메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 4; ARGININE; EIF2AK4 PROTEIN, MOUSE; INITIATION FACTOR 2; LEUCINE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PROTEIN SERINE THREONINE KINASE;

EID: 84974691273     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep27698     Document Type: Article
Times cited : (70)

References (39)
  • 1
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim, D.-H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002).
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.-H.1
  • 3
    • 0032486268 scopus 로고    scopus 로고
    • Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism
    • Hara, K. et al. Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism. J. Biol. Chem. 273, 14484-14494 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 14484-14494
    • Hara, K.1
  • 4
    • 0001598487 scopus 로고    scopus 로고
    • Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase
    • Berlanga, J. J., Santoyo, J. & de Haro, C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur. J. Biochem. 265, 754-762 (1999).
    • (1999) Eur. J. Biochem. , vol.265 , pp. 754-762
    • Berlanga, J.J.1    Santoyo, J.2    De Haro, C.3
  • 5
    • 3843117589 scopus 로고    scopus 로고
    • Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
    • Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101, 11269-74 (2004).
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 11269-11274
    • Vattem, K.M.1    Wek, R.C.2
  • 6
    • 33847005465 scopus 로고    scopus 로고
    • A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation
    • Lopez, A. B. et al. A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation. Biochem. J. 402, 163-173 (2007).
    • (2007) Biochem. J. , vol.402 , pp. 163-173
    • Lopez, A.B.1
  • 7
    • 0037025396 scopus 로고    scopus 로고
    • ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene
    • Siu, F., Bain, P. J., LeBlanc-Chaffin, R., Chen, H. & Kilberg, M. S. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277, 24120-7 (2002).
    • (2002) J Biol Chem , vol.277 , pp. 24120-24127
    • Siu, F.1    Bain, P.J.2    LeBlanc-Chaffin, R.3    Chen, H.4    Kilberg, M.S.5
  • 8
    • 84885455062 scopus 로고    scopus 로고
    • The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression
    • B'Chir, W. et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41, 7683-99 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 7683-7699
    • B'Chir, W.1
  • 9
    • 84951906925 scopus 로고    scopus 로고
    • Amino acid sensing and activation of mechanistic target of rapamycin complex 1: Implications for skeletal muscle
    • Ham, D. J., Lynch, G. S. & Koopman, R. Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 19, 67-73 (2016).
    • (2016) Curr. Opin. Clin. Nutr. Metab. Care , vol.19 , pp. 67-73
    • Ham, D.J.1    Lynch, G.S.2    Koopman, R.3
  • 10
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1
    • Sancak, Y. et al. The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 11
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and is Necessary for its Activation by Amino Acids
    • Sancak, Y. et al. Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and is Necessary for its Activation by Amino Acids. Cell 141, 290-303 (2010).
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 12
    • 84901828078 scopus 로고    scopus 로고
    • Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids
    • Averous, J. et al. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell. Signal. 26, 1918-1927 (2014).
    • (2014) Cell. Signal. , vol.26 , pp. 1918-1927
    • Averous, J.1
  • 13
    • 84912068759 scopus 로고    scopus 로고
    • Rab1A is an mTORC1 Activator and a Colorectal Oncogene
    • Thomas, J. D. et al. Rab1A is an mTORC1 Activator and a Colorectal Oncogene. Cancer Cell 26, 754-769 (2014).
    • (2014) Cancer Cell , vol.26 , pp. 754-769
    • Thomas, J.D.1
  • 14
    • 0031887111 scopus 로고    scopus 로고
    • Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters
    • Fox, H. L., Kimball, S. R., Jefferson, L. S. & Lynch, C. J. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol 274, C206-13 (1998).
    • (1998) Am J Physiol , vol.274 , pp. C206-C213
    • Fox, H.L.1    Kimball, S.R.2    Jefferson, L.S.3    Lynch, C.J.4
  • 15
    • 0033635215 scopus 로고    scopus 로고
    • Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain
    • Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J. & Hinnebusch, A. G. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6, 269-79 (2000).
