메뉴 건너뛰기




Volumn 16, Issue , 2006, Pages 429-464

Trade-off between diversity and accuracy in ensemble generation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845291177     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/11399346_19     Document Type: Review
Times cited : (47)

References (66)
  • 3
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • In 457 458 IEEE Press, 430, 453
    • H. A. Abbass. Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. In The IEEE 2003 Conference on Evolutionary Computation, volume 3, pages 2074-2080. IEEE Press, 2003. 430, 453, 457, 458
    • (2003) The IEEE 2003 Conference on Evolutionary Computation , vol.3 , pp. 2074-2080
    • Abbass, H.A.1
  • 4
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • November 452, 453
    • H. A. Abbass. Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation, 15(11):2705-2726, November 2003. 452, 453
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 5
    • 0034876065 scopus 로고    scopus 로고
    • Pde: A pareto-frontier differential evolution approach for multi-objective optimization problems
    • In IEEE Press 453
    • H. A. Abbass, R. Sarker, and C. Newton. Pde: A pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001), volume 2, pages 971-978. IEEE Press, 2001. 453
    • (2001) Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001) , vol.2 , pp. 971-978
    • Abbass, H.A.1    Sarker, R.2    Newton, C.3
  • 6
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • 444
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2):105-139, 1999. 444
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 9
    • 29344432652 scopus 로고
    • Evolving artificial neural networks using the "baldwin effect"
    • Technical Report 95-14, Leiden Unversity, Deptartment of Computer Science, The Netherlands 430
    • E. Boers, M. Borst, and I. Sprinkhuizen-Kuyper. Evolving artificial neural networks using the "baldwin effect". Technical Report 95-14, Leiden Unversity, Deptartment of Computer Science, The Netherlands, 1995. 430
    • (1995)
    • Boers, E.1    Borst, M.2    Sprinkhuizen-Kuyper, I.3
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 444
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996. 444
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0003856278 scopus 로고    scopus 로고
    • Using adaptive bagging to debias regressions
    • Technical Report 547, University of California, Berkeley 444
    • L. Breiman. Using adaptive bagging to debias regressions. Technical Report 547, University of California, Berkeley, 1999. 444
    • (1999)
    • Breiman, L.1
  • 12
    • 10444241776 scopus 로고    scopus 로고
    • Diversity in Neural Network Ensembles
    • PhD thesis, School of Computer Science, University of Birmingham 433 444
    • G. Brown. Diversity in Neural Network Ensembles. PhD thesis, School of Computer Science, University of Birmingham, 2004. 433, 444
    • (2004)
    • Brown, G.1
  • 14
    • 1942485305 scopus 로고    scopus 로고
    • The use of the ambiguity decomposition in neural network ensemble learning methods
    • In T. Fawcett and N. Mishra, editors, Washington DC, USA, August 447
    • G. Brown and J. L. Wyatt. The use of the ambiguity decomposition in neural network ensemble learning methods. In T. Fawcett and N. Mishra, editors, 20th International Conference on Machine Learning (ICML'03), Washington DC, USA, August 2003. 447
    • (2003) 20th International Conference on Machine Learning (ICML'03)
    • Brown, G.1    Wyatt, J.L.2
  • 15
    • 32544453998 scopus 로고    scopus 로고
    • Evolutionary approach to tackling the trade-off between diversity and accuracy in neural network ensembles
    • Technical report, School of Computer Science, The University of Birmingham, UK, April 431
    • A. Chandra. Evolutionary approach to tackling the trade-off between diversity and accuracy in neural network ensembles. Technical report, School of Computer Science, The University of Birmingham, UK, April 2004. 431
    • (2004)
    • Chandra, A.1
  • 16
    • 32544443755 scopus 로고    scopus 로고
    • Evolutionary framework for the creation of diverse hybrid ensembles for better generalisation
    • Master's thesis, School of Computer Science, The University of Birmingham, Birmingham, UK, September 456 452
    • A. Chandra. Evolutionary framework for the creation of diverse hybrid ensembles for better generalisation. Master's thesis, School of Computer Science, The University of Birmingham, Birmingham, UK, September 2004. 452, 456
    • (2004)
    • Chandra, A.1
  • 18
    • 84887000710 scopus 로고    scopus 로고
    • Evolutionary framework for the construction of diverse hybrid ensembles
    • In M. Verleysen, editor, 456 457 Brugge, Belgium, April 2005. d-side. 431
    • A. Chandra and X. Yao. Evolutionary framework for the construction of diverse hybrid ensembles. In M. Verleysen, editor, Proc. 13th European Symposium on Artificial Neural Networks, pages 253-258, Brugge, Belgium, April 2005. d-side. 431, 456, 457
    • Proc. 13th European Symposium on Artificial Neural Networks , pp. 253-258
    • Chandra, A.1    Yao, X.2
  • 19
    • 33845328679 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • 457 456
