-
2
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. Touretzky, E.T. Leen (Eds.), MIT Press, Cambridge, MA
-
A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: G. Tesauro, D. Touretzky, E.T. Leen (Eds.), Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA, 1995, pp. 231-238.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
3
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2003) 181-207.
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.J.2
-
4
-
-
84905371122
-
Pose Invariant Face Recognition
-
Presented at
-
F.J. Huang, Z.-H.Z. hou, H.-J. Zhang, T.H. Chen, Pose Invariant Face Recognition, Presented at 4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000.
-
4th IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000
-
-
Huang, F.J.1
Hou, Z.-H.Z.2
Zhang, H.-J.3
Chen, T.H.4
-
5
-
-
85010604994
-
Ensemble Methods for Handwritten Digit Recognition
-
Presented at
-
L.K. Hansen, L. Liisberg, P. Salamon, Ensemble Methods for Handwritten Digit Recognition, Presented at IEEE Workshop on Neural Networks for Signal Processing, Helsingoer, Denmark, 1992.
-
IEEE Workshop on Neural Networks for Signal Processing, Helsingoer, Denmark, 1992
-
-
Hansen, L.K.1
Liisberg, L.2
Salamon, P.3
-
6
-
-
33847143670
-
A Survey of Neural Network Ensemble
-
Presented at
-
Y. Zhao, J. Gao, X. Yang, A Survey of Neural Network Ensemble, Presented at International Conference on Neural Networks and Brain, Beijing, China, 2005.
-
International Conference on Neural Networks and Brain, Beijing, China, 2005
-
-
Zhao, Y.1
Gao, J.2
Yang, X.3
-
8
-
-
0034333684
-
Stability problems with artificial neural networks and the ensemble solution
-
P. Cunningham, J. Carney, S. Jacob, Stability problems with artificial neural networks and the ensemble solution, Artif. Intell. Med. 20 (2000) 217-225.
-
(2000)
Artif. Intell. Med.
, vol.20
, pp. 217-225
-
-
Cunningham, P.1
Carney, J.2
Jacob, S.3
-
9
-
-
0036146402
-
Lung cancer cell identification based on artificial neural network ensembles
-
Z.-H. Zhou, Y. Jiang, Y.-B. Yang, S.-F. Chen, Lung cancer cell identification based on artificial neural network ensembles, Artif. Intell. Med. 24 (2002) 25-36.
-
(2002)
Artif. Intell. Med.
, vol.24
, pp. 25-36
-
-
Zhou, Z.-H.1
Jiang, Y.2
Yang, Y.-B.3
Chen, S.-F.4
-
10
-
-
79957476576
-
An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making
-
K.-P. Lin, K.-C. Hung, An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making, Know.-Based Syst. 24 (2011) 877-889.
-
(2011)
Know.-Based Syst.
, vol.24
, pp. 877-889
-
-
Lin, K.-P.1
Hung, K.-C.2
-
11
-
-
84856226719
-
An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classi.Er
-
B. Kavitha, D.S. Karthikeyan, P.S. Maybell, An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classi.er, Know.-Based Syst. 28 (2012) 88-96.
-
(2012)
Know.-Based Syst.
, vol.28
, pp. 88-96
-
-
Kavitha, B.1
Karthikeyan, D.S.2
Maybell, P.S.3
-
12
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, Ensemble diversity measures and their application to thinning, Inf. Fus. 6 (2005) 49-62.
-
(2005)
Inf. Fus.
, vol.6
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
13
-
-
14344255621
-
Ensemble Selection from Libraries of Models
-
Presented at
-
R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble Selection from Libraries of Models, Presented at Proceedings of the 21st International Conference on Machine Learning, 2004.
-
Proceedings of the 21st International Conference on Machine Learning, 2004
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
16
-
-
0036931834
-
Pruning and Dynamic Scheduling of Cost-sensitive Ensembles
-
Presented at
-
W. Fan, F. Chu, H. Wang, P.S. Yu, Pruning and Dynamic Scheduling of Cost-sensitive Ensembles, Presented at Eighteenth National Conference on Artificial Intelligence, American Association for Artificial Intelligence, 2002.
-
Eighteenth National Conference on Artificial Intelligence, American Association for Artificial Intelligence, 2002
-
-
Fan, W.1
Chu, F.2
Wang, H.3
Yu, P.S.4
-
19
-
-
85052001384
-
-
IOS Press, Patras, Greece: Amsterdam
-
I. Partalas, G. Tsoumakas, I. Vlahavas, Focused Ensemble Selection: A Diversity-based Method for Greedy Ensemble Selection, vol. 178, IOS Press, Patras, Greece: Amsterdam, 2008.
