메뉴 건너뛰기




Volumn 41, Issue 1, 2014, Pages 128-144

Ensemble selection by GRASP

Author keywords

Directed Hill Climbing Ensemble Pruning algorithm (DHCEP); Diversity; Ensemble selection; Ensemble Selection algorithm based on GRASP (GraspEnS); Greedy Randomized Adaptive Search Procedure (GRASP)

Indexed keywords

ALGORITHMS; COMBINATORIAL OPTIMIZATION; HEURISTIC ALGORITHMS;

EID: 84957436616     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-013-0510-0     Document Type: Article
Times cited : (24)

References (46)
  • 1
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 2
    • 84957450557 scopus 로고    scopus 로고
    • Quinlan J (1996) Bagging, boosting, and C4.5. Presented at proc. 13th national conference on artificial intelligence, Cambridge, MA
    • Quinlan J (1996) Bagging, boosting, and C4.5. Presented at proc. 13th national conference on artificial intelligence, Cambridge, MA
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L (1998) Arcing classifiers. Ann Stat 26:801–849
    • (1998) Ann Stat , vol.26 , pp. 801-849
    • Breiman, L.1
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36:105–139
    • (1999) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 8
    • 11144281845 scopus 로고    scopus 로고
    • Martinez-Munoz G, Suarez A (2004) Aggregation ordering in bagging. Presented at international conference on artificial intelligence and applications
    • Martinez-Munoz G, Suarez A (2004) Aggregation ordering in bagging. Presented at international conference on artificial intelligence and applications
  • 9
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R, Freund Y, Bartlett P, Lee W (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 12:1651–1686
    • (1998) Ann Stat , vol.12 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 10
    • 84957450559 scopus 로고    scopus 로고
    • Margineantu D, Dietterich T (1997) Pruning adaptive boosting. Presented at proceedings of the 14th international conference on machine learning
    • Margineantu D, Dietterich T (1997) Pruning adaptive boosting. Presented at proceedings of the 14th international conference on machine learning
  • 11
    • 84884292459 scopus 로고    scopus 로고
    • Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification
    • Idris A, Khan A, Lee YS (2013) Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification. Appl Intell 39:659–672
    • (2013) Appl Intell , vol.39 , pp. 659-672
    • Idris, A.1    Khan, A.2    Lee, Y.S.3
  • 12
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dew point temperature
    • Nadig K, Potter W, Hoogenboom G, McClendon R (2013) Comparison of individual and combined ANN models for prediction of air and dew point temperature. Appl Intell 39:354–366
    • (2013) Appl Intell , vol.39 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.4
  • 13
    • 84894544944 scopus 로고    scopus 로고
    • Red tides prediction system using fuzzy reasoning and the ensemble method
    • Park S, Lee SR (2013) Red tides prediction system using fuzzy reasoning and the ensemble method. Appl Intell. doi:10.1007/s10489-013-0457-1
    • (2013) Appl Intell
    • Park, S.1    Lee, S.R.2
  • 14
    • 84957450560 scopus 로고    scopus 로고
    • Caruana R, Munson A, Niculescu-Mizil A (2006) Getting the most out of ensemble selection. Presented at sixth international conference on data mining, Hong Kong
    • Caruana R, Munson A, Niculescu-Mizil A (2006) Getting the most out of ensemble selection. Presented at sixth international conference on data mining, Hong Kong
  • 18
    • 84957450561 scopus 로고    scopus 로고
    • Zhenyu L, Xindong W, Xingquan Z, Josh B (2010) Ensemble pruning via individual contribution ordering
    • Zhenyu L, Xindong W, Xingquan Z, Josh B (2010) Ensemble pruning via individual contribution ordering
  • 19
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y, Burer S, Street WN (2006) Ensemble pruning via semi-definite programming. J Mach Learn Res 7:1315–1338
    • (2006) J Mach Learn Res , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 20
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • Martínez-Muñoz G, Suárez A (2005) Switching class labels to generate classification ensembles. Pattern Recognit 38:1483–1494
    • (2005) Pattern Recognit , vol.38 , pp. 1483-1494
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 21
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • Partalas I, Tsoumakas G, Vlahavas I (2009) Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing 72:1900–1909
    • (2009) Neurocomputing , vol.72 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 22
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z-H, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137:239–263
    • (2002) Artif Intell , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 23
  • 25
    • 84870065802 scopus 로고    scopus 로고
    • A competitive ensemble pruning approach based on cross-validation technique
    • Dai Q (2013) A competitive ensemble pruning approach based on cross-validation technique. Knowl-Based Syst 37:394–414
