-
1
-
-
0032560807
-
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction
-
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998; 339:229-34. doi: 10.1056/NEJM199807233390404
-
(1998)
N Engl J Med
, vol.339
, pp. 229-234
-
-
Haffner, S.M.1
Lehto, S.2
Rönnemaa, T.3
Pyörälä, K.4
Laakso, M.5
-
2
-
-
84955304304
-
Diabetic hepatosclerosis: another diabetes microvascular complication?
-
King RJ, Harrison L, Gilbey SG, Santhakumar A, Wyatt J, Jones R, Bodansky HJ. Diabetic hepatosclerosis: another diabetes microvascular complication? Diabet Med. 2016; 33:e5-7. doi: 10.1111/dme.12898
-
(2016)
Diabet Med
, vol.33
-
-
King, R.J.1
Harrison, L.2
Gilbey, S.G.3
Santhakumar, A.4
Wyatt, J.5
Jones, R.6
Bodansky, H.J.7
-
3
-
-
17144380822
-
The metabolic syndrome
-
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365:1415-28. doi:10.1016/S0140-6736(05)66378-7
-
(2005)
Lancet
, vol.365
, pp. 1415-1428
-
-
Eckel, R.H.1
Grundy, S.M.2
Zimmet, P.Z.3
-
4
-
-
84950104119
-
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
-
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, et al, and Writing Group Members, and American Heart Association Statistics Committee, and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016; 133:e38-360. doi: 10.1161/CIR.0000000000000350
-
(2016)
Circulation
, vol.133
-
-
Mozaffarian, D.1
Benjamin, E.J.2
Go, A.S.3
Arnett, D.K.4
Blaha, M.J.5
Cushman, M.6
Das, S.R.7
de Ferranti, S.8
Després, J.P.9
Fullerton, H.J.10
Howard, V.J.11
Huffman, M.D.12
Isasi, C.R.13
-
6
-
-
84906656463
-
The mitochondrial free radical theory of aging
-
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014; 127:1-27. doi:10.1016/B978-0-12-394625-6.00001-5
-
(2014)
Prog Mol Biol Transl Sci
, vol.127
, pp. 1-27
-
-
Barja, G.1
-
7
-
-
0030797218
-
Nuclear factor-kappa B
-
Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol. 1997; 29:867-70. doi: 10.1016/S1357-2725(96)00159-8
-
(1997)
Int J Biochem Cell Biol
, vol.29
, pp. 867-870
-
-
Barnes, P.J.1
-
8
-
-
38749112555
-
Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction
-
Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008; 54:24-38. doi:10.1373/clinchem.2007.097360
-
(2008)
Clin Chem
, vol.54
, pp. 24-38
-
-
Packard, R.R.1
Libby, P.2
-
9
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010; 40:280-93 doi: 10.1016/j.molcel.2010.09.023
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Mariño, G.2
Levine, B.3
-
10
-
-
77951176737
-
Extending healthy life span-from yeast to humans
-
Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science. 2010; 328:321-26. doi: 10.1126/science.1172539
-
(2010)
Science
, vol.328
, pp. 321-326
-
-
Fontana, L.1
Partridge, L.2
Longo, V.D.3
-
11
-
-
79958206937
-
Franklin H. Epstein Lecture: Sirtuins, aging, and medicine
-
Guarente L, Franklin H. Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med. 2011; 364:2235-44. doi: 10.1056/NEJMra1100831
-
(2011)
N Engl J Med
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
Franklin, H.2
-
12
-
-
84872008953
-
Sirtuins and renal diseases: relationship with aging and diabetic nephropathy
-
Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond). 2013; 124:153-64. doi: 10.1042/CS20120190
-
(2013)
Clin Sci (Lond)
, vol.124
, pp. 153-164
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
Kanasaki, K.4
Koya, D.5
-
13
-
-
35549008884
-
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 2007; 104:14855-60 doi: 10.1073/pnas.0704329104
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 14855-14860
-
-
Mattagajasingh, I.1
Kim, C.S.2
Naqvi, A.3
Yamamori, T.4
Hoffman, T.A.5
Jung, S.B.6
DeRicco, J.7
Kasuno, K.8
Irani, K.9
-
14
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004; 305:390-92. doi: 10.1126/science.1099196
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
Wall, N.R.4
