메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 424-435

LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy

Author keywords

Circulating combination; Clustering; Dynamic selection; Machine learning; Multi label classification; Selective ensemble learning

Indexed keywords

CIRCULATING COMBINATION; CLUSTERING; DYNAMIC SELECTION; MULTI-LABEL CLASSIFICATIONS; SELECTIVE ENSEMBLES;

EID: 84885838906     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.004     Document Type: Article
Times cited : (245)

References (41)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm, in: Proceedings of the International Workshop then Conference in Machine Learning, Morgan Kaufmann Publishers, Inc.
    • Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the International Workshop then Conference in Machine Learning, Morgan Kaufmann Publishers, Inc., 1996, pp. 148-156.
    • (1996) , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 3
    • 0003619255 scopus 로고    scopus 로고
    • Statistics Department, University of California, Berkeley, CA, (Technical Report 460)
    • Breiman L. Bias, Variance, and Arcing Classifiers 1996, Statistics Department, University of California, Berkeley, CA, (Technical Report 460).
    • (1996) Bias, Variance, and Arcing Classifiers
    • Breiman, L.1
  • 4
    • 79955757907 scopus 로고    scopus 로고
    • Prediction of novel pre-microRNAs with high accuracy through boosting and SVM
    • Zhang Y., et al. Prediction of novel pre-microRNAs with high accuracy through boosting and SVM. Bioinformatics 2011, 27(10):1436-1437.
    • (2011) Bioinformatics , vol.27 , Issue.10 , pp. 1436-1437
    • Zhang, Y.1
  • 5
    • 77956460761 scopus 로고    scopus 로고
    • A classification method for class imbalanced data and its application on bioinformatics
    • Quan Z., et al. A classification method for class imbalanced data and its application on bioinformatics. Journal of Computer Research and Development 2010, 47(8):1407-1414.
    • (2010) Journal of Computer Research and Development , vol.47 , Issue.8 , pp. 1407-1414
    • Quan, Z.1
  • 6
    • 65349114774 scopus 로고    scopus 로고
    • Mining extremely small data sets with application to software reuse
    • Jiang Y., et al. Mining extremely small data sets with application to software reuse. Software: Practice and Experience 2009, 39(4):423-440.
    • (2009) Software: Practice and Experience , vol.39 , Issue.4 , pp. 423-440
    • Jiang, Y.1
  • 7
    • 32144461769 scopus 로고    scopus 로고
    • Image region selection and ensemble for face recognition
    • Geng X., Zhou Z.-H. Image region selection and ensemble for face recognition. Journal of Computer Science and Technology 2006, 21(1):116-125.
    • (2006) Journal of Computer Science and Technology , vol.21 , Issue.1 , pp. 116-125
    • Geng, X.1    Zhou, Z.-H.2
  • 8
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou Z.-H., et al. Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine 2002, 24(1):25-36.
    • (2002) Artificial Intelligence in Medicine , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.-H.1
  • 9
    • 0034875216 scopus 로고    scopus 로고
    • Effective pruning of neural network classifier ensembles, in: Proceedings of the IEEE International Joint Conference Neural Networks, IJCNN
    • A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier ensembles, in: Proceedings of the IEEE International Joint Conference Neural Networks, IJCNN, 2001, pp. 796-801.
    • (2001) , pp. 796-801
    • Lazarevic, A.1    Obradovic, Z.2
  • 10
    • 0002289220 scopus 로고    scopus 로고
    • Pruning adaptive boosting, in: Proceedings of the International Workshop then Conference in Machine Learning, Citeseer
    • D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting, in: Proceedings of the International Workshop then Conference in Machine Learning, Citeseer, 1997, pp. 211-218.
    • (1997) , pp. 211-218
    • Margineantu, D.D.1    Dietterich, T.G.2
  • 12
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., et al. Ensembling neural networks: many could be better than all. Artificial Intelligence 2002, 137(1):239-263.
    • (2002) Artificial Intelligence , vol.137 , Issue.1 , pp. 239-263
    • Zhou, Z.-H.1
  • 14
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier system
    • Foli R., Giacinto G. An approach to the automatic design of multiple classifier system. Pattern Recognition Letters 2001, 22(1):25-33.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.1 , pp. 25-33
    • Foli, R.1    Giacinto, G.2
  • 15
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., et al. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 2003, 36(6):1291-1302.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1
  • 17
    • 84876671469 scopus 로고    scopus 로고
    • Sampled-data based average consensus of second-order integral multi-agent systems: switching topologies and communication noises
    • L. Cheng, et al., Sampled-data based average consensus of second-order integral multi-agent systems: switching topologies and communication noises, Automatica, 49 (5) (2013) 1458-1464.
    • (2013) Automatica , vol.49 , Issue.5 , pp. 1458-1464
    • Cheng, L.1
  • 19
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
    • R. Yan, et al., Model-shared subspace boosting for multi-label classification, in: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2007, pp. 834-843.
    • (2007) , pp. 834-843
    • Yan, R.1
  • 20
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: a boosting-based system for text categorization
    • Schapire R.E., Singer Y. BoosTexter: a boosting-based system for text categorization. Machine Learning 2000, 39(2-3):135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 21
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 1997, 55(1):119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 22
