-
1
-
-
0016824053
-
Leucine, a possible regulator of protein turnover in muscle
-
Buse M.G., Reid S.S. Leucine, a possible regulator of protein turnover in muscle. J. Clin. Invest. 1975, 56:1250-1261.
-
(1975)
J. Clin. Invest.
, vol.56
, pp. 1250-1261
-
-
Buse, M.G.1
Reid, S.S.2
-
2
-
-
0016431688
-
Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm
-
Fulks R.M., Li J.B., Goldberg A.L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 1975, 250:290-298.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 290-298
-
-
Fulks, R.M.1
Li, J.B.2
Goldberg, A.L.3
-
3
-
-
0018128453
-
Influence of amino acid availability on protein turnover in perfused skeletal muscle
-
Li J.B., Jefferson L.S. Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim. Biophys. Acta 1978, 544:351-359.
-
(1978)
Biochim. Biophys. Acta
, vol.544
, pp. 351-359
-
-
Li, J.B.1
Jefferson, L.S.2
-
4
-
-
0015217664
-
Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis
-
Morgan H.E., Earl D.C., Broadus A., Wolpert E.B., Giger K.E., Jefferson L.S. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J. Biol. Chem. 1971, 246:2152-2162.
-
(1971)
J. Biol. Chem.
, vol.246
, pp. 2152-2162
-
-
Morgan, H.E.1
Earl, D.C.2
Broadus, A.3
Wolpert, E.B.4
Giger, K.E.5
Jefferson, L.S.6
-
5
-
-
0033808169
-
Leucine stimulates translation initiation in skeletal muscle of post-absorptive rats via a rapamycin-sensitive pathway
-
Anthony J.C., Yoshizawa F., Anthony T.G., Vary T.C., Jefferson L.S., Kimball S.R. Leucine stimulates translation initiation in skeletal muscle of post-absorptive rats via a rapamycin-sensitive pathway. J. Nutr. 2000, 130:2413-2419.
-
(2000)
J. Nutr.
, vol.130
, pp. 2413-2419
-
-
Anthony, J.C.1
Yoshizawa, F.2
Anthony, T.G.3
Vary, T.C.4
Jefferson, L.S.5
Kimball, S.R.6
-
6
-
-
84907991157
-
The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
-
Chantranupong L., Wolfson R.L., Orozco J.M., Saxton R.A., Scaria S.M., Bar-Peled L., Spooner E., Isasa M., Gygi S.P., Sabatini D.M. The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014, 9:1-8.
-
(2014)
Cell Rep.
, vol.9
, pp. 1-8
-
-
Chantranupong, L.1
Wolfson, R.L.2
Orozco, J.M.3
Saxton, R.A.4
Scaria, S.M.5
Bar-Peled, L.6
Spooner, E.7
Isasa, M.8
Gygi, S.P.9
Sabatini, D.M.10
-
7
-
-
84912128530
-
Sestrins inhibit mTORC1 kinase activation through the GATOR complex
-
Parmigiani A., Nourbakhsh A., Ding B., Wang W., Kim Y.C., Akopiants K., Guan K.L., Karin M., Budanov A.V. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014, 9:1281-1291.
-
(2014)
Cell Rep.
, vol.9
, pp. 1281-1291
-
-
Parmigiani, A.1
Nourbakhsh, A.2
Ding, B.3
Wang, W.4
Kim, Y.C.5
Akopiants, K.6
Guan, K.L.7
Karin, M.8
Budanov, A.V.9
-
8
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
Jewell J.L., Kim Y.C., Russell R.C., Yu F.X., Park H.W., Plouffe S.W., Tagliabracci V.S., Guan K.L. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347:194-198.
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
Plouffe, S.W.6
Tagliabracci, V.S.7
Guan, K.L.8
-
9
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
Efeyan A., Comb W.C., Sabatini D.M. Nutrient-sensing mechanisms and pathways. Nature 2015, 517:302-310.