    • (2000) Mol Cell , vol.6 , pp. 269-279
    • Dong, J.1    Qiu, H.2    Garcia-Barrio, M.3    Anderson, J.4    Hinnebusch, A.G.5
  • 16
    • 79952374033 scopus 로고    scopus 로고
    • Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways
    • Xiao, F. et al. Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways. Diabetes 60, 746-756 (2011).
    • (2011) Diabetes , vol.60 , pp. 746-756
    • Xiao, F.1
  • 17
    • 4344650113 scopus 로고    scopus 로고
    • Preservation of Liver Protein Synthesis during Dietary Leucine Deprivation Occurs at the Expense of Skeletal Muscle Mass in Mice Deleted for eIF2 Kinase GCN2
    • Anthony, T. G. et al. Preservation of Liver Protein Synthesis during Dietary Leucine Deprivation Occurs at the Expense of Skeletal Muscle Mass in Mice Deleted for eIF2 Kinase GCN2. J. Biol. Chem. 279, 36553-36561 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 36553-36561
    • Anthony, T.G.1
  • 18
    • 84884558569 scopus 로고    scopus 로고
    • Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1)
    • Dennis, M. D., McGhee, N. K., Jefferson, L. S. & Kimball, S. R. Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1). Cell. Signal 25, 2709-2716 (2013).
    • (2013) Cell. Signal , vol.25 , pp. 2709-2716
    • Dennis, M.D.1    McGhee, N.K.2    Jefferson, L.S.3    Kimball, S.R.4
  • 19
    • 35148892645 scopus 로고    scopus 로고
    • Suppression of viral replication by stress-inducible GADD34 protein via the mammalian serine/threonine protein kinase mTOR pathway
    • Minami, K. et al. Suppression of viral replication by stress-inducible GADD34 protein via the mammalian serine/threonine protein kinase mTOR pathway. J. Virol. 81, 11106-11115 (2007).
    • (2007) J. Virol. , vol.81 , pp. 11106-11115
    • Minami, K.1
  • 20
    • 0034703021 scopus 로고    scopus 로고
    • Leucine limitation induces autophagy and activation of lysosomedependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway
    • Mordier, S., Deval, C., Bechet, D., Tassa, A. & Ferrara, M. Leucine limitation induces autophagy and activation of lysosomedependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275, 29900-6 (2000).
    • (2000) J Biol Chem , vol.275 , pp. 29900-29906
    • Mordier, S.1    Deval, C.2    Bechet, D.3    Tassa, A.4    Ferrara, M.5
  • 21
    • 0033634654 scopus 로고    scopus 로고
    • Regulated translation initiation controls stress-induced gene expression in mammalian cells
    • Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6, 1099-108. (2000).
    • (2000) Mol Cell , vol.6 , pp. 1099-1108
    • Harding, H.P.1
  • 22
    • 0037662713 scopus 로고    scopus 로고
    • Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
    • Beugnet, A., Tee, A. R., Taylor, P. M. & Proud, C. G. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J. 372, 555-566 (2003).
    • (2003) Biochem. J. , vol.372 , pp. 555-566
    • Beugnet, A.1    Tee, A.R.2    Taylor, P.M.3    Proud, C.G.4
  • 23
    • 0015523212 scopus 로고
    • Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine
    • Hansen, B. S., Vaughan, M. H. & Wang, L. Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J. Biol. Chem. 247, 3854-3857 (1972).
    • (1972) J. Biol. Chem. , vol.247 , pp. 3854-3857
    • Hansen, B.S.1    Vaughan, M.H.2    Wang, L.3
  • 24
    • 71949084050 scopus 로고    scopus 로고
    • Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals
    • Chaveroux, C. et al. Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals. Mol Cell Biol 29, 6515-26 (2009).
    • (2009) Mol Cell Biol , vol.29 , pp. 6515-6526
    • Chaveroux, C.1
  • 25
    • 0037446868 scopus 로고    scopus 로고
    • Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox
    • Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M. & Ratan, R. R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl. Acad. Sci. 100, 4843-4848 (2003).
