-
1
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
[1] Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Ensemble diversity measures and their application to thinning. Inf. Fusion 6 (2005), 49–62.
-
(2005)
Inf. Fusion
, vol.6
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
4
-
-
84881484792
-
Parallel random prism: a computationally efficient ensemble learner for classification
-
Springer London
-
[4] Stahl, F., May, D., Bramer, M., Parallel random prism: a computationally efficient ensemble learner for classification. Research and Development in Intelligent Systems XXIX, 2012, Springer, London, 21–34.
-
(2012)
Research and Development in Intelligent Systems XXIX
, pp. 21-34
-
-
Stahl, F.1
May, D.2
Bramer, M.3
-
6
-
-
33845291177
-
Trade-off between diversity and accuracy in ensemble generation
-
Springer Berlin Heidelberg
-
[6] Chandra, A., Chen, H., Yao, X., Trade-off between diversity and accuracy in ensemble generation. Multi-Objective Machine Learning, vol. 16, Studies in Computational Intelligence, 2006, Springer Berlin Heidelberg, 429–464.
-
(2006)
Multi-Objective Machine Learning, vol. 16, Studies in Computational Intelligence
, pp. 429-464
-
-
Chandra, A.1
Chen, H.2
Yao, X.3
-
7
-
-
70350346030
-
Ensemble learning
-
Springer US
-
[7] Zhou, Z.-H., Ensemble learning. Encyclopedia of Biometrics, 2009, Springer US, 270–273.
-
(2009)
Encyclopedia of Biometrics
, pp. 270-273
-
-
Zhou, Z.-H.1
-
8
-
-
4344706336
-
Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
-
[8] Webb, G.I., Zheng, Z., Multistrategy ensemble learning: reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Eng. 16 (2004), 980–991.
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, pp. 980-991
-
-
Webb, G.I.1
Zheng, Z.2
-
10
-
-
48749096852
-
-
[10] Caruana, R., Munson, A., Niculescu-Mizil, A., Getting the Most Out of Ensemble Selection, presented at Sixth International Conference on Data Mining, Hong Kong, 2006.
-
(2006)
Getting the Most Out of Ensemble Selection, presented at Sixth International Conference on Data Mining, Hong Kong
-
-
Caruana, R.1
Munson, A.2
Niculescu-Mizil, A.3
-
11
-
-
84866869028
-
Diversity regularized ensemble pruning
-
Springer
-
[11] Li, N., Yu, Y., Zhou, Z.-H., Diversity regularized ensemble pruning. Machine Learning and Knowledge Discovery in Databases, 2012, Springer, 330–345.
-
(2012)
Machine Learning and Knowledge Discovery in Databases
, pp. 330-345
-
-
Li, N.1
Yu, Y.2
Zhou, Z.-H.3
-
12
-
-
70350220351
-
An ensemble pruning primer
-
Springer
-
[12] Tsoumakas, G., Partalas, I., Vlahavas, I., An ensemble pruning primer. Applications of Supervised and Unsupervised Ensemble Methods, 2009, Springer, 1–13.
-
(2009)
Applications of Supervised and Unsupervised Ensemble Methods
, pp. 1-13
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
13
-
-
84980637890
-
Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine, CLEF (Working Notes)
-
[13] Papanikolaou, Y., Dimitriadis, D., Tsoumakas, G., Laliotis, M., Markantonatos, N., Vlahavas, I.P., Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine, CLEF (Working Notes). 2014, 1348–1360.
-
(2014)
, pp. 1348-1360
-
-
Papanikolaou, Y.1
Dimitriadis, D.2
Tsoumakas, G.3
Laliotis, M.4
Markantonatos, N.5
Vlahavas, I.P.6
-
14
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
[14] Zhang, Y., Burer, S., Street, W.N., Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006), 1315–1338.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
15
-
-
61849098236
-
Pruning an ensemble of classifiers via reinforcement learning
-
[15] Partalas, I., Tsoumakas, G., Vlahavas, I., Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 72 (2009), 1900–1909.