-
(2008)
Focused Ensemble Selection: A Diversity-based Method for Greedy Ensemble Selection
, vol.178
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
21
-
-
61849098236
-
Pruning an ensemble of classifiers via reinforcement learning
-
I. Partalas, G. Tsoumakas, I. Vlahavas, Pruning an ensemble of classifiers via reinforcement learning, Neurocomputing 72 (2009) 1900-1909.
-
(2009)
Neurocomputing
, vol.72
, pp. 1900-1909
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
23
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (2002) 239-263.
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
24
-
-
33646887846
-
Selective Ensemble of Decision Trees
-
Presented at
-
Z. Zhou, W. Tang, Selective Ensemble of Decision Trees, Presented at Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Chongqing, China, 2003.
-
Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Chongqing, China, 2003
-
-
Zhou, Z.1
Tang, W.2
-
25
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Y. Zhang, S. Burer, W.N. Street, Ensemble pruning via semi-definite programming, J. Mach. Learn. Res. 7 (2006) 1315-1338.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
28
-
-
78049528785
-
An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
-
I. Partalas, G. Tsoumakas, I. Vlahavas, An ensemble uncertainty aware measure for directed hill climbing ensemble pruning, Mach. Learn. 81 (2010) 257-282.
-
(2010)
Mach. Learn.
, vol.81
, pp. 257-282
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
30
-
-
84885377748
-
ModEnPBT: A modified backtracking ensemble pruning algorithm
-
Q. Dai, Z. Liu, ModEnPBT: a modified backtracking ensemble pruning algorithm, Appl. Soft Comput. 13 (2013) 4292-4302.
-
(2013)
Appl. Soft Comput.
, vol.13
, pp. 4292-4302
-
-
Dai, Q.1
Liu, Z.2
-
32
-
-
84919771094
-
-
Springer, Berlin, Heidelberg
-
G. Tsoumakas, I. Partalas, I. Vlahavas, Applications of Supervised and Unsupervised Ensemble Methods, vol. 245, Springer, Berlin, Heidelberg, 2009.
-
(2009)
Applications of Supervised and Unsupervised Ensemble Methods
, vol.245
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
33
-
-
0030585190
-
Engineering multiversion neural-net systems
-
D. Partridge, W.B. Yates, Engineering multiversion neural-net systems, Neural Comput. 8 (1996) 869-893.
-
(1996)
Neural Comput.
, vol.8
, pp. 869-893
-
-
Partridge, D.1
Yates, W.B.2
-
34
-
-
84919722057
-
Ensemble Selection for Superparent-one-dependence Estimators
-
Presented at
-
Y. Yang, K. Korb, K. Ting, G. Webb, Ensemble Selection for Superparent-one-dependence Estimators, Presented at AI 2005: Advances in Artificial Intelligence, 2005.
-
AI 2005: Advances in Artificial Intelligence, 2005
-
-
Yang, Y.1
Korb, K.2
Ting, K.3
Webb, G.4
-
35
-
-
70350220351
-
Studies in Computational Intelligence
-
G. Tsoumakas, I. Partalas, I. Vlahavas, An ensemble pruning primer Applications of Supervised and Unsupervised Ensemble Methods, vol. 245, Studies in Computational Intelligence, 2009, pp. 1-13.
-
(2009)
An Ensemble Pruning Primer Applications of Supervised and Unsupervised Ensemble Methods
, vol.245
, pp. 1-13
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
36
-
-
19044388523
-
Clustering-based selective neural network ensemble
-
Q. Fu, S.X. Hu, S.Y. Zhao, Clustering-based selective neural network ensemble, J. Zhejiang Univ. Sci. 6A (2005) 387-392.
-
(2005)
J. Zhejiang Univ. Sci.
, vol.6 A
, pp. 387-392
-
-
Fu, Q.1
Hu, S.X.2
Zhao, S.Y.3
-
38
-
-
0037337904
-
Clustering ensembles of neural network models
-
B. Bakker, T. Heskes, Clustering ensembles of neural network models, Neural Netw. 16 (2003) 261-269.
-
(2003)
Neural Netw.
