] GRUNER, J.A., A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma 9:2 (1992), 123–128.
    • (1992) J. Neurotrauma , vol.9 , Issue.2 , pp. 123-128
    • GRUNER, J.A.1
  • 42
    • 0028558934 scopus 로고
    • A method to perform direct transcutaneous intrathecal injection in rats
    • [42] Mestre, C., et al. A method to perform direct transcutaneous intrathecal injection in rats. J. Pharmacol. Toxicol. Methods 32:4 (1994), 197–200.
    • (1994) J. Pharmacol. Toxicol. Methods , vol.32 , Issue.4 , pp. 197-200
    • Mestre, C.1
  • 43
    • 84902251257 scopus 로고    scopus 로고
    • Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage: laboratory investigation
    • [43] Zhang, X.-S., et al. Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage: laboratory investigation. J. Neurosurg. 121:1 (2014), 42–54.
    • (2014) J. Neurosurg. , vol.121 , Issue.1 , pp. 42-54
    • Zhang, X.-S.1
  • 44
    • 0028919411 scopus 로고
    • A sensitive and reliable locomotorrating scale for open field testing in rats
    • [44] Basso, D.M., Beattie, M.S., Bresnahan, J.C., A sensitive and reliable locomotorrating scale for open field testing in rats. J. Neurotrauma 12:1 (1995), 1–21.
    • (1995) J. Neurotrauma , vol.12 , Issue.1 , pp. 1-21
    • Basso, D.M.1    Beattie, M.S.2    Bresnahan, J.C.3
  • 45
    • 84880610264 scopus 로고    scopus 로고
    • Role of microglia and astrocyte in central pain syndrome following electrolytic lesion at the spinothalamic tract in rats
    • [45] Naseri, K., et al. Role of microglia and astrocyte in central pain syndrome following electrolytic lesion at the spinothalamic tract in rats. J. Mol. Neurosci. 49 (2013), 470–479.
    • (2013) J. Mol. Neurosci. , vol.49 , pp. 470-479
    • Naseri, K.1
  • 46
    • 85019009466 scopus 로고    scopus 로고
    • The Animal Model of Spinal Cord Injury as an Experimental Pain Model
    • BioMed Research International
    • [46] Nakae, A., et al. The Animal Model of Spinal Cord Injury as an Experimental Pain Model. 2011, BioMed Research International.
    • (2011)
    • Nakae, A.1
  • 47
    • 84974580783 scopus 로고    scopus 로고
    • Animal Models in Traumatic Spinal Cord Injury
    • Topics in Paraplegia InTech
    • [47] Sharif-Alhoseini, M., Rahimi-Movaghar, V., Animal Models in Traumatic Spinal Cord Injury. 2014, Topics in Paraplegia InTech.
    • (2014)
    • Sharif-Alhoseini, M.1    Rahimi-Movaghar, V.2
  • 48
    • 0034641936 scopus 로고    scopus 로고
    • Apoptosis in the nervous system
    • [48] Yuan, J., Yankner, B.A., Apoptosis in the nervous system. Nature 07:6805 (2000), 802–809.
    • (2000) Nature , vol.7 , Issue.6805 , pp. 802-809
    • Yuan, J.1    Yankner, B.A.2
  • 49
    • 84921938541 scopus 로고    scopus 로고
    • The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders
    • [49] Wu, H.-J., et al. The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell. Mol. Neurobiol. 35:1 (2015), 85–99.
    • (2015) Cell. Mol. Neurobiol. , vol.35 , Issue.1 , pp. 85-99
    • Wu, H.-J.1
  • 50
    • 84894374239 scopus 로고    scopus 로고
    • Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats
    • [50] Tang, P., et al. Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol. Neurobiol. 49:1 (2014), 276–287.
    • (2014) Mol. Neurobiol. , vol.49 , Issue.1 , pp. 276-287
    • Tang, P.1
  • 51
    • 84938697253 scopus 로고    scopus 로고
    • Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury
    • [51] Abdul-Muneer, P.M., Chandra, N., Haorah, J., Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol. Neurobiol. 51:3 (2015), 966–979.