-
(2009)
Neurocomputing
, vol.72
, pp. 1900-1909
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
16
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
[16] Zhou, Z.-H., Wu, J., Tang, W., Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002), 239–263.
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
18
-
-
27944435917
-
Selective fusion of heterogeneous classifiers
-
[18] Tsoumakas, G., Angelis, L., Vlahavas, I., Selective fusion of heterogeneous classifiers. Intell. Data Anal. 9 (2005), 511–525.
-
(2005)
Intell. Data Anal.
, vol.9
, pp. 511-525
-
-
Tsoumakas, G.1
Angelis, L.2
Vlahavas, I.3
-
19
-
-
84870065802
-
A competitive ensemble pruning approach based on cross-validation technique
-
[19] Dai, Q., A competitive ensemble pruning approach based on cross-validation technique. Knowledge-Based Syst. 37 (2013), 394–414.
-
(2013)
Knowledge-Based Syst.
, vol.37
, pp. 394-414
-
-
Dai, Q.1
-
20
-
-
84883053573
-
An efficient ensemble pruning algorithm using One-Path and Two-Trips searching approach
-
[20] Dai, Q., An efficient ensemble pruning algorithm using One-Path and Two-Trips searching approach. Knowledge-Based Syst. 51 (2013), 85–92.
-
(2013)
Knowledge-Based Syst.
, vol.51
, pp. 85-92
-
-
Dai, Q.1
-
21
-
-
84884210298
-
A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
-
[21] Dai, Q., A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 122 (2013), 258–265.
-
(2013)
Neurocomputing
, vol.122
, pp. 258-265
-
-
Dai, Q.1
-
22
-
-
84885377748
-
ModEnPBT: a modified backtracking ensemble pruning algorithm
-
[22] Dai, Q., Liu, Z., ModEnPBT: a modified backtracking ensemble pruning algorithm. Appl. Soft Comput. 13 (2013), 4292–4302.
-
(2013)
Appl. Soft Comput.
, vol.13
, pp. 4292-4302
-
-
Dai, Q.1
Liu, Z.2
-
23
-
-
84919706710
-
A new reverse reduce-error ensemble pruning algorithm
-
[23] Dai, Q., Zhang, T., Liu, N., A new reverse reduce-error ensemble pruning algorithm. Appl. Soft Comput. 28 (2015), 237–249.
-
(2015)
Appl. Soft Comput.
, vol.28
, pp. 237-249
-
-
Dai, Q.1
Zhang, T.2
Liu, N.3
-
24
-
-
14344255621
-
-
[24] Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A., Ensemble selection from libraries of models, presented at In Proceedings of the 21st international conference on machine learning, 2004.
-
(2004)
Ensemble selection from libraries of models, presented at In Proceedings of the 21st international conference on machine learning
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
25
-
-
0004075866
-
On the boosting pruning problem, presented at in: 11th European Conference on Machine Learning
-
Springer Berlin
-
[25] Tamon, C., Xiang, J., On the boosting pruning problem, presented at in: 11th European Conference on Machine Learning. 2000, Springer Berlin.
-
(2000)
-
-
Tamon, C.1
Xiang, J.2
-
26
-
-
85018245015
-
-
[26] Partalas, I., Tsoumakas, G., Vlahavas, I., Focused ensemble selection: A diversity-based method for greedy ensemble selection, presented at Proceeding of the 2008 conference on ECAI, 2008.
-
(2008)
Focused ensemble selection: A diversity-based method for greedy ensemble selection, presented at Proceeding of the 2008 conference on ECAI
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
27
-
-
79956208533
-
Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
-
[27] Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A., Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing 74 (2011), 2250–2264.
-
(2011)
Neurocomputing
, vol.74
, pp. 2250-2264
-
-
Hernandez-Lobato, D.1
Martinez-Munoz, G.2
Suarez, A.3
-
28
-
-
84866883589
-
A study on greedy algorithms for ensemble pruning, Technical Report TR-LPIS-360-12
-
Department of Informatics, Aristotle University of Thessaloniki Greece
-
[28] Partalas, I., Tsoumakas, G., Vlahavas, I., A study on greedy algorithms for ensemble pruning, Technical Report TR-LPIS-360-12., 2012, Department of Informatics, Aristotle University of Thessaloniki, Greece.