Hekking, B.5
Kessler, B.6
Howitz, K.T.7
Gorospe, M.8
de Cabo, R.9
Sinclair, D.A.10
-
15
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325:201-04. doi:10.1126/science.1173635
-
(2009)
Science
, vol.325
, pp. 201-204
-
-
Colman, R.J.1
Anderson, R.M.2
Johnson, S.C.3
Kastman, E.K.4
Kosmatka, K.J.5
Beasley, T.M.6
Allison, D.B.7
Cruzen, C.8
Simmons, H.A.9
Kemnitz, J.W.10
Weindruch, R.11
-
16
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403:795-800. doi: 10.1038/35001622
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
17
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004; 16:93-105. doi:10.1016/j.molcel.2004.08.031
-
(2004)
Mol Cell
, vol.16
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
Erdjument-Bromage, H.4
Tempst, P.5
Reinberg, D.6
-
18
-
-
36248954501
-
SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
-
Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007; 450:440-44. doi:10.1038/nature06268
-
(2007)
Nature
, vol.450
, pp. 440-444
-
-
Vaquero, A.1
Scher, M.2
Erdjument-Bromage, H.3
Tempst, P.4
Serrano, L.5
Reinberg, D.6
-
19
-
-
84893472182
-
SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation
-
Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, Mazzoccoli G, Andriulli A, Nakanishi T, Vinciguerra M. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY). 2014; 6:35-47. doi: 10.18632/aging.100632
-
(2014)
Aging (Albany NY)
, vol.6
, pp. 35-47
-
-
Pazienza, V.1
Borghesan, M.2
Mazza, T.3
Sheedfar, F.4
Panebianco, C.5
Williams, R.6
Mazzoccoli, G.7
Andriulli, A.8
Nakanishi, T.9
Vinciguerra, M.10
-
20
-
-
84893458958
-
Hypothalamic Sirt1 in aging
-
Satoh A, Imai S. Hypothalamic Sirt1 in aging. Aging (Albany NY). 2014; 6:1-2. doi: 10.18632/aging.100627
-
(2014)
Aging (Albany NY)
, vol.6
, pp. 1-2
-
-
Satoh, A.1
Imai, S.2
-
21
-
-
33748200050
-
Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
-
Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006; 8:1025-31. doi:10.1038/ncb1468
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1025-1031
-
-
Wang, C.1
Chen, L.2
Hou, X.3
Li, Z.4
Kabra, N.5
Ma, Y.6
Nemoto, S.7
Finkel, T.8
Gu, W.9
Cress, W.D.10
Chen, J.11
-
22
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead dependent pathway
-
Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead dependent pathway. Science. 2004; 306:2105-08. doi: 10.1126/science.1101731
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
23
-
-
84863116364
-
Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis
-
Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, Bhatia R, Chen W. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012; 119:1904-14. doi: 10.1182/blood-2011-06-361691
-
(2012)
Blood
, vol.119
, pp. 1904-1914
-
-
Yuan, H.1
Wang, Z.2
Li, L.3
Zhang, H.4
Modi, H.5
Horne, D.6
Bhatia, R.7
Chen, W.8
-
24
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005; 123:437-48. doi: 10.1016/j.cell.2005.08.011
-
(2005)
Cell
, vol.123
, pp. 437-448
-
-
Chen, W.Y.1
Wang, D.H.2
Yen, R.C.3
Luo, J.4
Gu, W.5
Baylin, S.B.6
-
25
-
-
33847035824
-
Phosphorylation of HuR by Chk2 regulates SIRT1 expression
-
Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H, Gorospe M. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007; 25:543-57. doi: 10.1016/j.molcel.2007.01.011
-
(2007)
Mol Cell
, vol.25
, pp. 543-557
-
-
Abdelmohsen, K.1
Pullmann, R.2
Lal, A.3
Kim, H.H.4
Galban, S.5
Yang, X.6
Blethrow, J.D.7
Walker, M.8
Shubert, J.9
Gillespie, D.A.10
Furneaux, H.11
Gorospe, M.12
-
26
-
-
84900423595
-
Regulation of SIRT1 by microRNAs
-
Choi SE, Kemper JK. Regulation of SIRT1 by microRNAs. Mol Cells. 2013; 36:385-92. doi: 10.1007/s10059-013-0297-1
-
(2013)
Mol Cells
, vol.36
, pp. 385-392
-
-
Choi, S.E.1
Kemper, J.K.2
-
27
-
-
77955417245
-
MicroRNA-34a regulation of endothelial senescence
-
Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010; 398:735-40. doi: 10.1016/j.bbrc.2010.07.012
-
(2010)
Biochem Biophys Res Commun
, vol.398
, pp. 735-740
-
-
Ito, T.1
Yagi, S.2
Yamakuchi, M.3
-
28
-
-
70350134022
-
MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1
-
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009; 120:1524-32 doi: 10.1161/CIRCULATIONAHA.109.864629
-
(2009)
Circulation
, vol.120
, pp. 1524-1532
-
-
Menghini, R.1
Casagrande, V.2
Cardellini, M.3
Martelli, E.4
Terrinoni, A.5
Amati, F.6
Vasa-Nicotera, M.7
Ippoliti, A.8
Novelli, G.9
Melino, G.10
Lauro, R.11
Federici, M.12
-
29
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007; 28:277-90 doi: 10.1016/j.molcel.2007.08.030
-
(2007)
Mol Cell
, vol.28
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
30
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008; 451:587-90. doi:10.1038/nature06515
-
(2008)
Nature
, vol.451
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.P.2
Tang, Y.3
Jung, S.Y.4
Qin, J.5
Gu, W.6
-
31
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PLoS One. 2008; 3:e4020. doi: 10.1371/journal.pone.0004020
-
(2008)
PLoS One
, vol.3
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
Chruszcz, M.4
Gluba, W.5
Stukenberg, P.T.6
Minor, W.7
Scrable, H.8
-
32
-
-
79956331962
-
Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1
-
Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, Kim AL. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem. 2011; 286:19100-08. doi: 10.1074/jbc. M111.240598
-
(2011)
J Biol Chem
, vol.286
, pp. 19100-19108
-
-
Back, J.H.1
Rezvani, H.R.2
Zhu, Y.3
Guyonnet-Duperat, V.4
Athar, M.5
Ratner, D.6
Kim, A.L.7
-
33
-
-
84864708402
-
Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis
-
Bai B, Liang Y, Xu C, Lee MY, Xu A, Wu D, Vanhoutte PM, Wang Y. Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation. 2012; 126:729-40. doi:10.1161/CIRCULATIONAHA.112.118778
-
(2012)
Circulation
, vol.126
, pp. 729-740
-
-
Bai, B.1
Liang, Y.2
Xu, C.3
Lee, M.Y.4
Xu, A.5
Wu, D.6
Vanhoutte, P.M.7
Wang, Y.8
-
34
-
-
62049084424
-
Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2
-
Zschoernig B, Mahlknecht U. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun. 2009; 381:372-77. doi: 10.1016/j.bbrc.2009.02.085
-
(2009)
Biochem Biophys Res Commun
, vol.381
, pp. 372-377
-
-
Zschoernig, B.1
Mahlknecht, U.2
-
35
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, Bai W. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007; 9:1253-62. doi:10.1038/ncb1645
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
Nicosia, S.V.6
Bhalla, K.7
Bai, W.8
-
36
-
-
79551470041
-
Lysine deacetylation in ischaemic preconditioning: the role of SIRT1
-
Nadtochiy SM, Redman E, Rahman I, Brookes PS. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res. 2011; 89:643-49. doi: 10.1093/cvr/cvq287
-
(2011)
Cardiovasc Res
, vol.89
, pp. 643-649
-
-
Nadtochiy, S.M.1
Redman, E.2
Rahman, I.3
Brookes, P.S.4
-
37
-
-
79952124926
-
Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1)
-
Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, Wang H, Gu W, Roeder RG, Zhu WG. Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA. 2011; 108:1925-30. doi: 10.1073/pnas.1019619108
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 1925-1930
-
-
Liu, X.1
Wang, D.2
Zhao, Y.3
Tu, B.4
Zheng, Z.5
Wang, L.6
Wang, H.7
Gu, W.8
Roeder, R.G.9
Zhu, W.G.10
-
38
-
-
84959056021
-
Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis
-
Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016; 118:620-36. doi: 10.1161/CIRCRESAHA.115.306301
-
(2016)
Circ Res
, vol.118
, pp. 620-636
-
-
Gimbrone, M.A.1
García-Cardeña, G.2
-
39
-
-
84886797808
-
Macrophages in atherosclerosis: a dynamic balance
-
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013; 13:709-21. doi: 10.1038/nri3520
