-
2
-
-
84922677350
-
Distributed data mining tasks and patterns as services
-
2008, Las Palmas
-
D. Talia, Distributed data mining tasks and patterns as services, in: Proceedings of the DPA Workshop, 2008, Las Palmas, 2008.
-
(2008)
Proceedings of the DPA Workshop
-
-
Talia, D.1
-
4
-
-
10044273842
-
Tools for privacy-preserving distributed data mining
-
Clifton C., Kantarcioglu M., Vaidya J., Lin X., Zhu M. Tools for privacy-preserving distributed data mining. ACM SIGKDD Explor. 2003, 4(2):1-7.
-
(2003)
ACM SIGKDD Explor.
, vol.4
, Issue.2
, pp. 1-7
-
-
Clifton, C.1
Kantarcioglu, M.2
Vaidya, J.3
Lin, X.4
Zhu, M.5
-
5
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
Breiman L. Pasting small votes for classification in large databases and on-line. Mach. Learn. 1999, 36:85-103.
-
(1999)
Mach. Learn.
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
6
-
-
24644437145
-
Learning ensembles from bites: a scalable and accurate approach
-
Chawla N.V., Hall L.O., Bowyer K.W., Kegelmeyer W.P. Learning ensembles from bites: a scalable and accurate approach. J. Mach Learn. Res. 2004, 5:421-451.
-
(2004)
J. Mach Learn. Res.
, vol.5
, pp. 421-451
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
7
-
-
2342557114
-
Clustering classifiers for knowledge discovery from physically distributed databases
-
Tsoumakas G., Angelis L., Vlahavas I. Clustering classifiers for knowledge discovery from physically distributed databases. Data Knowl. Eng. 2004, 49(3):223-242.
-
(2004)
Data Knowl. Eng.
, vol.49
, Issue.3
, pp. 223-242
-
-
Tsoumakas, G.1
Angelis, L.2
Vlahavas, I.3
-
10
-
-
0012439987
-
Pruning meta-classifiers in a distributed data mining system
-
Athens, Greece
-
A. Prodromidis, S. Stolfo, Pruning meta-classifiers in a distributed data mining system, in: Proceedings of the First National Conference on New Information Technologies, Athens, Greece, 1998, pp. 151-160.
-
(1998)
Proceedings of the First National Conference on New Information Technologies
, pp. 151-160
-
-
Prodromidis, A.1
Stolfo, S.2
-
11
-
-
0002522158
-
Meta-learning in distributed data mining systems: Issues and approaches
-
AAAI/MIT Press, Cambridge, MA, H. Kargupta, P. Chan (Eds.)
-
Prodromidis A., Chan P., Stolfo S. Meta-learning in distributed data mining systems: Issues and approaches. Advances of Distributed Data Mining 2000, AAAI/MIT Press, Cambridge, MA. H. Kargupta, P. Chan (Eds.).
-
(2000)
Advances of Distributed Data Mining
-
-
Prodromidis, A.1
Chan, P.2
Stolfo, S.3
-
15
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137:239-263.
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
16
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247:978-982.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
17
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Girosi F., Jones M., Poggio T. Regularization theory and neural networks architectures. Neural Comput. 1995, 7:219-269.
-
(1995)
Neural Comput.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
18
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou T., Pontil M., Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 2000, 13(1):1-50.
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
19
-
-
33847172327
-
Clustering by passing messages between data points
-
Frey B.J., Dueck D. Clustering by passing messages between data points. Science 2007, 315:972-976.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
20
-
-
84867350011
-
A distributed asynchronous and privacy preserving neural network ensemble selection approach for peer-to-peer data mining
-
Y. Kokkinos, K. Margaritis, A distributed asynchronous and privacy preserving neural network ensemble selection approach for peer-to-peer data mining, in: ACM Proceedings of the Fifth Balkan Conference in Informatics, 2012, pp. 46-51.
