메뉴 건너뛰기




Volumn 58, Issue , 2017, Pages 75-91

Considering diversity and accuracy simultaneously for ensemble pruning

Author keywords

Accuracy reinforcement (AccRein); Diversity focused two (DFTwo); Ensemble selection; Greedy ensemble pruning (GEP) algorithm; Simultaneous diversity accuracy (SDAcc)

Indexed keywords

SOFT COMPUTING; SOFTWARE ENGINEERING;

EID: 85018324851     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2017.04.058     Document Type: Article
Times cited : (70)

References (53)
  • 1
    • 10444241978 scopus 로고    scopus 로고
    • Ensemble diversity measures and their application to thinning
    • [1] Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P., Ensemble diversity measures and their application to thinning. Inf. Fusion 6 (2005), 49–62.
    • (2005) Inf. Fusion , vol.6 , pp. 49-62
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Kegelmeyer, W.P.4
  • 4
    • 84881484792 scopus 로고    scopus 로고
    • Parallel random prism: a computationally efficient ensemble learner for classification
    • Springer London
    • [4] Stahl, F., May, D., Bramer, M., Parallel random prism: a computationally efficient ensemble learner for classification. Research and Development in Intelligent Systems XXIX, 2012, Springer, London, 21–34.
    • (2012) Research and Development in Intelligent Systems XXIX , pp. 21-34
    • Stahl, F.1    May, D.2    Bramer, M.3
  • 7
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble learning
    • Springer US
    • [7] Zhou, Z.-H., Ensemble learning. Encyclopedia of Biometrics, 2009, Springer US, 270–273.
    • (2009) Encyclopedia of Biometrics , pp. 270-273
    • Zhou, Z.-H.1
  • 8
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: reducing error by combining ensemble learning techniques
    • [8] Webb, G.I., Zheng, Z., Multistrategy ensemble learning: reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Eng. 16 (2004), 980–991.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.2
  • 13
    • 84980637890 scopus 로고    scopus 로고
    • Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine, CLEF (Working Notes)
    • [13] Papanikolaou, Y., Dimitriadis, D., Tsoumakas, G., Laliotis, M., Markantonatos, N., Vlahavas, I.P., Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine, CLEF (Working Notes). 2014, 1348–1360.
    • (2014) , pp. 1348-1360
    • Papanikolaou, Y.1    Dimitriadis, D.2    Tsoumakas, G.3    Laliotis, M.4    Markantonatos, N.5    Vlahavas, I.P.6
  • 14
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • [14] Zhang, Y., Burer, S., Street, W.N., Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006), 1315–1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 15
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • [15] Partalas, I., Tsoumakas, G., Vlahavas, I., Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 72 (2009), 1900–1909.
    • (2009) Neurocomputing , vol.72 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 16
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • [16] Zhou, Z.-H., Wu, J., Tang, W., Ensembling neural networks: many could be better than all. Artif. Intell. 137 (2002), 239–263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 17
    • 33750460241 scopus 로고    scopus 로고
    • Using boosting to prune bagging ensembles
    • [17] Martinez-Munoz, G., Suarez, A., Using boosting to prune bagging ensembles. Pattern Recognit. Lett. 28 (2007), 156–165.
    • (2007) Pattern Recognit. Lett. , vol.28 , pp. 156-165
    • Martinez-Munoz, G.1    Suarez, A.2
  • 18
    • 27944435917 scopus 로고    scopus 로고
    • Selective fusion of heterogeneous classifiers
    • [18] Tsoumakas, G., Angelis, L., Vlahavas, I., Selective fusion of heterogeneous classifiers. Intell. Data Anal. 9 (2005), 511–525.
    • (2005) Intell. Data Anal. , vol.9 , pp. 511-525
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 19
    • 84870065802 scopus 로고    scopus 로고
    • A competitive ensemble pruning approach based on cross-validation technique
    • [19] Dai, Q., A competitive ensemble pruning approach based on cross-validation technique. Knowledge-Based Syst. 37 (2013), 394–414.
    • (2013) Knowledge-Based Syst. , vol.37 , pp. 394-414
    • Dai, Q.1
  • 20
    • 84883053573 scopus 로고    scopus 로고