    • A. Chandra and X. Yao. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing (submitted), 2005. 456, 457
    • (2005) Neurocomputing (submitted)
    • Chandra, A.1    Yao, X.2
  • 24
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • 429, 430, 439, 440
    • T. G. Dietterich. Machine-learning research: Four current directions. The AI Magazine, 18(4):97-136, 1998. 429, 430, 439, 440
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 25
    • 69549123046 scopus 로고
    • Error-correcting output codes: A general method for improving multiclass inductive learning programs
    • In T. L. Dean and K. McKeown, editors, Menlo Park, CA, AAAI Press. 444
    • T. G. Dietterich and G. Bakiri. Error-correcting output codes: A general method for improving multiclass inductive learning programs. In T. L. Dean and K. McKeown, editors, Proceedings of the Ninth AAAI National Conference on Artificial Intelligence, pages 572-577, Menlo Park, CA, 1991. AAAI Press. 444
    • (1991) Proceedings of the Ninth AAAI National Conference on Artificial Intelligence , pp. 572-577
    • Dietterich, T.G.1    Bakiri, G.2
  • 27
    • 0001351468 scopus 로고
    • Using genetic algorithms to explore pattern recognition in the immune system
    • 457
    • S. Forrest, R. E. Smith, B. Javornik, and A. S. Perelson. Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation, 1(3):191-211, 1993. 457
    • (1993) Evolutionary Computation , vol.1 , Issue.3 , pp. 191-211
    • Forrest, S.1    Smith, R.E.2    Javornik, B.3    Perelson, A.S.4
  • 30
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 loss and the curse of dimensionality
    • 436
    • J. Friedman. On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997. 436
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.1
  • 31
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • 429, 432
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/ variance dilemma. Neural Computation, 4(1):1-5, 1992. 429, 432
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-5
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 34
    • 0001691634 scopus 로고    scopus 로고
    • Bias/variance decomposition for likelihood-based estimators
    • 436
    • T. Heskes. Bias/variance decomposition for likelihood-based estimators. Neural Computation, 10:1425-1433, 19998. 436
    • (1998) Neural Computation , vol.10 , pp. 1425-1433
    • Heskes, T.1
  • 36
    • 0004200312 scopus 로고
    • Multiobjective Optimization using the Niched Pareto Genetic Algorithm
    • Technical Report IlliGAl Report 93005, University of Illinois, Urbana-Champaign, July 452
    • J. Horn and N. Nafpliotis. Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Technical Report IlliGAl Report 93005, University of Illinois, Urbana-Champaign, July 1993. 452
    • (1993)
    • Horn, J.1    Nafpliotis, N.2
  • 38
    • 4344623228 scopus 로고    scopus 로고
    • Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms
    • In Portland, Oregon, USA, June IEEE Service Center. 453
    • Y. Jin, T. Okabe, and B. Sendhoff. Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms. In 2004 Congress on Evolutionary Computation (CEC'2004), volume 1, pages 1-8, Portland, Oregon, USA, June 2004. IEEE Service Center. 453
    • (2004) 2004 Congress on Evolutionary Computation (CEC'2004) , vol.1 , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 40
    • 0345879981 scopus 로고    scopus 로고
    • A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks
    • 452
    • K. Kottathra and Y. Attikiouzel. A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks. Journal of Network and Computer Applications, 19:135-147, 1996. 452
    • (1996) Journal of Network and Computer Applications , vol.19 , pp. 135-147
    • Kottathra, K.1    Attikiouzel., Y.2
  • 41
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • 441 448 430
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. Neural Information Processing Systems, 7:231-238, 1995. 430, 441, 448
    • (1995) Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 42
    • 0033169217 scopus 로고    scopus 로고
    • Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves
    • August 452
    • M. A. Kupinski and M. A. Anastasio. Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves. IEEE Transactions on Medical Imaging, 18(8):675-685, August 1999. 452
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.8 , pp. 675-685
    • Kupinski, M.A.1    Anastasio, M.A.2
  • 44
    • 0024884032 scopus 로고
    • Conceptual modeling of coincident failures in multiversion software
    • December 439
    • B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering, 15(12):1596-1614, December 1989. 439
    • (1989) IEEE Transactions on Software Engineering , vol.15 , Issue.12 , pp. 1596-1614
    • Littlewood, B.1    Miller, D.R.2
  • 45
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • 430, 431, 438, 443, 453
    • Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399-1404, 1999. 430, 431, 438, 443, 453
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 46
    • 84944327298 scopus 로고    scopus 로고
    • Learning and evolution by minimization of mutual information
    • In J. J. M. Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, and H.-P. Schwefel, editors, of LNCS, Granada, Spain, Springer Verlag. 454