-
(2012)
ACM Proceedings of the Fifth Balkan Conference in Informatics
, pp. 46-51
-
-
Kokkinos, Y.1
Margaritis, K.2
-
21
-
-
26944485666
-
Privacy-preserving naive Bayes classifier for horizontally partitioned data
-
in: IEEE Workshop on Privacy-Preserving Data Mining
-
M. Kantarcioglu, J. Vaidya, Privacy-preserving naive Bayes classifier for horizontally partitioned data, in: IEEE Workshop on Privacy-Preserving Data Mining, 2003.
-
(2003)
-
-
Kantarcioglu, M.1
Vaidya, J.2
-
22
-
-
59149087052
-
Privacy-preserving naïve Bayes classification on distributed data via semi-trusted mixers
-
Yi X., Zhang Y. Privacy-preserving naïve Bayes classification on distributed data via semi-trusted mixers. Inf. Syst. 2009, 34:371-380.
-
(2009)
Inf. Syst.
, vol.34
, pp. 371-380
-
-
Yi, X.1
Zhang, Y.2
-
23
-
-
33751023839
-
Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data
-
H. Yu, X. Jiang, J. Vaidya, Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data, in: Proceedings of the SAC Conference, 2006.
-
(2006)
Proceedings of the SAC Conference
-
-
Yu, H.1
Jiang, X.2
Vaidya, J.3
-
27
-
-
61849098236
-
Pruning an ensemble of classifiers via reinforcement learning
-
Partalas I., Tsoumakas G., Vlahavas I. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 2009, 72:1900-1909.
-
(2009)
Neurocomputing
, vol.72
, pp. 1900-1909
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
28
-
-
70350220351
-
An ensemble pruning primer
-
Springer, Berlin
-
Tsoumakas G., Partalas I., Vlahavas I. An ensemble pruning primer. Applications of Supervised and Unsupervised Ensemble Methods 2009, 245:1-13. Springer, Berlin.
-
(2009)
Applications of Supervised and Unsupervised Ensemble Methods
, vol.245
, pp. 1-13
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
29
-
-
84974678430
-
On the boosting pruning problem
-
Springer, Berlin
-
C. Tamon, J. Xiang, On the boosting pruning problem, in: Proceedings of 11th European Conference on Machine Learning, Springer, Berlin, 2000, pp. 404-412.
-
(2000)
Proceedings of 11th European Conference on Machine Learning
, pp. 404-412
-
-
Tamon, C.1
Xiang, J.2
-
30
-
-
84862796962
-
Margin distribution based bagging pruning
-
Xie Z., Xu Y., Hu Q., Zhu P. Margin distribution based bagging pruning. Neurocomputing 2012, 85:11-19.
-
(2012)
Neurocomputing
, vol.85
, pp. 11-19
-
-
Xie, Z.1
Xu, Y.2
Hu, Q.3
Zhu, P.4
-
31
-
-
33749247099
-
Pruning in ordered bagging ensembles
-
In Proc. of the 23rd International Conference on Machine Learning, (ICML-2006)
-
G. Martínez-Muñoz, A. Suárez, Pruning in ordered bagging ensembles. In Proc. of the 23rd International Conference on Machine Learning, (ICML-2006), pp. 609-616.
-
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
33
-
-
0342838353
-
Design of effective multiple classifier systems by clustering of classifiers
-
G. Giacinto, F. Roli, G. Fumera, Design of effective multiple classifier systems by clustering of classifiers, in: Proceedings of 15th International Conference on Pattern Recognition, 2000, pp. 160-163.
-
(2000)
Proceedings of 15th International Conference on Pattern Recognition
, pp. 160-163
-
-
Giacinto, G.1
Roli, F.2
Fumera, G.3
-
34
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
Giacinto G., Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognit. Lett. 2001, 22:25-33.
-
(2001)
Pattern Recognit. Lett.
, vol.22
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
35
-
-
0035457787
-
Multiple classifier combination by clustering and selection
-
Liu R., Yuan B. Multiple classifier combination by clustering and selection. Inf. Fusion 2001, 2:163-168.