-
(2013)
Nat Rev Immunol
, vol.13
, pp. 709-721
-
-
Moore, K.J.1
Sheedy, F.J.2
Fisher, E.A.3
-
40
-
-
84906936828
-
Links between ectopic fat and vascular disease in humans
-
Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014; 34:1820-26. doi: 10.1161/ATVBAHA.114.303035
-
(2014)
Arterioscler Thromb Vasc Biol
, vol.34
, pp. 1820-1826
-
-
Lim, S.1
Meigs, J.B.2
-
41
-
-
79951793045
-
Aging and vascular endothelial function in humans
-
Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci (Lond). 2011; 120:357-75. doi: 10.1042/CS20100476
-
(2011)
Clin Sci (Lond)
, vol.120
, pp. 357-375
-
-
Seals, D.R.1
Jablonski, K.L.2
Donato, A.J.3
-
42
-
-
84881187196
-
Oxidative stress and vascular inflammation in aging
-
El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013; 65:380-401. doi: 10.1016/j.freeradbiomed.2013.07.003
-
(2013)
Free Radic Biol Med
, vol.65
, pp. 380-401
-
-
El Assar, M.1
Angulo, J.2
Rodríguez-Mañas, L.3
-
43
-
-
35348980724
-
SIRT1 controls endothelial angiogenic functions during vascular growth
-
Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007; 21:2644-58. doi:10.1101/gad.435107
-
(2007)
Genes Dev
, vol.21
, pp. 2644-2658
-
-
Potente, M.1
Ghaeni, L.2
Baldessari, D.3
Mostoslavsky, R.4
Rossig, L.5
Dequiedt, F.6
Haendeler, J.7
Mione, M.8
Dejana, E.9
Alt, F.W.10
Zeiher, A.M.11
Dimmeler, S.12
-
44
-
-
66349101373
-
Protective role of SIRT1 in diabetic vascular dysfunction
-
Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol. 2009; 29:889-94. doi: 10.1161/ATVBAHA.109.185694
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.29
, pp. 889-894
-
-
Orimo, M.1
Minamino, T.2
Miyauchi, H.3
Tateno, K.4
Okada, S.5
Moriya, J.6
Komuro, I.7
-
45
-
-
77953355431
-
SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis
-
Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb. 2010; 17:431-35. doi: 10.5551/jat.3525
-
(2010)
J Atheroscler Thromb
, vol.17
, pp. 431-435
-
-
Ota, H.1
Eto, M.2
Ogawa, S.3
Iijima, K.4
Akishita, M.5
Ouchi, Y.6
-
46
-
-
77952496696
-
SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells
-
Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, Wang Y. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res. 2010; 106:1384-93. doi: 10.1161/CIRCRESAHA.109.215483
-
(2010)
Circ Res
, vol.106
, pp. 1384-1393
-
-
Zu, Y.1
Liu, L.2
Lee, M.Y.3
Xu, C.4
Liang, Y.5
Man, R.Y.6
Vanhoutte, P.M.7
Wang, Y.8
-
47
-
-
80052807171
-
SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans
-
Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol. 2011; 589:4545-54. doi: 10.1113/jphysiol.2011.211219
-
(2011)
J Physiol
, vol.589
, pp. 4545-4554
-
-
Donato, A.J.1
Magerko, K.A.2
Lawson, B.R.3
Durrant, J.R.4
Lesniewski, L.A.5
Seals, D.R.6
-
48
-
-
84982903048
-
Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1
-
Bai B, Man AW, Yang K, Guo Y, Xu C, Tse HF, Han W, Bloksgaard M, De Mey JG, Vanhoutte PM, Xu A, Wang Y. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016. doi: 10.18632/oncotarget.9687
-
(2016)
Oncotarget
-
-
Bai, B.1
Man, A.W.2
Yang, K.3
Guo, Y.4
Xu, C.5
Tse, H.F.6
Han, W.7
Bloksgaard, M.8
De Mey, J.G.9
Vanhoutte, P.M.10
Xu, A.11
Wang, Y.12
-
49
-
-
84906074653
-
Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function
-
Thompson AM, Wagner R, Rzucidlo EM. Age-related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol. 2014; 307:H533-41. doi:10.1152/ajpheart.00871.2013
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.307
, pp. H533-H541
-
-
Thompson, A.M.1
Wagner, R.2
Rzucidlo, E.M.3
-
50
-
-
84946616107
-
MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors
-
Badi I, Burba I, Ruggeri C, Zeni F, Bertolotti M, Scopece A, Pompilio G, Raucci A. MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors. J Gerontol A Biol Sci Med Sci. 2015; 70:1304-11 doi: 10.1093/gerona/glu180
