메뉴 건너뛰기




Volumn 126, Issue , 2014, Pages 29-35

Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers

Author keywords

Classifier competence; Diversity measure; Dynamic ensemble selection; Simulated annealing

Indexed keywords

CLASSIFICATION PERFORMANCE; DIVERSITY MEASURE; DYNAMIC ENSEMBLE SELECTIONS; MULTIPLE CLASSIFIER SYSTEMS; OPTIMIZATION PROBLEMS; PROBABILISTIC MODELING; SIMULATED ANNEALING ALGORITHMS; UCI MACHINE LEARNING REPOSITORY;

EID: 84887611642     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.052     Document Type: Article
Times cited : (83)

References (24)
  • 4
    • 24044449939 scopus 로고    scopus 로고
    • A study on the performances of dynamic classifier selection based on local accuracy estimation
    • Didaci L., Giacinto G., Roli F., Marcialis G. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition 2005, 38:2188-2191.
    • (2005) Pattern Recognition , vol.38 , pp. 2188-2191
    • Didaci, L.1    Giacinto, G.2    Roli, F.3    Marcialis, G.4
  • 5
    • 0036543957 scopus 로고    scopus 로고
    • Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    • Smits P. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing 2002, 40:717-725.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 717-725
    • Smits, P.1
  • 6
    • 40849130062 scopus 로고    scopus 로고
    • Confidence based multiple classifier fusion in speaker verification
    • Huenupan F., Yoma N. Confidence based multiple classifier fusion in speaker verification. Pattern Recognition Letters 2008, 29:957-966.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 957-966
    • Huenupan, F.1    Yoma, N.2
  • 7
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • Giacinto G., Roli F. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition 2001, 34:1879-1881.
    • (2001) Pattern Recognition , vol.34 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 8
    • 79958833224 scopus 로고    scopus 로고
    • A probabilistic model of classifier competence for dynamic ensemble selection
    • T. Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection, Pattern Recognition 44 (2011) 2656-2668.
    • (2011) Pattern Recognition , vol.44 , pp. 2656-2668
    • Woloszynski, T.1    Kurzynski, M.2
  • 9
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M., Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognition 2006, 39:608-623.
    • (2006) Pattern Recognition , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 10
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L., Whitaker C. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 2003, 51:181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 12
  • 13
    • 84887611802 scopus 로고    scopus 로고
    • Comparison of classifier selection methods for improving committee performance, in: Proceedings of the Multiple Classifier Systems
    • M. Aksela, Comparison of classifier selection methods for improving committee performance, in: Proceedings of the Multiple Classifier Systems, pp. 84-93.
    • Aksela, M.1
  • 15
    • 84887613603 scopus 로고    scopus 로고
    • Probabilistic approach to the dynamic ensemble selection using measures of competence and diversity of base classifiers, in: Proceedings of the Hybrid Artificial Intelligent Systems. Part II. Lecture Notes in Computer Science
    • R. Lysiak, M. Kurzynski, T. Woloszynski, Probabilistic approach to the dynamic ensemble selection using measures of competence and diversity of base classifiers, in: Proceedings of the Hybrid Artificial Intelligent Systems. Part II. Lecture Notes in Computer Science, vol. 6678, 2011, pp. 345-351.
    • (2011) , vol.6678 , pp. 345-351
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 16
    • 84887607834 scopus 로고    scopus 로고
    • Matlab Central File Enchange
    • T. Woloszynski, Matlab Central File Enchange, 2010. http://www.mathwork.com/~matlabcentral/~fileenchange/~28391-classifier-competence-based-on-probabilistic-modeling.
    • (2010)
    • Woloszynski, T.1
  • 17
    • 78649532574 scopus 로고    scopus 로고
    • Algorithm of QOS multicast routing based on genetic simulated annealing algorithm
    • pp. V5-220-V5-223
    • Liu J. Algorithm of QOS multicast routing based on genetic simulated annealing algorithm. Computer Application and System Modeling (ICCASM) 2010, 5. pp. V5-220-V5-223.
    • (2010) Computer Application and System Modeling (ICCASM) , vol.5
    • Liu, J.1
  • 18
  • 20
    • 84860853063 scopus 로고    scopus 로고
    • An optimized mapping algorithm based on simulated annealing for regular NOC architecture, in: 9th International Conference on ASIC
    • L. Zhong, J. Sheng, M. Jing, Z. Yu, X. Zeng, D. Zhou, An optimized mapping algorithm based on simulated annealing for regular NOC architecture, in: 9th International Conference on ASIC, 2011, pp. 389-392.
    • (2011) , pp. 389-392
    • Zhong, L.1    Sheng, J.2    Jing, M.3    Yu, Z.4    Zeng, X.5    Zhou, D.6
  • 22
    • 84887606152 scopus 로고    scopus 로고
    • PRTools4. A Matlab Toolbox for Pattern Recognition, Delft University of Technology, Delft
    • R. Duin, P. Juszczak, P. Paclik, PRTools4. A Matlab Toolbox for Pattern Recognition, Delft University of Technology, Delft, 2007.
    • (2007)
    • Duin, R.1    Juszczak, P.2    Paclik, P.3
  • 24
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 1998, 10:1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.