    • (2013) Knowl-Based Syst , vol.37 , pp. 394-414
    • Dai, Q.1
  • 26
    • 84885377748 scopus 로고    scopus 로고
    • ModEnPBT: a modified backtracking ensemble pruning algorithm
    • Dai Q, Liu Z (2013) ModEnPBT: a modified backtracking ensemble pruning algorithm. Appl Soft Comput 13:4292–4302
    • (2013) Appl Soft Comput , vol.13 , pp. 4292-4302
    • Dai, Q.1    Liu, Z.2
  • 27
    • 14344255621 scopus 로고    scopus 로고
    • Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models. Presented at proceedings of the 21st international conference on machine learning
    • Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of models. Presented at proceedings of the 21st international conference on machine learning
  • 30
    • 84857820925 scopus 로고    scopus 로고
    • A new selective neural network ensemble with negative correlation
    • Lee H, Kim E, Pedrycz W (2012) A new selective neural network ensemble with negative correlation. Appl Intell 37:488–498
    • (2012) Appl Intell , vol.37 , pp. 488-498
    • Lee, H.1    Kim, E.2    Pedrycz, W.3
  • 31
    • 84957450563 scopus 로고    scopus 로고
    • Tamon C, Xiang J (2000) On the boosting pruning problem. Presented at 11th European conference on machine learning, Springer, Berlin
    • Tamon C, Xiang J (2000) On the boosting pruning problem. Presented at 11th European conference on machine learning, Springer, Berlin
  • 32
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • Partalas I, Tsoumakas G, Vlahavas I (2010) An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach Learn 81:257–282
    • (2010) Mach Learn , vol.81 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 33
    • 84884210298 scopus 로고    scopus 로고
    • A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
    • Dai Q (2013) A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 122:258–265
    • (2013) Neurocomputing , vol.122 , pp. 258-265
    • Dai, Q.1
  • 34
    • 0000049494 scopus 로고
    • Greedy randomized adaptive search procedures
    • Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133
    • (1995) J Glob Optim , vol.6 , pp. 109-133
    • Feo, T.A.1    Resende, M.G.C.2
  • 35
    • 84957450564 scopus 로고    scopus 로고
    • Gevezes T, Pitsoulis L (2013) A greedy randomized adaptive search procedure with path relinking for the shortest superstring problem. J Comb Optim, 1–25
    • Gevezes T, Pitsoulis L (2013) A greedy randomized adaptive search procedure with path relinking for the shortest superstring problem. J Comb Optim, 1–25
  • 36
    • 84862223543 scopus 로고    scopus 로고
    • An improved heuristic for the far from most strings problem
    • Mousavi SR, Babaie M, Montazerian M (2012) An improved heuristic for the far from most strings problem. J Heuristics 18:239–262
    • (2012) J Heuristics , vol.18 , pp. 239-262
    • Mousavi, S.R.1    Babaie, M.2    Montazerian, M.3
  • 37
    • 0012587086 scopus 로고    scopus 로고
    • Greedy randomized adaptive search procedures
    • Glover F, Kochenberger G, (eds), Kluwer Academic, Norwell
    • Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic, Norwell, pp 219–249
    • (2003) Handbook of metaheuristics , pp. 219-249
    • Resende, M.G.C.1    Ribeiro, C.C.2
  • 39
    • 84879647638 scopus 로고    scopus 로고
    • A new greedy randomized adaptive search procedure for multiple sequence alignment
    • Layeb A, Selmane M, Bencheikh Elhoucine M (2013) A new greedy randomized adaptive search procedure for multiple sequence alignment. Int J Bioinform Res Appl 9:1–14
    • (2013) Int J Bioinform Res Appl , vol.9 , pp. 1-14
    • Layeb, A.1    Selmane, M.2    Bencheikh Elhoucine, M.3
  • 40
    • 84957450565 scopus 로고    scopus 로고
    • Fan W, Chu F, Wang H, Yu PS (2002) Pruning and dynamic scheduling of cost-sensitive ensembles. Presented at eighteenth national conference on artificial intelligence, American association for artificial intelligence
    • Fan W, Chu F, Wang H, Yu PS (2002) Pruning and dynamic scheduling of cost-sensitive ensembles. Presented at eighteenth national conference on artificial intelligence, American association for artificial intelligence
  • 41
    • 84957450566 scopus 로고    scopus 로고
    • Partalas I, Tsoumakas G, Vlahavas I (2012) A study on greedy algorithms for ensemble pruning. Technical report TR-LPIS-360-12, Department of Informatics, Aristotle University of Thessaloniki, Greece
    • Partalas I, Tsoumakas G, Vlahavas I (2012) A study on greedy algorithms for ensemble pruning. Technical report TR-LPIS-360-12, Department of Informatics, Aristotle University of Thessaloniki, Greece
  • 43
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang E, Suganthan P, Yao X (2006) An analysis of diversity measures. Mach Learn 65:247–271
    • (2006) Mach Learn , vol.65 , pp. 247-271
    • Tang, E.1    Suganthan, P.2    Yao, X.3
  • 45
    • 84957450567 scopus 로고    scopus 로고
    • Asuncion A, Newman DJ (2007) UCI machine learning repository
    • Asuncion A, Newman DJ (2007) UCI machine learning repository
  • 46
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.