-
(2001)
Inf. Fusion
, vol.2
, pp. 163-168
-
-
Liu, R.1
Yuan, B.2
-
36
-
-
0037337904
-
Clustering ensembles of neural network models
-
Bakker B., Heskes T. Clustering ensembles of neural network models. Neural Netw. 2003, 16:261-269.
-
(2003)
Neural Netw.
, vol.16
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
38
-
-
19044388523
-
Clustering based selective neural network ensemble
-
Fu Q., Hu S.-X., Zhao S.-Y. Clustering based selective neural network ensemble. J. Zhejiang Univ. 2005, 6A(5):387-392.
-
(2005)
J. Zhejiang Univ.
, vol.6 A
, Issue.5
, pp. 387-392
-
-
Fu, Q.1
Hu, S.-X.2
Zhao, S.-Y.3
-
39
-
-
33745899305
-
Selective neural network ensemble based on clustering
-
LNCS, Springer, Berlin
-
Chen H., Yuan S., Jiang K. Selective neural network ensemble based on clustering. Advances in Neural Networks 2006, 3971:545-550. LNCS, Springer, Berlin.
-
(2006)
Advances in Neural Networks
, vol.3971
, pp. 545-550
-
-
Chen, H.1
Yuan, S.2
Jiang, K.3
-
40
-
-
77949695868
-
Novel Neural network ensemble method based on affinity propagation clustering and lagrange multiplier
-
H.-L. Yu, G.-F. Chen, D.-Y. Liu, B.-C. Wan, D. Jin, A. Novel Neural network ensemble method based on affinity propagation clustering and lagrange multiplier, in: Proceedings of the International Conference on Computational Intelligence and Software Engineering, 2009.
-
(2009)
Proceedings of the International Conference on Computational Intelligence and Software Engineering
-
-
Yu, H.-L.1
Chen, G.-F.2
Liu, D.-Y.3
Wan, B.-C.4
Jin, D.A.5
-
41
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51:181-207.
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
43
-
-
6344292247
-
A selective approach to neural network ensemble based on clustering technology
-
Shanghai
-
Kai Li, Hou-Kuan Huang, Xiu-Chen Ye, Li-Juan Cut, A selective approach to neural network ensemble based on clustering technology, in: Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 2004, pp. 26-29.
-
(2004)
Proceedings of the Third International Conference on Machine Learning and Cybernetics
, pp. 26-29
-
-
Li, K.1
Huang, H.-K.2
Ye, X.-C.3
Cut, L.-J.4
-
44
-
-
56549097547
-
Multistage R.B.F. neural network ensemble learning for exchange rates forecasting
-
Yu L., Lai K.K., Wang S. Multistage R.B.F. neural network ensemble learning for exchange rates forecasting. Neurocomputing 2008, 71:3295-3302.
-
(2008)
Neurocomputing
, vol.71
, pp. 3295-3302
-
-
Yu, L.1
Lai, K.K.2
Wang, S.3
-
45
-
-
0033280266
-
Simultaneous training of negatively correlated neural networks in an ensemble
-
Liu Y., Yao X. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29(6):716-725.
-
(1999)
IEEE Trans. Syst. Man Cybern. Part B Cybern.
, vol.29
, Issue.6
, pp. 716-725
-
-
Liu, Y.1
Yao, X.2
-
46
-
-
72149122081
-
Regularized negative correlation learning for neural network ensembles
-
Chen H., Yao X. Regularized negative correlation learning for neural network ensembles. IEEE Trans. Neural Netw. 2009, 20:1962-1979.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, pp. 1962-1979
-
-
Chen, H.1
Yao, X.2
-
47
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
Wozniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16:3-17.
-
(2014)
Inf. Fusion
, vol.16
, pp. 3-17
-
-
Wozniak, M.1
Graña, M.2
Corchado, E.3
-
48
-
-
84887611642
-
Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
-
Lysiak R., Kurzynski M., Woloszynski T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 2014, 126:29-35.
-
(2014)
Neurocomputing
, vol.126
, pp. 29-35
-
-
Lysiak, R.1
Kurzynski, M.2
Woloszynski, T.3
-
49
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
-
García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
-
(2010)
Inf. Sci.
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
|