메뉴 건너뛰기




Volumn 150, Issue PB, 2015, Pages 513-528

Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining

Author keywords

Data mining; Distributed computing; Ensemble selection; Neural networks; Privacy preserving

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DISTRIBUTED COMPUTER SYSTEMS; NEURAL NETWORKS;

EID: 84922630377     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.07.065     Document Type: Article
Times cited : (21)

References (49)
  • 2
    • 84922677350 scopus 로고    scopus 로고
    • Distributed data mining tasks and patterns as services
    • 2008, Las Palmas
    • D. Talia, Distributed data mining tasks and patterns as services, in: Proceedings of the DPA Workshop, 2008, Las Palmas, 2008.
    • (2008) Proceedings of the DPA Workshop
    • Talia, D.1
  • 5
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Breiman L. Pasting small votes for classification in large databases and on-line. Mach. Learn. 1999, 36:85-103.
    • (1999) Mach. Learn. , vol.36 , pp. 85-103
    • Breiman, L.1
  • 7
    • 2342557114 scopus 로고    scopus 로고
    • Clustering classifiers for knowledge discovery from physically distributed databases
    • Tsoumakas G., Angelis L., Vlahavas I. Clustering classifiers for knowledge discovery from physically distributed databases. Data Knowl. Eng. 2004, 49(3):223-242.
    • (2004) Data Knowl. Eng. , vol.49 , Issue.3 , pp. 223-242
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 11
    • 0002522158 scopus 로고    scopus 로고
    • Meta-learning in distributed data mining systems: Issues and approaches
    • AAAI/MIT Press, Cambridge, MA, H. Kargupta, P. Chan (Eds.)
    • Prodromidis A., Chan P., Stolfo S. Meta-learning in distributed data mining systems: Issues and approaches. Advances of Distributed Data Mining 2000, AAAI/MIT Press, Cambridge, MA. H. Kargupta, P. Chan (Eds.).
    • (2000) Advances of Distributed Data Mining
    • Prodromidis, A.1    Chan, P.2    Stolfo, S.3
  • 15
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137:239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 16
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247:978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 17
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F., Jones M., Poggio T. Regularization theory and neural networks architectures. Neural Comput. 1995, 7:219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 18
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 2000, 13(1):1-50.
    • (2000) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 19
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey B.J., Dueck D. Clustering by passing messages between data points. Science 2007, 315:972-976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 20
    • 84867350011 scopus 로고    scopus 로고
    • A distributed asynchronous and privacy preserving neural network ensemble selection approach for peer-to-peer data mining
    • Y. Kokkinos, K. Margaritis, A distributed asynchronous and privacy preserving neural network ensemble selection approach for peer-to-peer data mining, in: ACM Proceedings of the Fifth Balkan Conference in Informatics, 2012, pp. 46-51.
    • (2012) ACM Proceedings of the Fifth Balkan Conference in Informatics , pp. 46-51
    • Kokkinos, Y.1    Margaritis, K.2
  • 21
    • 26944485666 scopus 로고    scopus 로고
    • Privacy-preserving naive Bayes classifier for horizontally partitioned data
    • in: IEEE Workshop on Privacy-Preserving Data Mining
    • M. Kantarcioglu, J. Vaidya, Privacy-preserving naive Bayes classifier for horizontally partitioned data, in: IEEE Workshop on Privacy-Preserving Data Mining, 2003.
    • (2003)
    • Kantarcioglu, M.1    Vaidya, J.2
  • 22
    • 59149087052 scopus 로고    scopus 로고
    • Privacy-preserving naïve Bayes classification on distributed data via semi-trusted mixers
    • Yi X., Zhang Y. Privacy-preserving naïve Bayes classification on distributed data via semi-trusted mixers. Inf. Syst. 2009, 34:371-380.
    • (2009) Inf. Syst. , vol.34 , pp. 371-380
    • Yi, X.1    Zhang, Y.2
  • 23
    • 33751023839 scopus 로고    scopus 로고
    • Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data
    • H. Yu, X. Jiang, J. Vaidya, Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data, in: Proceedings of the SAC Conference, 2006.