    • Y. Liu and X. Yao. Learning and evolution by minimization of mutual information. In J. J. M. Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacañas, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature VII (PPSN-2002), volume 2439 of LNCS, pages 495-504, Granada, Spain, 2002. Springer Verlag. 454
    • (2002) Parallel Problem Solving from Nature VII (PPSN-2002) , vol.2439 , pp. 495-504
    • Liu, Y.1    Yao, X.2
  • 47
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • November 430, 438, 439, 457, 458
    • Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation, 4(4):380, November 2000. 430, 438, 439, 457, 458
    • (2000) IEEE Transactions on Evolutionary Computation , vol.4 , Issue.4 , pp. 380
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 49
    • 0018079655 scopus 로고
    • Basic principles of roc analysis
    • 452
    • C. E. Metz. Basic principles of roc analysis. Seminars in Neuclear Medicine, 8(4):283-298, 1978. 452
    • (1978) Seminars in Neuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 52
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • 430
    • D. W. Opitz and J. W. Shavlik. Generating accurate and diverse members of a neural-network ensemble. Neural Information Processing Systems, 8:535-541, 1996. 430
    • (1996) Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 54
    • 0001906968 scopus 로고    scopus 로고
    • chapter Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems Springer-Verlag, 451
    • A. Sharkey. Multi-Net Systems, chapter Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, pages 1-30. Springer-Verlag, 1999. 451
    • (1999) Multi-Net Systems , pp. 1-30
    • Sharkey, A.1
  • 55
    • 0031224574 scopus 로고    scopus 로고
    • Combining diverse neural networks
    • 439, 450
    • A. Sharkey and N. Sharkey. Combining diverse neural networks. The Knowledge Engineering Review, 12(3):231-247, 1997. 439, 450
    • (1997) The Knowledge Engineering Review , vol.12 , Issue.3 , pp. 231-247
    • Sharkey, A.1    Sharkey, N.2
  • 56
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • 430
    • K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002. 430
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 57
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • February 429
    • K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2):341-348, February 1996. 429
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 59
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of svm-based ensemble methods
    • 436, 437, 438
    • G. Valentini and T. G. Dietterich. Bias-variance analysis of support vector machines for the development of svm-based ensemble methods. Journal of Machine Learning Research, 5(1):725-775, 2004. 436, 437, 438
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.1 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 60
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • In R. Tagliaferri and M. Marinaro, editors, Springer-Verlag, June 430, 440, 444, 450
    • G. Valentini and F. Masulli. Ensembles of learning machines. In R. Tagliaferri and M. Marinaro, editors, Neural Nets WIRN Vietri-2002 (LNCS 2486), pages 3-19. Springer-Verlag, June 2002. 430, 440, 444, 450
    • (2002) Neural Nets WIRN Vietri-2002 (LNCS 2486) , pp. 3-19
    • Valentini, G.1    Masulli, F.2
  • 61
    • 84867049048 scopus 로고    scopus 로고
    • Diversity between neural networks and decision trees for building multiple classifier systems
    • In Calgiari, Italy, June Springer. 439, 451, 455
    • W. Wang, P. Jones, and D. Partridge. Diversity between neural networks and decision trees for building multiple classifier systems. In Proc. Int. Workshop on Multiple Classifier Systems (LNCS 1857), pages 240-249, Calgiari, Italy, June 2000. Springer. 439, 451, 455
    • (2000) Proc. Int. Workshop on Multiple Classifier Systems (LNCS 1857) , pp. 240-249
    • Wang, W.1    Jones, P.2    Partridge, D.3
  • 64
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • In IEEE, September 430
    • X. Yao. Evolving artificial neural networks. In Proceedings of the IEEE, volume 87, pages 1423-1447. IEEE, September 1999. 430
    • (1999) Proceedings of the IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 65
    • 29244469043 scopus 로고    scopus 로고
    • Evolving neural network ensembles by minimization of mutual information
    • January 454
    • X. Yao and Y. Liu. Evolving neural network ensembles by minimization of mutual information. International Journal of Hybrid Intelligent Systems, 1(1), January 2004. 454
    • (2004) International Journal of Hybrid Intelligent Systems , vol.1 , Issue.1
    • Yao, X.1    Liu, Y.2
  • 66
    • 0030549306 scopus 로고    scopus 로고
    • Use of methodological diversity to improve neural network generalization
    • 430, 439, 451, 452
    • W. Yates and D. Partridge. Use of methodological diversity to improve neural network generalization. Neural Computing and Applications, 4(2):114-128, 1996. 430, 439, 451, 452
    • (1996) Neural Computing and Applications , vol.4 , Issue.2 , pp. 114-128
    • Yates, W.1    Partridge, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.