    • (2015) Mol. Neurobiol. , vol.51 , Issue.3 , pp. 966-979
    • Abdul-Muneer, P.M.1    Chandra, N.2    Haorah, J.3
  • 52
    • 84952837133 scopus 로고    scopus 로고
    • Cellular and subcellular oxidative stress parameters following severe spinal cordinjury
    • [52] Visavadiya, N.P., et al. Cellular and subcellular oxidative stress parameters following severe spinal cordinjury. Redox Biol. 8 (2016), 59–67.
    • (2016) Redox Biol. , vol.8 , pp. 59-67
    • Visavadiya, N.P.1
  • 53
    • 84896266772 scopus 로고    scopus 로고
    • Oxidative stress in traumatic brain injury
    • [53] Rodriguez-Rodriguez, A., et al. Oxidative stress in traumatic brain injury. Curr. Med. Chem. 21:10 (2014), 1201–1211.
    • (2014) Curr. Med. Chem. , vol.21 , Issue.10 , pp. 1201-1211
    • Rodriguez-Rodriguez, A.1
  • 54
    • 0037326363 scopus 로고    scopus 로고
    • Survival and death-promoting events after transient spinal cord ischemia in rabbits: induction of Akt and caspase3 in motor neurons
    • [54] Sakurai, M., et al. Survival and death-promoting events after transient spinal cord ischemia in rabbits: induction of Akt and caspase3 in motor neurons. J. Thorac. Cardiovasc. Surg. 125:2 (2003), 370–377.
    • (2003) J. Thorac. Cardiovasc. Surg. , vol.125 , Issue.2 , pp. 370-377
    • Sakurai, M.1
  • 55
    • 84860375295 scopus 로고    scopus 로고
    • Inflammation & apoptosis in spinal cord injury
    • [55] Zhang, N., et al. Inflammation & apoptosis in spinal cord injury. Indian J. Med. Res., 135(3), 2012, 287.
    • (2012) Indian J. Med. Res. , vol.135 , Issue.3 , pp. 287
    • Zhang, N.1
  • 56
    • 84977755790 scopus 로고    scopus 로고
    • Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels
    • [56] Ozdemir, U.S., et al. Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol. Neurobiol., 2015, 1–12.
    • (2015) Mol. Neurobiol. , pp. 1-12
    • Ozdemir, U.S.1
  • 57
    • 84943619968 scopus 로고    scopus 로고
    • Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway
    • [57] Luo, Y., et al. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway. Mol. Med. Rep. 12:5 (2015), 7132–7138.
    • (2015) Mol. Med. Rep. , vol.12 , Issue.5 , pp. 7132-7138
    • Luo, Y.1
  • 58
    • 84891745971 scopus 로고    scopus 로고
    • Effects of the combined administration of vitamins C and Eon the oxidative stress status and programmed cell death pathways after experimental spinal cord injury
    • [58] Chen, H., et al. Effects of the combined administration of vitamins C and Eon the oxidative stress status and programmed cell death pathways after experimental spinal cord injury. Spin. Cord 2:1 (2014), 24–28.
    • (2014) Spin. Cord , vol.2 , Issue.1 , pp. 24-28
    • Chen, H.1
  • 59
    • 84934994741 scopus 로고    scopus 로고
    • Protective effects of Vitamin C against spinal cord injury-induced renal damage through suppression of NF-κB and proinflammatory cytokines
    • [59] Wang, W.-G., et al. Protective effects of Vitamin C against spinal cord injury-induced renal damage through suppression of NF-κB and proinflammatory cytokines. Neurol. Sci. 36:4 (2015), 521–526.
    • (2015) Neurol. Sci. , vol.36 , Issue.4 , pp. 521-526
    • Wang, W.-G.1
  • 60
    • 84863981506 scopus 로고    scopus 로고
    • The efficacy of antioxidants in functional recovery of spinal cord injured rats: an experimental study
    • [60] Robert, A.A., et al. The efficacy of antioxidants in functional recovery of spinal cord injured rats: an experimental study. Neurol. Sci. 33:4 (2012), 785–791.