    • 8344282787 scopus 로고    scopus 로고
    • Learning Multi-label Alternating Decision Trees from Texts and Data
    • Springer, Berlin, Germany
    • De Comité F., et al. Learning Multi-label Alternating Decision Trees from Texts and Data. Machine Learning and Data Mining in Pattern Recognition 2003, 35-49. Springer, Berlin, Germany.
    • (2003) Machine Learning and Data Mining in Pattern Recognition , pp. 35-49
    • De Comité, F.1
  • 23
    • 67049088703 scopus 로고    scopus 로고
    • Multi-label classification using ensembles of pruned sets, in: Proceedings of the Eighth IEEE International Conference on Data Mining, ICDM
    • J. Read, et al., Multi-label classification using ensembles of pruned sets, in: Proceedings of the Eighth IEEE International Conference on Data Mining, ICDM, 2008, pp. 995-1000.
    • (2008) , pp. 995-1000
    • Read, J.1
  • 24
    • 67650173866 scopus 로고    scopus 로고
    • Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization
    • Zhang J., Chau K.-W. Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. Journal of Universal Computer Science 2009, 15(4):840-858.
    • (2009) Journal of Universal Computer Science , vol.15 , Issue.4 , pp. 840-858
    • Zhang, J.1    Chau, K.-W.2
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 2003, 51(2):181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 26
    • 83255181453 scopus 로고    scopus 로고
    • Dynamic selection and circulating combination for multiple classifier systems
    • Hao H.-W., et al. Dynamic selection and circulating combination for multiple classifier systems. Acta Automatica Sinica 2011, 37(11):1290-1295.
    • (2011) Acta Automatica Sinica , vol.37 , Issue.11 , pp. 1290-1295
    • Hao, H.-W.1
  • 27
    • 84945969217 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and sequential search methods for classifier subset selection, in: Proceedings of the Seventh International Conference on Document Analysis and Recognition, Citeseer
    • H. Hao, et al., Comparison of genetic algorithm and sequential search methods for classifier subset selection, in: Proceedings of the Seventh International Conference on Document Analysis and Recognition, Citeseer, 2003, pp. 765.
    • (2003) , pp. 765
    • Hao, H.1
  • 30
    • 84885846614 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • C.-W. Hsu, et al., A practical guide to support vector classification, 2003.
    • (2003)
    • Hsu, C.-W.1
  • 31
    • 84885871321 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • C. Blake and C.J. Merz, UCI repository of machine learning databases, 1998.
    • (1998)
    • Blake, C.1    Merz, C.J.2
  • 33
    • 79955864876 scopus 로고    scopus 로고
    • Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks
    • L. Cheng, et al., Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks, IEEE Transactions on Neural Networks, 21(5) (2011) 714-726.
    • (2011) IEEE Transactions on Neural Networks , vol.21 , Issue.5 , pp. 714-726
    • Cheng, L.1
  • 34
    • 84873546054 scopus 로고    scopus 로고
    • A benchmark dataset for audio classification and clustering, in: Proceedings of the International Conference on Music Information Retrieval
    • H. Homburg, et al., A benchmark dataset for audio classification and clustering, in: Proceedings of the International Conference on Music Information Retrieval, 2005, pp. 528-531.
    • (2005) , pp. 528-531
    • Homburg, H.1
  • 35
    • 77954761552 scopus 로고    scopus 로고
    • Multi-criteria optimization for coordination of redundant robots using a dual neural network, IEEE Transactions on Systems, Man, and Cybernetics
    • Z. Hou, et al., Multi-criteria optimization for coordination of redundant robots using a dual neural network, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40 (4) (2010) 1075-1087.
    • (2010) Cybernetics , vol.40 , Issue.4 , pp. 1075-1087
    • Hou, Z.1
  • 36
    • 84873447495 scopus 로고    scopus 로고
    • Multi-label classification of music into emotions, in: Proceedings of the 9th International Conference of Music Information Retrieval, ISMIR, Lulu.com
    • K.T.G. Tsoumakas, et al., Multi-label classification of music into emotions, in: Proceedings of the 9th International Conference of Music Information Retrieval, ISMIR, Lulu.com, 2008, pp. 325.
    • (2008) , pp. 325
    • Tsoumakas, K.T.G.1
  • 37
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang M.-L., Zhou Z.-H. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 2006, 18(10):1338-1351.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 38
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines Using Sequential Minimal Optimization
    • MIT Press, Cambridge, MA, B. Sch olkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Platt J.C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in Kernel Methods - Support Vector Learning 1998, MIT Press, Cambridge, MA. B. Sch olkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.C.1
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 84555189855 scopus 로고    scopus 로고
    • Music genre classification using explicit semantic analysis, in: Proceedings of the 1st International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, ACM
    • K. Aryafar, A. Shokoufandeh, Music genre classification using explicit semantic analysis, in: Proceedings of the 1st International ACM Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies, ACM, 2011, pp. 33-38.
    • (2011) , pp. 33-38
    • Aryafar, K.1    Shokoufandeh, A.2
  • 41
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: a lazy learning approach to multi-label learning
    • Zhang M.-L., Zhou Z.-H. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition 2007, 40(7):2038-2048.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.