메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 4; AMINO ACID; ANTINEOPLASTIC AGENT; ASPARAGINASE; ATF4 PROTEIN, MOUSE; EIF2AK4 PROTEIN, MOUSE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PROTEIN SERINE THREONINE KINASE;

EID: 85018781822     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-01041-7     Document Type: Article
Times cited : (23)

References (50)
  • 2
    • 84878520425 scopus 로고    scopus 로고
    • Asparagine synthetase: Regulation by cell stress and involvement in tumor biology
    • Balasubramanian, M. N., Butterworth, E. A. & Kilberg, M. S. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304, E789-799, doi:10. 1152/ajpendo. 00015. 2013 (2013).
    • (2013) Am J Physiol Endocrinol Metab , vol.304 , pp. E789-799
    • Balasubramanian, M.N.1    Butterworth, E.A.2    Kilberg, M.S.3
  • 3
    • 2442528894 scopus 로고    scopus 로고
    • Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961)
    • Panosyan, E. H. et al. Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res 24, 1121-1125 (2004).
    • (2004) Anticancer Res , vol.24 , pp. 1121-1125
    • Panosyan, E.H.1
  • 4
    • 33845195466 scopus 로고    scopus 로고
    • Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase
    • Reinert, R. B. et al. Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase. J Biol Chem 281, 31222-31233, doi:10. 1074/jbc. M604511200 (2006).
    • (2006) J Biol Chem , vol.281 , pp. 31222-31233
    • Reinert, R.B.1
  • 5
    • 70549094335 scopus 로고    scopus 로고
    • GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase
    • Bunpo, P. et al. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J Biol Chem 284, 32742-32749, doi:10. 1074/jbc. M109. 047910 (2009).
    • (2009) J Biol Chem , vol.284 , pp. 32742-32749
    • Bunpo, P.1
  • 6
    • 78149273048 scopus 로고    scopus 로고
    • The eIF2 kinase GCN2 is essential for the murine immune system to adapt to amino acid deprivation by asparaginase
    • Bunpo, P. et al. The eIF2 kinase GCN2 is essential for the murine immune system to adapt to amino acid deprivation by asparaginase. J Nutr 140, 2020-2027, doi:10. 3945/jn. 110. 129197 (2010).
    • (2010) J Nutr , vol.140 , pp. 2020-2027
    • Bunpo, P.1
  • 7
    • 3843117589 scopus 로고    scopus 로고
    • Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
    • Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101, 11269-11274, doi:10. 1073/pnas. 0400541101 (2004).
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 11269-11274
    • Vattem, K.M.1    Wek, R.C.2
  • 8
    • 0033634654 scopus 로고    scopus 로고
    • Regulated translation initiation controls stress-induced gene expression in mammalian cells
    • Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6, 1099-1108, doi:10. 1016/S1097-2765(00)00108-8 (2000).
    • (2000) Mol Cell , vol.6 , pp. 1099-1108
    • Harding, H.P.1
  • 9
    • 72049124015 scopus 로고    scopus 로고
    • ATF4-dependent transcription mediates signaling of amino acid limitation
    • Kilberg, M. S., Shan, J. & Su, N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20, 436-443, doi:10. 1016/j. tem. 2009. 05. 008 (2009).
    • (2009) Trends Endocrinol Metab , vol.20 , pp. 436-443
    • Kilberg, M.S.1    Shan, J.2    Su, N.3
  • 10
    • 84922918736 scopus 로고    scopus 로고
    • GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment
    • ajpendo 00361 02014
    • Wilson, G. J. et al. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am J Physiol Endocrinol Metab, ajpendo 00361 02014, doi:10. 1152/ajpendo. 00361. 2014 (2015).
    • (2015) Am J Physiol Endocrinol Metab
    • Wilson, G.J.1
  • 11
    • 84887008428 scopus 로고    scopus 로고
    • The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment
    • Wilson, G. J., Bunpo, P., Cundiff, J. K., Wek, R. C. & Anthony, T. G. The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment. Am J Physiol Endocrinol Metab 305, E1124-1133, doi:10. 1152/ajpendo. 00080. 2013 (2013).
    • (2013) Am J Physiol Endocrinol Metab , vol.305 , pp. E1124-1133
    • Wilson, G.J.1    Bunpo, P.2    Cundiff, J.K.3    Wek, R.C.4    Anthony, T.G.5
  • 12
    • 84984629302 scopus 로고    scopus 로고
    • General control nonderepressible 2 deletion predisposes to asparaginase-associated pancreatitis in mice
    • Phillipson-Weiner, L. et al. General control nonderepressible 2 deletion predisposes to asparaginase-associated pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 310, G1061-1070, doi:10. 1152/ajpgi. 00052. 2016 (2016).