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
10
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
11
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
12
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M., Pochini L., Stasyk T., de Araujo M.E., Galluccio M., Kandasamy R.K., Snijder B., Fauster A., Rudashevskaya E.L., Bruckner M., Scorzoni S., Filipek P.A., Huber K.V., Bigenzahn J.W., Heinz L.X., Kraft C., Bennett K.L., Indiveri C., Huber L.A., Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519:477-481.
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
Scorzoni, S.11
Filipek, P.A.12
Huber, K.V.13
Bigenzahn, J.W.14
Heinz, L.X.15
Kraft, C.16
Bennett, K.L.17
Indiveri, C.18
Huber, L.A.19
Superti-Furga, G.20
more..
-
13
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S., Tsun Z.Y., Wolfson R.L., Shen K., Wyant G.A., Plovanich M.E., Yuan E.D., Jones T.D., Chantranupong L., Comb W., Wang T., Bar-Peled L., Zoncu R., Straub C., Kim C., Park J., Sabatini B.L., Sabatini D.M. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347:188-194.
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
Wang, T.11
Bar-Peled, L.12
Zoncu, R.13
Straub, C.14
Kim, C.15
Park, J.16
Sabatini, B.L.17
Sabatini, D.M.18
-
14
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L., Chantranupong L., Cherniack A.D., Chen W.W., Ottina K.A., Grabiner B.C., Spear E.D., Carter S.L., Meyerson M., Sabatini D.M. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
15
-
-
84966310163
-
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway
-
Saxton R.A., Knockenhauer K.E., Wolfson R.L., Chantranupong L., Pacold M.E., Wang T., Schwartz T.U., Sabatini D.M. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 2015.
-
(2015)
Science
-
-
Saxton, R.A.1
Knockenhauer, K.E.2
Wolfson, R.L.3
Chantranupong, L.4
Pacold, M.E.5
Wang, T.6
Schwartz, T.U.7
Sabatini, D.M.8
-
16
-
-
84953367182
-
Sestrin2 is a leucine sensor for the mTORC1 pathway
-
Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., Sabatini D.M. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2015.
-
(2015)
Science
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
Sabatini, D.M.7
-
18
-
-
84932638310
-
Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
-
Jung J., Genau H.M., Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015, 35:2479-2494.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 2479-2494
-
-
Jung, J.1
Genau, H.M.2
Behrends, C.3
-
19
-
-
84890873265
-
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells
-
Gordon B.S., Kazi A.A., Coleman C.S., Dennis M.D., Chau V., Jefferson L.S., Kimball S.R. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Cell. Signal. 2014, 26:461-467.
-
(2014)
Cell. Signal.
, vol.26
, pp. 461-467
-
-
Gordon, B.S.1
Kazi, A.A.2
Coleman, C.S.3
Dennis, M.D.4
Chau, V.5
Jefferson, L.S.6
Kimball, S.R.7
-
20
-
-
0036230645
-
Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation
-
Anthony J.C., Reiter A.K., Anthony T.G., Crozier S.J., Lang C.H., MacLean D.A., Kimball S.R., Jefferson L.S. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 2002, 51:928-936.
-
(2002)
Diabetes
, vol.51
, pp. 928-936
-
-
Anthony, J.C.1
Reiter, A.K.2
Anthony, T.G.3
Crozier, S.J.4
Lang, C.H.5
MacLean, D.A.6
Kimball, S.R.7
Jefferson, L.S.8
-
21
-
-
84947914958
-
GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2
-
Ye J., Palm W., Peng M., King B., Lindsten T., Li M.O., Koumenis C., Thompson C.B. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015, 29:2331-2336.
-
(2015)
Genes Dev.
, vol.29
, pp. 2331-2336
-
-
Ye, J.1
Palm, W.2
Peng, M.3
King, B.4
Lindsten, T.5
Li, M.O.6
Koumenis, C.7
Thompson, C.B.8
-
22
-
-
79953140160
-
Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids
-
Dennis M.D., Baum J.I., Kimball S.R., Jefferson L.S. Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J. Biol. Chem. 2011, 286:8287-8296.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 8287-8296
-
-
Dennis, M.D.1
Baum, J.I.2
Kimball, S.R.3
Jefferson, L.S.4
-
23
-
-
79955566182
-
ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling
-
Winter J.N., Jefferson L.S., Kimball S.R. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am. J. Phys. 2011, 300:C1172-C1180.