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , pp. 4843-4848
    • Lee, J.1    Ryu, H.2    Ferrante, R.J.3    Morris, S.M.4    Ratan, R.R.5
  • 26
    • 84953357060 scopus 로고    scopus 로고
    • Multiple amino acid sensing inputs to mTORC1
    • Shimobayashi, M. & Hall, M. N. Multiple amino acid sensing inputs to mTORC1. Cell Res. 26, 7-20 (2016).
    • (2016) Cell Res. , vol.26 , pp. 7-20
    • Shimobayashi, M.1    Hall, M.N.2
  • 27
    • 84911192188 scopus 로고    scopus 로고
    • Human Eukaryotic Initiation Factor 2 (eIF2)-GTP-Met-tRNAi Ternary Complex and eIF3 Stabilize the 43 S Preinitiation Complex
    • Sokabe, M. & Fraser, C. S. Human Eukaryotic Initiation Factor 2 (eIF2)-GTP-Met-tRNAi Ternary Complex and eIF3 Stabilize the 43 S Preinitiation Complex. J. Biol. Chem. 289, 31827-31836 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 31827-31836
    • Sokabe, M.1    Fraser, C.S.2
  • 28
    • 27744569843 scopus 로고    scopus 로고
    • MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580 (2005).
    • (2005) Cell , vol.123 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 29
    • 84961262318 scopus 로고    scopus 로고
    • EIF4A inactivates TORC1 in response to amino acid starvation
    • n/a-n/a
    • Tsokanos, F.-F. et al. eIF4A inactivates TORC1 in response to amino acid starvation. EMBO J. n/a-n/a. doi: 10.15252/ embj.201593118 (2016).
    • (2016) EMBO J.
    • Tsokanos, F.-F.1
  • 30
    • 84922743269 scopus 로고    scopus 로고
    • Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    • Wang, S. et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188-194 (2015).
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1
  • 31
    • 84925777835 scopus 로고    scopus 로고
    • SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1
    • Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1. Nature 519, 477-481 (2015).
    • (2015) Nature , vol.519 , pp. 477-481
    • Rebsamen, M.1
  • 32
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA Synthetase is an Intracellular Leucine Sensor for the mTORC1-Signaling Pathway
    • Han, J. M. et al. Leucyl-tRNA Synthetase is an Intracellular Leucine Sensor for the mTORC1-Signaling Pathway. Cell 149, 410-424 (2012).
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1
  • 33
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates rag-mTORC1 signaling
    • Durán, R. V. et al. Glutaminolysis Activates Rag-mTORC1 Signaling. Mol. Cell 47, 349-358 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 349-358
    • Durán, R.V.1
  • 34
    • 84952915479 scopus 로고    scopus 로고
    • Sestrin2 is a leucine sensor for the mTORC1 pathway
    • Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48 (2016).
    • (2016) Science , vol.351 , pp. 43-48
    • Wolfson, R.L.1
  • 35
    • 84947914958 scopus 로고    scopus 로고
    • GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2
    • Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331-2336 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 2331-2336
    • Ye, J.1
  • 36
    • 0032486268 scopus 로고    scopus 로고
    • Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    • Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273, 14484-94 (1998).
    • (1998) J Biol Chem , vol.273 , pp. 14484-14494
    • Hara, K.1
  • 37
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2
    • Demetriades, C., Doumpas, N. & Teleman, A. A. Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2. Cell 156, 786-799 (2014).
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 38
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 619-633
    • Harding, H.P.1
  • 39
    • 0034973982 scopus 로고    scopus 로고
    • Translational Control is Required for the Unfolded Protein Response and in Vivo Glucose Homeostasis
    • Scheuner, D. et al. Translational Control is Required for the Unfolded Protein Response and In Vivo Glucose Homeostasis. Mol. Cell 7, 1165-1176 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 1165-1176
    • Scheuner, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.