    • (2012) Neurol. Sci. , vol.33 , Issue.4 , pp. 785-791
    • Robert, A.A.1
  • 61
    • 84929412205 scopus 로고    scopus 로고
    • High-dose ascorbic acid administration improves functional recovery in rats with spinal cord contusion injury
    • [61] Yan, M., et al. High-dose ascorbic acid administration improves functional recovery in rats with spinal cord contusion injury. Spin. Cord 52:11 (2014), 803–808.
    • (2014) Spin. Cord , vol.52 , Issue.11 , pp. 803-808
    • Yan, M.1
  • 62
    • 84976569505 scopus 로고    scopus 로고
    • Fluoxetine and vitamin C synergistically inhibits blood-spinal cordbarrier disruption and improves functional recovery after spinal cord injury
    • [62] Lee, J.Y., Choi, H.Y., Yune, T.Y., Fluoxetine and vitamin C synergistically inhibits blood-spinal cordbarrier disruption and improves functional recovery after spinal cord injury. Neuropharmacology, 2016.
    • (2016) Neuropharmacology
    • Lee, J.Y.1    Choi, H.Y.2    Yune, T.Y.3
  • 63
    • 79251601931 scopus 로고    scopus 로고
    • Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury
    • [63] Liu, C., et al. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res. 1374 (2011), 100–109.
    • (2011) Brain Res. , vol.1374 , pp. 100-109
    • Liu, C.1
  • 64
    • 84986327476 scopus 로고    scopus 로고
    • Efficiacy of resveratrol and quercetin after experimental spinal cord injury
    • [64] Ciftci, U., et al. Efficiacy of resveratrol and quercetin after experimental spinal cord injury. Ulus Travma Acil Cerrahi Derg 22:5 (2016), 423–431.
    • (2016) Ulus Travma Acil Cerrahi Derg , vol.22 , Issue.5 , pp. 423-431
    • Ciftci, U.1
  • 65
    • 84990181468 scopus 로고    scopus 로고
    • Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects
    • [65] Du, F., et al. Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects. Acta Biochim. Pol., 63(3), 2016.
    • (2016) Acta Biochim. Pol. , vol.63 , Issue.3
    • Du, F.1
  • 66
    • 85018985155 scopus 로고    scopus 로고
    • The effect of melatonin on spinal cord after ischemia in rats
    • [66] Aydemir, S., et al. The effect of melatonin on spinal cord after ischemia in rats. Spin. Cord, 2015.
    • (2015) Spin. Cord
    • Aydemir, S.1
  • 67
    • 38149092274 scopus 로고    scopus 로고
    • Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats
    • [67] Samantaray, S., et al. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J. Pineal Res. 44:4 (2008), 348–357.
    • (2008) J. Pineal Res. , vol.44 , Issue.4 , pp. 348-357
    • Samantaray, S.1
  • 68
    • 84924813086 scopus 로고    scopus 로고
    • Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review
    • [68] Yao, M., et al. Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review. J. Neurotrauma 32:6 (2015), 381–391.
    • (2015) J. Neurotrauma , vol.32 , Issue.6 , pp. 381-391
    • Yao, M.1
  • 69
    • 85018942439 scopus 로고    scopus 로고
    • Protective effect of curcumin on neural myelin sheaths by attenuating interactions between the Endoplasmic reticulum and Mitochondria after compressed spinal cord
    • [69] Yu, H., et al. Protective effect of curcumin on neural myelin sheaths by attenuating interactions between the Endoplasmic reticulum and Mitochondria after compressed spinal cord. J. Spine, 5(322), 2016, 2.
    • (2016) J. Spine , vol.5 , Issue.322 , pp. 2
    • Yu, H.1
  • 70
    • 77956187300 scopus 로고    scopus 로고
    • Curcumin improves early functional results after experimental spinal cord injury
    • [70] Cemil, B., et al. Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir. (Wien) 152:9 (2010), 1583–1590.
    • (2010) Acta Neurochir. (Wien) , vol.152 , Issue.9 , pp. 1583-1590
    • Cemil, B.1
  • 71
    • 84898810733 scopus 로고    scopus 로고
    • Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha
    • [71] Mosquera, L., et al. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha. Brain Res. 1561 (2014), 11–22.