, vol.16
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
39
-
-
84884210298
-
A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
-
Q. Dai, A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot, Neurocomputing 122 (2013) 258-265.
-
(2013)
Neurocomputing
, vol.122
, pp. 258-265
-
-
Dai, Q.1
-
40
-
-
84870065802
-
A competitive ensemble pruning approach based on cross-validation technique
-
Q. Dai, A competitive ensemble pruning approach based on cross-validation technique, Know.-Based Syst. 37 (2013) 394-414.
-
(2013)
Know.-Based Syst.
, vol.37
, pp. 394-414
-
-
Dai, Q.1
-
41
-
-
84883053573
-
An efficient ensemble pruning algorithm using one-path and two-trips searching approach
-
Q. Dai, An efficient ensemble pruning algorithm using one-path and two-trips searching approach, Know.-Based Syst. 51 (2013) 85-92.
-
(2013)
Know.-Based Syst.
, vol.51
, pp. 85-92
-
-
Dai, Q.1
-
42
-
-
84919722055
-
Effective Voting of Heterogeneous Classifiers
-
Presented at
-
G. Tsoumakas, I. Katakis, I. Vlahavas, Effective Voting of Heterogeneous Classifiers, Presented at Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 2004.
-
Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 2004
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
43
-
-
33745807978
-
Ensemble Pruning using Reinforcement Learning
-
Presented at
-
I. Partalas, G. Tsoumakas, I. Katakis, I. Vlahavas, Ensemble Pruning using Reinforcement Learning, Presented at 4th Hellenic Conference on Artificial Intelligence (SETN 2006), 2006.
-
4th Hellenic Conference on Artificial Intelligence (SETN 2006), 2006
-
-
Partalas, I.1
Tsoumakas, G.2
Katakis, I.3
Vlahavas, I.4
-
46
-
-
0343968934
-
A further comparison of simplification methods for decision-tree induction
-
D. Fisher, H. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, Springer Verlag, Berlin
-
D. Malerba, F. Esposito, G. Semeraro, A further comparison of simplification methods for decision-tree induction, in: D. Fisher, H. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, Lecture Notes in Statistics, Springer Verlag, Berlin, 1995.
-
(1995)
Lecture Notes in Statistics
-
-
Malerba, D.1
Esposito, F.2
Semeraro, G.3
-
48
-
-
0346378507
-
The BP-SOM architecture and learning rule
-
A. Weijters, The BP-SOM architecture and learning rule, Neural Process. Lett. 2 (1995) 13-16.
-
(1995)
Neural Process. Lett.
, vol.2
, pp. 13-16
-
-
Weijters, A.1
-
49
-
-
65749116765
-
-
Marcke and Daelemans
-
A. Weijters, V.D. Bosch, H.J. Herik, Intelligible neural networks with BP-SOM, Marcke and Daelemans, 1997, pp. 27-36.
-
(1997)
Intelligible Neural Networks with BP-SOM
, pp. 27-36
-
-
Weijters, A.1
Bosch, V.D.2
Herik, H.J.3
-
52
-
-
79960416857
-
Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines
-
M. Sikora, L. Wrobel, Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines, Arch. Min. Sci. 55 (2010) 91-114.
-
(2010)
Arch. Min. Sci.
, vol.55
, pp. 91-114
-
-
Sikora, M.1
Wrobel, L.2
-
53
-
-
17644396003
-
Boosted decision trees as an alternative to artificial neural networks for particle identification
-
B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification, Nuclear Instrum. Methods Phys. Res. 543 (2005) 577-584.
-
(2005)
Nuclear Instrum. Methods Phys. Res.
, vol.543
, pp. 577-584
-
-
Roe, B.P.1
Yang, H.-J.2
Zhu, J.3
Liu, Y.4
Stancu, I.5
McGregor, G.6
-
54
-
-
80052931178
-
The build of n-bits binary coding ICBP ensemble system
-
Q. Dai, N.Z. Liu, The build of n-bits binary coding ICBP ensemble system, Neurocomputing 74 (2011) 3509-3519.
-
(2011)
Neurocomputing
, vol.74
, pp. 3509-3519
-
-
Dai, Q.1
Liu, N.Z.2
-
55
-
-
0842300575
-
Improved CBP neural network model with applications in time series prediction
-
Q. Dai, S.C. Chen, B.Z. Zhang, Improved CBP neural network model with applications in time series prediction, Neural Process. Lett. 18 (2003) 197-211.
-
(2003)
Neural Process. Lett.
, vol.18
, pp. 197-211
-
-
Dai, Q.1
Chen, S.C.2
Zhang, B.Z.3
|