    • An efficient ensemble pruning algorithm using One-Path and Two-Trips searching approach
    • [20] Dai, Q., An efficient ensemble pruning algorithm using One-Path and Two-Trips searching approach. Knowledge-Based Syst. 51 (2013), 85–92.
    • (2013) Knowledge-Based Syst. , vol.51 , pp. 85-92
    • Dai, Q.1
  • 21
    • 84884210298 scopus 로고    scopus 로고
    • A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
    • [21] Dai, Q., A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 122 (2013), 258–265.
    • (2013) Neurocomputing , vol.122 , pp. 258-265
    • Dai, Q.1
  • 22
    • 84885377748 scopus 로고    scopus 로고
    • ModEnPBT: a modified backtracking ensemble pruning algorithm
    • [22] Dai, Q., Liu, Z., ModEnPBT: a modified backtracking ensemble pruning algorithm. Appl. Soft Comput. 13 (2013), 4292–4302.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4292-4302
    • Dai, Q.1    Liu, Z.2
  • 23
    • 84919706710 scopus 로고    scopus 로고
    • A new reverse reduce-error ensemble pruning algorithm
    • [23] Dai, Q., Zhang, T., Liu, N., A new reverse reduce-error ensemble pruning algorithm. Appl. Soft Comput. 28 (2015), 237–249.
    • (2015) Appl. Soft Comput. , vol.28 , pp. 237-249
    • Dai, Q.1    Zhang, T.2    Liu, N.3
  • 25
    • 0004075866 scopus 로고    scopus 로고
    • On the boosting pruning problem, presented at in: 11th European Conference on Machine Learning
    • Springer Berlin
    • [25] Tamon, C., Xiang, J., On the boosting pruning problem, presented at in: 11th European Conference on Machine Learning. 2000, Springer Berlin.
    • (2000)
    • Tamon, C.1    Xiang, J.2
  • 27
    • 79956208533 scopus 로고    scopus 로고
    • Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles
    • [27] Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A., Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing 74 (2011), 2250–2264.
    • (2011) Neurocomputing , vol.74 , pp. 2250-2264
    • Hernandez-Lobato, D.1    Martinez-Munoz, G.2    Suarez, A.3
  • 28
    • 84866883589 scopus 로고    scopus 로고
    • A study on greedy algorithms for ensemble pruning, Technical Report TR-LPIS-360-12
    • Department of Informatics, Aristotle University of Thessaloniki Greece
    • [28] Partalas, I., Tsoumakas, G., Vlahavas, I., A study on greedy algorithms for ensemble pruning, Technical Report TR-LPIS-360-12., 2012, Department of Informatics, Aristotle University of Thessaloniki, Greece.
    • (2012)
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 30
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • [30] Partalas, I., Tsoumakas, G., Vlahavas, I., An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 81 (2010), 257–282.
    • (2010) Mach. Learn. , vol.81 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 31
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [31] Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 33
    • 84951793463 scopus 로고    scopus 로고
    • A design framework for hierarchical ensemble of multiple feature extractors and multiple classifiers
    • [33] Kim, K., Lin, H., Choi, J.Y., Choi, K., A design framework for hierarchical ensemble of multiple feature extractors and multiple classifiers. Pattern Recogn. 52 (2016), 1–16.
    • (2016) Pattern Recogn. , vol.52 , pp. 1-16
    • Kim, K.1    Lin, H.2    Choi, J.Y.3    Choi, K.4
  • 34
    • 84921697002 scopus 로고    scopus 로고
    • META-DES: A dynamic ensemble selection framework using meta-learning
    • [34] Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I., META-DES: A dynamic ensemble selection framework using meta-learning. Pattern Recogn. 48 (2015), 1925–1935.
    • (2015) Pattern Recogn. , vol.48 , pp. 1925-1935
    • Cruz, R.M.O.1    Sabourin, R.2    Cavalcanti, G.D.C.3    Ren, T.I.4
  • 35
    • 84922630377 scopus 로고    scopus 로고
    • Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining
    • [35] Kokkinos, Y., Margaritis, K.G., Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining. Neurocomputing 150 (2015), 513–528.
    • (2015) Neurocomputing , vol.150 , pp. 513-528
    • Kokkinos, Y.1    Margaritis, K.G.2
  • 36
    • 84887611642 scopus 로고    scopus 로고
    • Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