    • (2016) Am J Physiol Gastrointest Liver Physiol , vol.310 , pp. G1061-1070
    • Phillipson-Weiner, L.1
  • 13
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619-633, doi:10. 1016/S1097-2765(03)00105-9 (2003).
    • (2003) Mol Cell , vol.11 , pp. 619-633
    • Harding, H.P.1
  • 14
    • 79959973892 scopus 로고    scopus 로고
    • The cell biology of the unfolded protein response
    • 41 e31-32
    • Diehl, J. A., Fuchs, S. Y. & Koumenis, C. The cell biology of the unfolded protein response. Gastroenterology 141, 38-41, 41 e31-32, doi:10. 1053/j. gastro. 2011. 05. 018 (2011).
    • (2011) Gastroenterology , vol.141 , pp. 38-41
    • Diehl, J.A.1    Fuchs, S.Y.2    Koumenis, C.3
  • 15
    • 0034282704 scopus 로고    scopus 로고
    • Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements
    • Barbosa-Tessmann, I. P. et al. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem 275, 26976-26985, doi:10. 1074/jbc. M000004200 (2000).
    • (2000) J Biol Chem , vol.275 , pp. 26976-26985
    • Barbosa-Tessmann, I.P.1
  • 16
    • 84955445779 scopus 로고    scopus 로고
    • Protein misfolding in the endoplasmic reticulum as a conduit to human disease
    • Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326-335, doi:10. 1038/nature17041 (2016).
    • (2016) Nature , vol.529 , pp. 326-335
    • Wang, M.1    Kaufman, R.J.2
  • 17
    • 79955103141 scopus 로고    scopus 로고
    • The contribution of endoplasmic reticulum stress to liver diseases
    • Dara, L., Ji, C. & Kaplowitz, N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 53, 1752-1763, doi:10. 1002/hep. 24279 (2011).
    • (2011) Hepatology , vol.53 , pp. 1752-1763
    • Dara, L.1    Ji, C.2    Kaplowitz, N.3
  • 18
    • 84964833362 scopus 로고    scopus 로고
    • Transcription factor ATF4 directs basal and select induced gene expression in the unfolded protein response and cholesterol metabolism in liver
    • Fusakio, M. E. et al. Transcription factor ATF4 directs basal and select induced gene expression in the unfolded protein response and cholesterol metabolism in liver. Mol Biol Cell 27, 1536-51, doi:10. 1091/mbc. E16-01-0039 (2016).
    • (2016) Mol Biol Cell , vol.27 , pp. 1536-1551
    • Fusakio, M.E.1
  • 19
    • 58049203872 scopus 로고    scopus 로고
    • C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene
    • Su, N. & Kilberg, M. S. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene. J Biol Chem 283, 35106-35117, doi:10. 1074/jbc. M806874200 (2008).
    • (2008) J Biol Chem , vol.283 , pp. 35106-35117
    • Su, N.1    Kilberg, M.S.2
  • 20
    • 84877578475 scopus 로고    scopus 로고
    • ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
    • Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15, 481-490, doi:10. 1038/ncb2738 (2013).
    • (2013) Nat Cell Biol , vol.15 , pp. 481-490
    • Han, J.1
  • 21
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21-35, doi:10. 1038/nrm3025 (2011).
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 22
    • 0034836522 scopus 로고    scopus 로고
    • Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats
    • Anthony, T., Reiter, A., Anthony, J., Kimball, S. & Jefferson, L. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats. Am J Physiol Endocrinol Metab 281, E430-439 (2001).
    • (2001) Am J Physiol Endocrinol Metab , vol.281 , pp. E430-439
    • Anthony, T.1    Reiter, A.2    Anthony, J.3    Kimball, S.4    Jefferson, L.5
  • 23
    • 84947914958 scopus 로고    scopus 로고
    • GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2
    • Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 29, 2331-2336, doi:10. 1101/gad. 269324. 115 (2015).
    • (2015) Genes Dev , vol.29 , pp. 2331-2336
    • Ye, J.1
  • 24
    • 84959467705 scopus 로고    scopus 로고
    • Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death
    • Ding, B. et al. Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Scientific reports 6, 22538, doi:10. 1038/srep22538 (2016).