-
(2012)
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
29
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
[29] Martinez-Munoz, G., Hernandez-Lobato, D., Suarez, A., An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009), 245–259.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, pp. 245-259
-
-
Martinez-Munoz, G.1
Hernandez-Lobato, D.2
Suarez, A.3
-
30
-
-
78049528785
-
An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
-
[30] Partalas, I., Tsoumakas, G., Vlahavas, I., An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 81 (2010), 257–282.
-
(2010)
Mach. Learn.
, vol.81
, pp. 257-282
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
31
-
-
0035478854
-
Random forests
-
[31] Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
32
-
-
85018297325
-
-
[32] Dietterich, T.G., Ensemble Methods in Machine Learning, presented at In Proceedings of the 1st International Workshop in Multiple Classifier Systems, Cagliari, Italy, 2000.
-
(2000)
Ensemble Methods in Machine Learning, presented at In Proceedings of the 1st International Workshop in Multiple Classifier Systems, Cagliari, Italy
-
-
Dietterich, T.G.1
-
33
-
-
84951793463
-
A design framework for hierarchical ensemble of multiple feature extractors and multiple classifiers
-
[33] Kim, K., Lin, H., Choi, J.Y., Choi, K., A design framework for hierarchical ensemble of multiple feature extractors and multiple classifiers. Pattern Recogn. 52 (2016), 1–16.
-
(2016)
Pattern Recogn.
, vol.52
, pp. 1-16
-
-
Kim, K.1
Lin, H.2
Choi, J.Y.3
Choi, K.4
-
34
-
-
84921697002
-
META-DES: A dynamic ensemble selection framework using meta-learning
-
[34] Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I., META-DES: A dynamic ensemble selection framework using meta-learning. Pattern Recogn. 48 (2015), 1925–1935.
-
(2015)
Pattern Recogn.
, vol.48
, pp. 1925-1935
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
Ren, T.I.4
-
35
-
-
84922630377
-
Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining
-
[35] Kokkinos, Y., Margaritis, K.G., Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining. Neurocomputing 150 (2015), 513–528.
-
(2015)
Neurocomputing
, vol.150
, pp. 513-528
-
-
Kokkinos, Y.1
Margaritis, K.G.2
-
36
-
-
84887611642
-
Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
-
[36] Lysiak, R., Kurzynski, M., Woloszynski, T., Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126 (2014), 29–35.
-
(2014)
Neurocomputing
, vol.126
, pp. 29-35
-
-
Lysiak, R.1
Kurzynski, M.2
Woloszynski, T.3
-
37
-
-
84888074993
-
A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
-
[37] Tan, C.J., Lim, C.P., Cheah, Y.-N., A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models. Neurocomputing 125 (2014), 217–228.
-
(2014)
Neurocomputing
, vol.125
, pp. 217-228
-
-
Tan, C.J.1
Lim, C.P.2
Cheah, Y.-N.3
-
38
-
-
84885838906
-
LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
-
[38] Lin, C., Chen, W., Qiu, C., Wu, Y., Krishnan, S., Zou, Q., LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123 (2014), 424–435.
-
(2014)
Neurocomputing
, vol.123
, pp. 424-435
-
-
Lin, C.1
Chen, W.2
Qiu, C.3
Wu, Y.4
Krishnan, S.5
Zou, Q.6
-
39
-
-
84955177072
-
Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
-
[39] Zhang, H., Zhang, X., Gao, X.-Z., Song, S., Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble. Neurocomputing 173 (2016), 1868–1884.
-
(2016)
Neurocomputing
, vol.173
, pp. 1868-1884
-
-
Zhang, H.1
Zhang, X.2
Gao, X.-Z.3
Song, S.4
-
40
-
-
84955686357
-
Somatic mutation detection using ensemble of flexible neural tree model
-
[40] Yang, B., Chen, Y., Somatic mutation detection using ensemble of flexible neural tree model. Neurocomputing 179 (2016), 161–168.