    • (2006) Proceedings of the SAC Conference
    • Yu, H.1    Jiang, X.2    Vaidya, J.3
  • 27
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • Partalas I., Tsoumakas G., Vlahavas I. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 2009, 72:1900-1909.
    • (2009) Neurocomputing , vol.72 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 30
    • 84862796962 scopus 로고    scopus 로고
    • Margin distribution based bagging pruning
    • Xie Z., Xu Y., Hu Q., Zhu P. Margin distribution based bagging pruning. Neurocomputing 2012, 85:11-19.
    • (2012) Neurocomputing , vol.85 , pp. 11-19
    • Xie, Z.1    Xu, Y.2    Hu, Q.3    Zhu, P.4
  • 31
    • 33749247099 scopus 로고    scopus 로고
    • Pruning in ordered bagging ensembles
    • In Proc. of the 23rd International Conference on Machine Learning, (ICML-2006)
    • G. Martínez-Muñoz, A. Suárez, Pruning in ordered bagging ensembles. In Proc. of the 23rd International Conference on Machine Learning, (ICML-2006), pp. 609-616.
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 34
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • Giacinto G., Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognit. Lett. 2001, 22:25-33.
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 35
    • 0035457787 scopus 로고    scopus 로고
    • Multiple classifier combination by clustering and selection
    • Liu R., Yuan B. Multiple classifier combination by clustering and selection. Inf. Fusion 2001, 2:163-168.
    • (2001) Inf. Fusion , vol.2 , pp. 163-168
    • Liu, R.1    Yuan, B.2
  • 36
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker B., Heskes T. Clustering ensembles of neural network models. Neural Netw. 2003, 16:261-269.
    • (2003) Neural Netw. , vol.16 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 38
    • 19044388523 scopus 로고    scopus 로고
    • Clustering based selective neural network ensemble
    • Fu Q., Hu S.-X., Zhao S.-Y. Clustering based selective neural network ensemble. J. Zhejiang Univ. 2005, 6A(5):387-392.
    • (2005) J. Zhejiang Univ. , vol.6 A , Issue.5 , pp. 387-392
    • Fu, Q.1    Hu, S.-X.2    Zhao, S.-Y.3
  • 39
    • 33745899305 scopus 로고    scopus 로고
    • Selective neural network ensemble based on clustering
    • LNCS, Springer, Berlin
    • Chen H., Yuan S., Jiang K. Selective neural network ensemble based on clustering. Advances in Neural Networks 2006, 3971:545-550. LNCS, Springer, Berlin.
    • (2006) Advances in Neural Networks , vol.3971 , pp. 545-550
    • Chen, H.1    Yuan, S.2    Jiang, K.3
  • 41
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51:181-207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 42
  • 44
    • 56549097547 scopus 로고    scopus 로고
    • Multistage R.B.F. neural network ensemble learning for exchange rates forecasting
    • Yu L., Lai K.K., Wang S. Multistage R.B.F. neural network ensemble learning for exchange rates forecasting. Neurocomputing 2008, 71:3295-3302.
    • (2008) Neurocomputing , vol.71 , pp. 3295-3302
    • Yu, L.1    Lai, K.K.2    Wang, S.3
  • 45
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Liu Y., Yao X. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29(6):716-725.
    • (1999) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 46
    • 72149122081 scopus 로고    scopus 로고
    • Regularized negative correlation learning for neural network ensembles
    • Chen H., Yao X. Regularized negative correlation learning for neural network ensembles. IEEE Trans. Neural Netw. 2009, 20:1962-1979.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 1962-1979
    • Chen, H.1    Yao, X.2
  • 47
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • Wozniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16:3-17.
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Wozniak, M.1    Graña, M.2    Corchado, E.3
  • 48
    • 84887611642 scopus 로고    scopus 로고
    • Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
    • Lysiak R., Kurzynski M., Woloszynski T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 2014, 126:29-35.
    • (2014) Neurocomputing , vol.126 , pp. 29-35
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 49
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.