메뉴 건너뛰기




Volumn 28, Issue , 2015, Pages 237-249

A new reverse reduce-error ensemble pruning algorithm

Author keywords

Classifier; Machine learning; Neural network ensemble; Pattern recognition; Reduce Error (RE) pruning; Reverse Reduce Error (RRE) pruning

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84919706710     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.10.045     Document Type: Article
Times cited : (35)

References (55)
  • 2
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. Touretzky, E.T. Leen (Eds.), MIT Press, Cambridge, MA
    • A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: G. Tesauro, D. Touretzky, E.T. Leen (Eds.), Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA, 1995, pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 3
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 8
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • P. Cunningham, J. Carney, S. Jacob, Stability problems with artificial neural networks and the ensemble solution, Artif. Intell. Med. 20 (2000) 217-225.
    • (2000) Artif. Intell. Med. , vol.20 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 9
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Z.-H. Zhou, Y. Jiang, Y.-B. Yang, S.-F. Chen, Lung cancer cell identification based on artificial neural network ensembles, Artif. Intell. Med. 24 (2002) 25-36.
    • (2002) Artif. Intell. Med. , vol.24 , pp. 25-36
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4
  • 10
    • 79957476576 scopus 로고    scopus 로고
    • An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making
    • K.-P. Lin, K.-C. Hung, An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making, Know.-Based Syst. 24 (2011) 877-889.
    • (2011) Know.-Based Syst. , vol.24 , pp. 877-889
    • Lin, K.-P.1    Hung, K.-C.2
  • 11
    • 84856226719 scopus 로고    scopus 로고
    • An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classi.Er
    • B. Kavitha, D.S. Karthikeyan, P.S. Maybell, An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classi.er, Know.-Based Syst. 28 (2012) 88-96.
    • (2012) Know.-Based Syst. , vol.28 , pp. 88-96
    • Kavitha, B.1    Karthikeyan, D.S.2    Maybell, P.S.3
  • 12
    • 10444241978 scopus 로고    scopus 로고
    • Ensemble diversity measures and their application to thinning
    • R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, Ensemble diversity measures and their application to thinning, Inf. Fus. 6 (2005) 49-62.
    • (2005) Inf. Fus. , vol.6 , pp. 49-62
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Kegelmeyer, W.P.4
  • 21
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • I. Partalas, G. Tsoumakas, I. Vlahavas, Pruning an ensemble of classifiers via reinforcement learning, Neurocomputing 72 (2009) 1900-1909.
    • (2009) Neurocomputing , vol.72 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 23
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (2002) 239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 25
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Y. Zhang, S. Burer, W.N. Street, Ensemble pruning via semi-definite programming, J. Mach. Learn. Res. 7 (2006) 1315-1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 28
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • I. Partalas, G. Tsoumakas, I. Vlahavas, An ensemble uncertainty aware measure for directed hill climbing ensemble pruning, Mach. Learn. 81 (2010) 257-282.
    • (2010) Mach. Learn. , vol.81 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 30
    • 84885377748 scopus 로고    scopus 로고
    • ModEnPBT: A modified backtracking ensemble pruning algorithm
    • Q. Dai, Z. Liu, ModEnPBT: a modified backtracking ensemble pruning algorithm, Appl. Soft Comput. 13 (2013) 4292-4302.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4292-4302
    • Dai, Q.1    Liu, Z.2
  • 33
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • D. Partridge, W.B. Yates, Engineering multiversion neural-net systems, Neural Comput. 8 (1996) 869-893.