    • (2014) Brain Res. , vol.1561 , pp. 11-22
    • Mosquera, L.1
  • 72
    • 85010699751 scopus 로고    scopus 로고
    • The effect of astaxanthin (AST) on Neurotrophin-3 (NT-3) expression in rats after compressive spinal cord injury (SCI)
    • [72] Bai, W., et al. The effect of astaxanthin (AST) on Neurotrophin-3 (NT-3) expression in rats after compressive spinal cord injury (SCI). Afr. J. Pharm. Pharmacol. 6:34 (2012), 2559–2564.
    • (2012) Afr. J. Pharm. Pharmacol. , vol.6 , Issue.34 , pp. 2559-2564
    • Bai, W.1
  • 73
    • 84920090959 scopus 로고    scopus 로고
    • Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis
    • [73] Yamagishi, R., Aihara, M., Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol. Vis.(20), 2014.
    • (2014) Mol. Vis. , Issue.20
    • Yamagishi, R.1    Aihara, M.2
  • 74
    • 84880802399 scopus 로고    scopus 로고
    • Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt
    • [74] Li, Z., et al. Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol. Vis.(25), 2013, 1656–1666.
    • (2013) Mol. Vis. , Issue.25 , pp. 1656-1666
    • Li, Z.1
  • 75
    • 84875760496 scopus 로고    scopus 로고
    • Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress
    • [75] Dong, L.-Y., et al. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Mar. Drugs 11:3 (2013), 960–974.
    • (2013) Mar. Drugs , vol.11 , Issue.3 , pp. 960-974
    • Dong, L.-Y.1
  • 76
    • 77956606248 scopus 로고    scopus 로고
    • Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat
    • [76] Lee, D.-H., Lee, Y.J., Kwon, K.H., Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J. Clin. Biochem. Nutr. 47:2 (2010), 121–129.
    • (2010) J. Clin. Biochem. Nutr. , vol.47 , Issue.2 , pp. 121-129
    • Lee, D.-H.1    Lee, Y.J.2    Kwon, K.H.3
  • 77
    • 71549114866 scopus 로고    scopus 로고
    • Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways
    • [77] Kim, J.H., et al. Astaxanthin inhibits H2O2-mediated apoptotic cell death in mouse neural progenitor cells via modulation of P38 and MEK signaling pathways. J. Microbiol. Biotechnol. 19:11 (2009), 1355–1363.
    • (2009) J. Microbiol. Biotechnol. , vol.19 , Issue.11 , pp. 1355-1363
    • Kim, J.H.1
  • 78
    • 77957940294 scopus 로고    scopus 로고
    • Neuroprotective effect of astaxanthin on H 2 O 2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo
    • [78] Lu, Y.P., et al. Neuroprotective effect of astaxanthin on H 2 O 2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 1360 (2010), 40–48.
    • (2010) Brain Res. , vol.1360 , pp. 40-48
    • Lu, Y.P.1
  • 79
    • 84908065737 scopus 로고    scopus 로고
    • Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling
    • [79] Zhang, X.-S., et al. Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling. Mar. Drugs 12:8 (2014), 4291–4310.
    • (2014) Mar. Drugs , vol.12 , Issue.8 , pp. 4291-4310
    • Zhang, X.-S.1
  • 80
    • 84919904588 scopus 로고    scopus 로고
    • Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury
    • [80] Wu, Q., et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs 12:12 (2014), 6125–6141.
    • (2014) Mar. Drugs , vol.12 , Issue.12 , pp. 6125-6141
    • Wu, Q.1
  • 81
    • 77957949839 scopus 로고    scopus 로고
    • Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells
    • [81] Wang, H.-Q., et al. Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 1360 (2010), 159–167.
    • (2010) Brain Res. , vol.1360 , pp. 159-167
    • Wang, H.-Q.1
  • 82
    • 78650257134 scopus 로고    scopus 로고
    • Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro
    • [82] Lee, D.-H., Kim, C.-S., Lee, Y.J., Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food. Chem. Toxicol. 49:1 (2011), 271–280.
    • (2011) Food. Chem. Toxicol. , vol.49 , Issue.1 , pp. 271-280
    • Lee, D.-H.1    Kim, C.-S.2    Lee, Y.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.