-
(2016)
Neurocomputing
, vol.179
, pp. 161-168
-
-
Yang, B.1
Chen, Y.2
-
41
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
[41] Kuncheva, L., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51 (2003), 181–207.
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.J.2
-
42
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
[42] Dietterich, T.G., An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 (2000), 139–157.
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
43
-
-
0342838353
-
-
[43] Giacinto, G., Roli, F., Fumera, G., Design of effective multiple classifier systems by clustering of classifiers, presented at In 15th International Conference on Pattern Recognition, 2000.
-
(2000)
Design of effective multiple classifier systems by clustering of classifiers, presented at In 15th International Conference on Pattern Recognition
-
-
Giacinto, G.1
Roli, F.2
Fumera, G.3
-
44
-
-
84884292459
-
Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification
-
[44] Idris, A., Khan, A., Lee, Y.S., Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification. App. Intell. 39 (2013), 659–672.
-
(2013)
App. Intell.
, vol.39
, pp. 659-672
-
-
Idris, A.1
Khan, A.2
Lee, Y.S.3
-
45
-
-
0004116989
-
Introduction to Algorithms
-
second edition The Massachusetts Institute of Technology
-
[45] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to Algorithms. second edition, 2001, The Massachusetts Institute of Technology.
-
(2001)
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
Stein, C.4
-
46
-
-
84957436616
-
Ensemble selection by GRASP
-
[46] Liu, Z., Dai, Q., Liu, N., Ensemble selection by GRASP. Appl. Intell. 41 (2014), 128–144.
-
(2014)
Appl. Intell.
, vol.41
, pp. 128-144
-
-
Liu, Z.1
Dai, Q.2
Liu, N.3
-
47
-
-
84925537078
-
Introducing randomness into greedy ensemble pruning algorithms
-
[47] Dai, Q., Li, M., Introducing randomness into greedy ensemble pruning algorithms. Appl. Intell. 42 (2015), 406–429.
-
(2015)
Appl. Intell.
, vol.42
, pp. 406-429
-
-
Dai, Q.1
Li, M.2
-
48
-
-
0036931834
-
-
[48] Fan, W., Chu, F., Wang, H., Yu, P.S., Pruning and dynamic scheduling of cost-sensitive ensembles, presented at In Eighteenth national conference on artificial intelligence, American association for artificial intelligence, 2002.
-
(2002)
Pruning and dynamic scheduling of cost-sensitive ensembles, presented at In Eighteenth national conference on artificial intelligence, American association for artificial intelligence
-
-
Fan, W.1
Chu, F.2
Wang, H.3
Yu, P.S.4
-
49
-
-
84948156012
-
An efficient ordering-based ensemble pruning algorithm via dynamic programming
-
[49] Dai, Q., Han, X., An efficient ordering-based ensemble pruning algorithm via dynamic programming. Appl. Intell. 44 (2016), 816–830.
-
(2016)
Appl. Intell.
, vol.44
, pp. 816-830
-
-
Dai, Q.1
Han, X.2
-
50
-
-
85018315040
-
-
[50] http://www.ics.uci.edu/∼mlearn/ MLRepository.html or ftp.ics.uci.edu:pub/machine-learning-databases.
-
-
-
-
51
-
-
0003957032
-
Data Mining: Practical Machine Learning Tools and Techniques
-
Morgan Kaufmann
-
[51] Witten, I.H., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques. 2005, Morgan Kaufmann.
-
(2005)
-
-
Witten, I.H.1
Frank, E.2
-
52
-
-
33745903481
-
Extreme learning machine: theory and applications
-
[52] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
53
-
-
84899006908
-
Learning with local and global consistency
-
[53] Zhou, D.Y., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B., Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 16 (2004), 321–328.
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
, pp. 321-328
-
-
Zhou, D.Y.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Scholkopf, B.5
|