메뉴 건너뛰기




Volumn 122, Issue , 2013, Pages 258-265

A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot

Author keywords

Classifier; Ensemble learning; Ensemble pruning; Machine learning; Pattern recognition

Indexed keywords

BENCHMARK CLASSIFICATION; CLASSIFICATION PERFORMANCE; ENSEMBLE LEARNING; ENSEMBLE PRUNING; RANDOMIZATION TECHNIQUES; SELECTIVE STRATEGIES; SOLUTION SPACE; SUBOPTIMAL SOLUTION;

EID: 84884210298     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.06.026     Document Type: Article
Times cited : (34)

References (26)
  • 1
    • 0002897323 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Proceedings of the 2nd European Conference on Computational Learning Theory
    • Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting, in: Proceedings of the 2nd European Conference on Computational Learning Theory, 1995.
    • (1995)
    • Freund, Y.1    Schapire, R.E.2
  • 2
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting, and C4.5. In: Proceedings of the 13th National Conference on Artificial Intelligence, Cambridge, MA, 1996.
    • J. Quinlan. Bagging, boosting, and C4.5. In: Proceedings of the 13th National Conference on Artificial Intelligence, Cambridge, MA, 1996.
    • Quinlan, J.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Ann. Stat. 1998, 26:801-849.
    • (1998) Ann. Stat. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 5
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R., Freund Y., Bartlett P., Lee W. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 12:1651-1686.
    • (1998) Ann. Stat. , vol.12 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 6
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 1999, 36:105-139.
    • (1999) Mach. Learn. , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 2000, 40:139-158.
    • (2000) Mach. Learn. , vol.40 , pp. 139-158
    • Dietterich, T.1
  • 10
    • 11144281845 scopus 로고    scopus 로고
    • Aggregation ordering in bagging
    • International Conference on Artificial Intelligence and Applications
    • G. Martinez-Munoz, A. Suarez. Aggregation ordering in bagging, in: International Conference on Artificial Intelligence and Applications 2004.
    • (2004)
    • Martinez-Munoz, G.1    Suarez, A.2
  • 11
    • 48749096852 scopus 로고    scopus 로고
    • Getting the most out of ensemble selection
    • Sixth International Conference on Data Mining, Hong Kong
    • R. Caruana, A. Munson, A. Niculescu-Mizil, Getting the most out of ensemble selection, in: Sixth International Conference on Data Mining, Hong Kong, 2006.
    • (2006)
    • Caruana, R.1    Munson, A.2    Niculescu-Mizil, A.3
  • 15
    • 84870065802 scopus 로고    scopus 로고
    • A competitive ensemble pruning approach based on cross-validation technique
    • Dai Q. A competitive ensemble pruning approach based on cross-validation technique. Knowledge-Based Systems 2013, 37:394-414.
    • (2013) Knowledge-Based Systems , vol.37 , pp. 394-414
    • Dai, Q.1
  • 16
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: an overview
    • MSRI Workshop on Nonlinear Estimation and Classification
    • R. Schapire. The boosting approach to machine learning: an overview, in: MSRI Workshop on Nonlinear Estimation and Classification, 2001.
    • (2001)
    • Schapire, R.1
  • 17
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 1992, 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 18
    • 0002289220 scopus 로고    scopus 로고
    • Pruning adaptive boosting
    • Proceedings of the 14th International Conference on Machine Learning
    • D. Margineantu, T. Dietterich, Pruning adaptive boosting in: Proceedings of the 14th International Conference on Machine Learning, 1997.
    • (1997)
    • Margineantu, D.1    Dietterich, T.2
  • 19
    • 0012467735 scopus 로고    scopus 로고
    • Cost complexity-based pruning of ensemble classifiers
    • Prodromidis A.L., Stolfo S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inf. Sys. 2001, 3:449-469.
    • (2001) Knowl. Inf. Sys. , vol.3 , pp. 449-469
    • Prodromidis, A.L.1    Stolfo, S.J.2
  • 20
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • Partalas I., Tsoumakas G., Vlahavas I. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 2010, 81:257-282.
    • (2010) Mach. Learn. , vol.81 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 22
    • 14344255621 scopus 로고    scopus 로고
    • Ensemble selection from libraries of models
    • Proceedings of the 21st International Conference on Machine Learning
    • R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes. Ensemble selection from libraries of models, in: Proceedings of the 21st International Conference on Machine Learning, 2004.
    • (2004)
    • Caruana, R.1    Niculescu-Mizil, A.2    Crew, G.3    Ksikes, A.4
  • 24
    • 0012587086 scopus 로고    scopus 로고
    • Greedy randomized adaptive search procedures
    • Kluwer Academic Publishers, F. Glover, G. Kochenberger (Eds.)
    • Resende M.G.C., Ribeiro C.C. Greedy randomized adaptive search procedures. Handbook of Metaheuristics 2003, 219-249. Kluwer Academic Publishers. F. Glover, G. Kochenberger (Eds.).
    • (2003) Handbook of Metaheuristics , pp. 219-249
    • Resende, M.G.C.1    Ribeiro, C.C.2
  • 25
    • 84884207355 scopus 로고    scopus 로고
    • UCI, UCI Repository of Machine Learning Databases.
    • UCI, UCI Repository of Machine Learning Databases.
  • 26
    • 80052931178 scopus 로고    scopus 로고
    • The build of n-bits binary coding ICBP ensemble system
    • Dai Q., Liu N.Z. The build of n-bits binary coding ICBP ensemble system. Neurocomputing 2011, 74:3509-3519.
    • (2011) Neurocomputing , vol.74 , pp. 3509-3519
    • Dai, Q.1    Liu, N.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.