    • (2016) Scientific Reports , vol.6 , pp. 22538
    • Ding, B.1
  • 25
    • 84966393355 scopus 로고    scopus 로고
    • Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation
    • Kimball, S. R., Gordon, B. S., Moyer, J. E., Dennis, M. D. & Jefferson, L. S. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cellular signalling 28, 896-906, doi:10. 1016/j. cellsig. 2016. 03. 008 (2016).
    • (2016) Cellular Signalling , vol.28 , pp. 896-906
    • Kimball, S.R.1    Gordon, B.S.2    Moyer, J.E.3    Dennis, M.D.4    Jefferson, L.S.5
  • 26
    • 84874641728 scopus 로고    scopus 로고
    • GCN2 kinase is a key regulator of fibrogenesis and acute and chronic liver injury induced by carbon tetrachloride in mice
    • Arriazu, E. et al. GCN2 kinase is a key regulator of fibrogenesis and acute and chronic liver injury induced by carbon tetrachloride in mice. Lab Invest 93, 303-310, doi:10. 1038/labinvest. 2012. 173 (2013).
    • (2013) Lab Invest , vol.93 , pp. 303-310
    • Arriazu, E.1
  • 27
    • 70350539531 scopus 로고    scopus 로고
    • Atf4 regulates obesity, glucose homeostasis, and energy expenditure
    • Seo, J. et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58, 2565-2573, doi:10. 2337/db09-0335 (2009).
    • (2009) Diabetes , vol.58 , pp. 2565-2573
    • Seo, J.1
  • 29
    • 0036799870 scopus 로고    scopus 로고
    • The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism
    • Kliewer, S. A., Goodwin, B. & Willson, T. M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocrine reviews 23, 687-702, doi:10. 1210/er. 2001-0038 (2002).
    • (2002) Endocrine Reviews , vol.23 , pp. 687-702
    • Kliewer, S.A.1    Goodwin, B.2    Willson, T.M.3
  • 30
    • 77952899683 scopus 로고    scopus 로고
    • Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells
    • Shan, J., Lopez, M. C., Baker, H. V. & Kilberg, M. S. Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells. Physiol Genomics 41, 315-327, doi:10. 1152/physiolgenomics. 00217. 2009 (2010).
    • (2010) Physiol Genomics , vol.41 , pp. 315-327
    • Shan, J.1    Lopez, M.C.2    Baker, H.V.3    Kilberg, M.S.4
  • 31
    • 4344650113 scopus 로고    scopus 로고
    • Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2
    • Anthony, T. G. et al. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279, 36553-36561, doi:10. 1074/jbc. M404559200 (2004).
    • (2004) J Biol Chem , vol.279 , pp. 36553-36561
    • Anthony, T.G.1
  • 32
    • 79952374033 scopus 로고    scopus 로고
    • Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways
    • Xiao, F. et al. Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60, 746-756, doi:10. 2337/db10-1246 (2011).
    • (2011) Diabetes , vol.60 , pp. 746-756
    • Xiao, F.1
  • 33
    • 84952915479 scopus 로고    scopus 로고
    • Sestrin2 is a leucine sensor for the mTORC1 pathway
    • Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48, doi:10. 1126/science. aab2674 (2016).
    • (2016) Science , vol.351 , pp. 43-48
    • Wolfson, R.L.1
  • 34
    • 0032452122 scopus 로고    scopus 로고
    • Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres
    • Tanaka, T. et al. Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes to cells: devoted to molecular & cellular mechanisms 3, 801-810 (1998).
    • (1998) Genes to Cells: Devoted to Molecular & Cellular Mechanisms , vol.3 , pp. 801-810
    • Tanaka, T.1
  • 35
    • 0036464604 scopus 로고    scopus 로고
    • Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice
    • Masuoka, H. C. & Townes, T. M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99, 736-745, doi:10. 1182/blood. V99. 3. 736 (2002).
    • (2002) Blood , vol.99 , pp. 736-745
    • Masuoka, H.C.1    Townes, T.M.2
  • 36
    • 70349226800 scopus 로고    scopus 로고
    • The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts
    • Yoshizawa, T. et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 119, 2807-2817, doi:10. 1172/JCI39366 (2009).
    • (2009) J Clin Invest , vol.119 , pp. 2807-2817
    • Yoshizawa, T.1
  • 37
    • 0035877643 scopus 로고    scopus 로고
    • Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation
    • He, C. H. et al. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276, 20858-20865, doi:10. 1074/jbc. M101198200 (2001).