    • [36] Lysiak, R., Kurzynski, M., Woloszynski, T., Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126 (2014), 29–35.
    • (2014) Neurocomputing , vol.126 , pp. 29-35
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 37
    • 84888074993 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
    • [37] Tan, C.J., Lim, C.P., Cheah, Y.-N., A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models. Neurocomputing 125 (2014), 217–228.
    • (2014) Neurocomputing , vol.125 , pp. 217-228
    • Tan, C.J.1    Lim, C.P.2    Cheah, Y.-N.3
  • 38
    • 84885838906 scopus 로고    scopus 로고
    • LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy
    • [38] Lin, C., Chen, W., Qiu, C., Wu, Y., Krishnan, S., Zou, Q., LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123 (2014), 424–435.
    • (2014) Neurocomputing , vol.123 , pp. 424-435
    • Lin, C.1    Chen, W.2    Qiu, C.3    Wu, Y.4    Krishnan, S.5    Zou, Q.6
  • 39
    • 84955177072 scopus 로고    scopus 로고
    • Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
    • [39] Zhang, H., Zhang, X., Gao, X.-Z., Song, S., Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble. Neurocomputing 173 (2016), 1868–1884.
    • (2016) Neurocomputing , vol.173 , pp. 1868-1884
    • Zhang, H.1    Zhang, X.2    Gao, X.-Z.3    Song, S.4
  • 40
    • 84955686357 scopus 로고    scopus 로고
    • Somatic mutation detection using ensemble of flexible neural tree model
    • [40] Yang, B., Chen, Y., Somatic mutation detection using ensemble of flexible neural tree model. Neurocomputing 179 (2016), 161–168.
    • (2016) Neurocomputing , vol.179 , pp. 161-168
    • Yang, B.1    Chen, Y.2
  • 41
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • [41] Kuncheva, L., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51 (2003), 181–207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 42
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • [42] Dietterich, T.G., An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40 (2000), 139–157.
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 44
    • 84884292459 scopus 로고    scopus 로고
    • Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification
    • [44] Idris, A., Khan, A., Lee, Y.S., Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification. App. Intell. 39 (2013), 659–672.
    • (2013) App. Intell. , vol.39 , pp. 659-672
    • Idris, A.1    Khan, A.2    Lee, Y.S.3
  • 45
    • 0004116989 scopus 로고    scopus 로고
    • Introduction to Algorithms
    • second edition The Massachusetts Institute of Technology
    • [45] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to Algorithms. second edition, 2001, The Massachusetts Institute of Technology.
    • (2001)
    • Cormen, T.H.1    Leiserson, C.E.2    Rivest, R.L.3    Stein, C.4
  • 46
    • 84957436616 scopus 로고    scopus 로고
    • Ensemble selection by GRASP
    • [46] Liu, Z., Dai, Q., Liu, N., Ensemble selection by GRASP. Appl. Intell. 41 (2014), 128–144.
    • (2014) Appl. Intell. , vol.41 , pp. 128-144
    • Liu, Z.1    Dai, Q.2    Liu, N.3
  • 47
    • 84925537078 scopus 로고    scopus 로고
    • Introducing randomness into greedy ensemble pruning algorithms
    • [47] Dai, Q., Li, M., Introducing randomness into greedy ensemble pruning algorithms. Appl. Intell. 42 (2015), 406–429.
    • (2015) Appl. Intell. , vol.42 , pp. 406-429
    • Dai, Q.1    Li, M.2
  • 49
    • 84948156012 scopus 로고    scopus 로고
    • An efficient ordering-based ensemble pruning algorithm via dynamic programming
    • [49] Dai, Q., Han, X., An efficient ordering-based ensemble pruning algorithm via dynamic programming. Appl. Intell. 44 (2016), 816–830.
    • (2016) Appl. Intell. , vol.44 , pp. 816-830
    • Dai, Q.1    Han, X.2
  • 50
    • 85018315040 scopus 로고    scopus 로고
    • [50] http://www.ics.uci.edu/∼mlearn/ MLRepository.html or ftp.ics.uci.edu:pub/machine-learning-databases.
  • 51
    • 0003957032 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques
    • Morgan Kaufmann
    • [51] Witten, I.H., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques. 2005, Morgan Kaufmann.
    • (2005)
    • Witten, I.H.1    Frank, E.2
  • 52
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [52] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.