    • (1996) Neural Comput. , vol.8 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 36
    • 19044388523 scopus 로고    scopus 로고
    • Clustering-based selective neural network ensemble
    • Q. Fu, S.X. Hu, S.Y. Zhao, Clustering-based selective neural network ensemble, J. Zhejiang Univ. Sci. 6A (2005) 387-392.
    • (2005) J. Zhejiang Univ. Sci. , vol.6 A , pp. 387-392
    • Fu, Q.1    Hu, S.X.2    Zhao, S.Y.3
  • 38
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • B. Bakker, T. Heskes, Clustering ensembles of neural network models, Neural Netw. 16 (2003) 261-269.
    • (2003) Neural Netw. , vol.16 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 39
    • 84884210298 scopus 로고    scopus 로고
    • A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
    • Q. Dai, A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot, Neurocomputing 122 (2013) 258-265.
    • (2013) Neurocomputing , vol.122 , pp. 258-265
    • Dai, Q.1
  • 40
    • 84870065802 scopus 로고    scopus 로고
    • A competitive ensemble pruning approach based on cross-validation technique
    • Q. Dai, A competitive ensemble pruning approach based on cross-validation technique, Know.-Based Syst. 37 (2013) 394-414.
    • (2013) Know.-Based Syst. , vol.37 , pp. 394-414
    • Dai, Q.1
  • 41
    • 84883053573 scopus 로고    scopus 로고
    • An efficient ensemble pruning algorithm using one-path and two-trips searching approach
    • Q. Dai, An efficient ensemble pruning algorithm using one-path and two-trips searching approach, Know.-Based Syst. 51 (2013) 85-92.
    • (2013) Know.-Based Syst. , vol.51 , pp. 85-92
    • Dai, Q.1
  • 46
    • 0343968934 scopus 로고
    • A further comparison of simplification methods for decision-tree induction
    • D. Fisher, H. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, Springer Verlag, Berlin
    • D. Malerba, F. Esposito, G. Semeraro, A further comparison of simplification methods for decision-tree induction, in: D. Fisher, H. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, Lecture Notes in Statistics, Springer Verlag, Berlin, 1995.
    • (1995) Lecture Notes in Statistics
    • Malerba, D.1    Esposito, F.2    Semeraro, G.3
  • 48
    • 0346378507 scopus 로고
    • The BP-SOM architecture and learning rule
    • A. Weijters, The BP-SOM architecture and learning rule, Neural Process. Lett. 2 (1995) 13-16.
    • (1995) Neural Process. Lett. , vol.2 , pp. 13-16
    • Weijters, A.1
  • 52
    • 79960416857 scopus 로고    scopus 로고
    • Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines
    • M. Sikora, L. Wrobel, Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines, Arch. Min. Sci. 55 (2010) 91-114.
    • (2010) Arch. Min. Sci. , vol.55 , pp. 91-114
    • Sikora, M.1    Wrobel, L.2
  • 53
    • 17644396003 scopus 로고    scopus 로고
    • Boosted decision trees as an alternative to artificial neural networks for particle identification
    • B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification, Nuclear Instrum. Methods Phys. Res. 543 (2005) 577-584.
    • (2005) Nuclear Instrum. Methods Phys. Res. , vol.543 , pp. 577-584
    • Roe, B.P.1    Yang, H.-J.2    Zhu, J.3    Liu, Y.4    Stancu, I.5    McGregor, G.6
  • 54
    • 80052931178 scopus 로고    scopus 로고
    • The build of n-bits binary coding ICBP ensemble system
    • Q. Dai, N.Z. Liu, The build of n-bits binary coding ICBP ensemble system, Neurocomputing 74 (2011) 3509-3519.
    • (2011) Neurocomputing , vol.74 , pp. 3509-3519
    • Dai, Q.1    Liu, N.Z.2
  • 55
    • 0842300575 scopus 로고    scopus 로고
    • Improved CBP neural network model with applications in time series prediction
    • Q. Dai, S.C. Chen, B.Z. Zhang, Improved CBP neural network model with applications in time series prediction, Neural Process. Lett. 18 (2003) 197-211.
    • (2003) Neural Process. Lett. , vol.18 , pp. 197-211
    • Dai, Q.1    Chen, S.C.2    Zhang, B.Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.