    • (2001) J Biol Chem , vol.276 , pp. 20858-20865
    • He, C.H.1
  • 38
    • 84925970010 scopus 로고    scopus 로고
    • Asparaginase in acute lymphoblastic leukemia
    • Kawedia, J. D. & Rytting, M. E. Asparaginase in Acute Lymphoblastic Leukemia. Clinical lymphoma, myeloma & leukemia 14S, S14-S17, doi:10. 1016/j. clml. 2014. 06. 017 (2014).
    • (2014) Clinical Lymphoma, Myeloma & Leukemia , vol.14 S , pp. S14-S17
    • Kawedia, J.D.1    Rytting, M.E.2
  • 39
    • 84961053729 scopus 로고    scopus 로고
    • Asparaginase-associated toxicity in children with acute lymphoblastic leukemia
    • Hijiya, N. & van der Sluis, I. M. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia. Leuk Lymphoma 57, 748-757, doi:10. 3109/10428194. 2015. 1101098 (2016).
    • (2016) Leuk Lymphoma , vol.57 , pp. 748-757
    • Hijiya, N.1    Van Der Sluis, I.M.2
  • 40
    • 85006184168 scopus 로고    scopus 로고
    • Best practices in adolescent and young adult patients with acute lymphoblastic leukemia: A focus on asparaginase
    • Boissel, N. & Sender, L. S. Best Practices in Adolescent and Young Adult Patients with Acute Lymphoblastic Leukemia: A Focus on Asparaginase. Journal of adolescent and young adult oncology 4, 118-128, doi:10. 1089/jayao. 2015. 0014 (2015).
    • (2015) Journal of Adolescent and Young Adult Oncology , vol.4 , pp. 118-128
    • Boissel, N.1    Sender, L.S.2
  • 41
    • 84984680138 scopus 로고    scopus 로고
    • Liver-specific gene inactivation of the transcription factor atf4 alleviates alcoholic liver steatosis in mice
    • Li, K. et al. Liver-specific Gene Inactivation of the Transcription Factor ATF4 Alleviates Alcoholic Liver Steatosis in Mice. J Biol Chem 291, 18536-18546, doi:10. 1074/jbc. M116. 726836 (2016).
    • (2016) J Biol Chem , vol.291 , pp. 18536-18546
    • Li, K.1
  • 42
    • 85018576883 scopus 로고    scopus 로고
    • Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice
    • Nikonorova, I. A. et al. Obesity Challenges the Hepatoprotective Function of the Integrated Stress Response to Asparaginase Exposure in Mice. J Biol Chem, doi:10. 1074/jbc. M116. 768408 (2017).
    • (2017) J Biol Chem
    • Nikonorova, I.A.1
  • 43
    • 84952898511 scopus 로고    scopus 로고
    • Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway
    • Saxton, R. A. et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53-58, doi:10. 1126/science. aad2087 (2016).
    • (2016) Science , vol.351 , pp. 53-58
    • Saxton, R.A.1
  • 44
    • 84903166942 scopus 로고    scopus 로고
    • Hepatoprotective role of Sestrin2 against chronic ER stress
    • Park, H. W. et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nature communications 5, 4233, doi:10. 1038/ ncomms5233 (2014).
    • (2014) Nature Communications , vol.5 , pp. 4233
    • Park, H.W.1
  • 45
    • 84962860348 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival
    • Saveljeva, S. et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 7, 12254-12266, doi:10. 18632/oncotarget. 7601 (2016).
    • (2016) Oncotarget , vol.7 , pp. 12254-12266
    • Saveljeva, S.1
  • 46
    • 84974691273 scopus 로고    scopus 로고
    • GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism
    • Averous, J. et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Scientific reports 6, 27698, doi:10. 1038/srep27698 (2016).
    • (2016) Scientific Reports , vol.6 , pp. 27698
    • Averous, J.1
  • 48
    • 84987784702 scopus 로고    scopus 로고
    • A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution
    • Maida, A. et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Invest 126, 3263-3278, doi:10. 1172/JCI85946 (2016).
    • (2016) J Clin Invest , vol.126 , pp. 3263-3278
    • Maida, A.1
  • 49
    • 84872198346 scopus 로고    scopus 로고
    • Differential analysis of gene regulation at transcript resolution with RNA-seq
    • Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature biotechnology 31, 46-53, doi:10. 1038/nbt. 2450 (2013).
    • (2013) Nature Biotechnology , vol.31 , pp. 46-53
    • Trapnell, C.1
  • 50
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 7, 562-578, doi:10. 1038/nprot. 2012. 016 (2012).
    • (2012) Nature Protocols , vol.7 , pp. 562-578
    • Trapnell, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.