-
(2011)
Am. J. Phys.
, vol.300
, pp. C1172-C1180
-
-
Winter, J.N.1
Jefferson, L.S.2
Kimball, S.R.3
-
24
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., Myer V.E., MacKeigan J.P., Porter J.A., Wang Y.K., Cantley L.C., Finan P.M., Murphy L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136:521-534.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
MacKeigan, J.P.12
Porter, J.A.13
Wang, Y.K.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
25
-
-
84908371000
-
Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1
-
Ro S.H., Semple I.A., Park H., Park H., Park H.W., Kim M., Kim J.S., Lee J.H. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J. 2014, 281:3816-3827.
-
(2014)
FEBS J.
, vol.281
, pp. 3816-3827
-
-
Ro, S.H.1
Semple, I.A.2
Park, H.3
Park, H.4
Park, H.W.5
Kim, M.6
Kim, J.S.7
Lee, J.H.8
-
26
-
-
70350449062
-
MTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex
-
Chan E.Y. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci. Signal. 2009, 2:pe51.
-
(2009)
Sci. Signal.
, vol.2
, pp. pe51
-
-
Chan, E.Y.1
-
27
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D.F., Kim J., Shaw R.J., Guan K.-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7:645-646.
-
(2011)
Autophagy
, vol.7
, pp. 645-646
-
-
Egan, D.F.1
Kim, J.2
Shaw, R.J.3
Guan, K.-L.4
-
28
-
-
84920504512
-
MTOR: a pharmacologic target for autophagy regulation
-
Kim Y.C., Guan K.-L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 2015, 125:25-32.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 25-32
-
-
Kim, Y.C.1
Guan, K.-L.2
-
29
-
-
84940550513
-
Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2 A
-
Wong P.M., Feng Y., Wang J., Shi R., Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2 A. Nat. Commun. 2015, 6:8048.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8048
-
-
Wong, P.M.1
Feng, Y.2
Wang, J.3
Shi, R.4
Jiang, X.5
-
30
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils G., Jaquenoud M., Bontron S., Ostrowicz C., Ungermann C., De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 2012, 46:105-110.
-
(2012)
Mol. Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
31
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han J.M., Jeong S.J., Park M.C., Kim G., Kwon N.H., Kim H.K., Ha S.H., Ryu S.H., Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149:410-424.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
32
-
-
0020081889
-
Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis in skeletal and cardiac muscle?
-
Tischler M.E., Desautels M., Goldberg A.L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis in skeletal and cardiac muscle?. J. Biol. Chem. 1982, 257:1613-1621.
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 1613-1621
-
-
Tischler, M.E.1
Desautels, M.2
Goldberg, A.L.3
-
33
-
-
0015807163
-
Amino acid levels in plasma, liver, and skeletal muscle during protein deprivation
-
Adibi S.A., Modesto T.A., Morse E.L., Amin P.M. Amino acid levels in plasma, liver, and skeletal muscle during protein deprivation. Am. J. Phys. 1973, 225:408-414.
-
(1973)
Am. J. Phys.
, vol.225
, pp. 408-414
-
-
Adibi, S.A.1
Modesto, T.A.2
Morse, E.L.3
Amin, P.M.4
-
34
-
-
84948654888
-
Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains
-
Kim H., An S., Ro S.H., Teixeira F., Jin Park G., Kim C., Cho C.S., Kim J.S., Jakob U., Hee Lee J., Cho U.S. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat. Commun. 2015, 6:10025.
-
(2015)
Nat. Commun.
, vol.6
, pp. 10025
-
-
Kim, H.1
An, S.2
Ro, S.H.3
Teixeira, F.4
Jin Park, G.5
Kim, C.6
Cho, C.S.7
Kim, J.S.8
Jakob, U.9
Hee Lee, J.10
Cho, U.S.11
|