-
(2015)
J Gerontol A Biol Sci Med Sci
, vol.70
, pp. 1304-1311
-
-
Badi, I.1
Burba, I.2
Ruggeri, C.3
Zeni, F.4
Bertolotti, M.5
Scopece, A.6
Pompilio, G.7
Raucci, A.8
-
51
-
-
77957553845
-
The vascular SIRTainty
-
Yang Z, Ming XF. The vascular SIRTainty. Aging (Albany NY). 2010; 2:331-32. doi: 10.18632/aging.100161
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 331-332
-
-
Yang, Z.1
Ming, X.F.2
-
52
-
-
54149103338
-
Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein Edeficient mice
-
Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein Edeficient mice. Cardiovasc Res. 2008; 80:191-99. doi:10.1093/cvr/cvn224
-
(2008)
Cardiovasc Res
, vol.80
, pp. 191-199
-
-
Zhang, Q.J.1
Wang, Z.2
Chen, H.Z.3
Zhou, S.4
Zheng, W.5
Liu, G.6
Wei, Y.S.7
Cai, H.8
Liu, D.P.9
Liang, C.C.10
-
53
-
-
77957564311
-
SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/-mice
-
Stein S, Schäfer N, Breitenstein A, Besler C, Winnik S, Lohmann C, Heinrich K, Brokopp CE, Handschin C, Landmesser U, Tanner FC, Lüscher TF, Matter CM. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/-mice. Aging (Albany NY). 2010; 2:353-60. doi: 10.18632/aging.100162
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 353-360
-
-
Stein, S.1
Schäfer, N.2
Breitenstein, A.3
Besler, C.4
Winnik, S.5
Lohmann, C.6
Heinrich, K.7
Brokopp, C.E.8
Handschin, C.9
Landmesser, U.10
Tanner, F.C.11
Lüscher, T.F.12
Matter, C.M.13
-
54
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005; 310:314-17. doi:10.1126/science.1117728
-
(2005)
Science
, vol.310
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
Tedesco, L.6
Falcone, S.7
Valerio, A.8
Cantoni, O.9
Clementi, E.10
Moncada, S.11
Carruba, M.O.12
-
55
-
-
51649106480
-
Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells
-
Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 2008; 28:1634-39. doi: 10.1161/ATVBAHA.108.164368
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1634-1639
-
-
Ota, H.1
Eto, M.2
Kano, M.R.3
Ogawa, S.4
Iijima, K.5
Akishita, M.6
Ouchi, Y.7
-
56
-
-
78149285838
-
Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway
-
Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, Iijima K, Akishita M, Ouchi Y. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol. 2010; 30:2205-11. doi: 10.1161/ATVBAHA.110.210500
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 2205-2211
-
-
Ota, H.1
Eto, M.2
Kano, M.R.3
Kahyo, T.4
Setou, M.5
Ogawa, S.6
Iijima, K.7
Akishita, M.8
Ouchi, Y.9
-
57
-
-
0033552883
-
Atherosclerosis-an inflammatory disease
-
Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999; 340:115-26. doi: 10.1056/NEJM199901143400207
-
(1999)
N Engl J Med
, vol.340
, pp. 115-126
-
-
Ross, R.1
-
58
-
-
84893415113
-
New paradigms in inflammatory signaling in vascular endothelial cells
-
Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014; 306:H317-25. doi: 10.1152/ajpheart.00182.2013
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.306
, pp. H317-H325
-
-
Xiao, L.1
Liu, Y.2
Wang, N.3
-
59
-
-
0037462725
-
Postactivation turn-offof NF-kappa B-dependent transcription is regulated by acetylation of p65
-
Kiernan R, Brès V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M. Postactivation turn-offof NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem. 2003; 278:2758-66. doi: 10.1074/jbc. M209572200
-
(2003)
J Biol Chem
, vol.278
, pp. 2758-2766
-
-
Kiernan, R.1
Brès, V.2
Ng, R.W.3
Coudart, M.P.4
El Messaoudi, S.5
Sardet, C.6
Jin, D.Y.7
Emiliani, S.8
Benkirane, M.9
-
60
-
-
3242719545
-
Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase
-
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23:2369-80. doi:10.1038/sj.emboj.7600244
-
(2004)
EMBO J
, vol.23
, pp. 2369-2380
-
-
Yeung, F.1
Hoberg, J.E.2
Ramsey, C.S.3
Keller, M.D.4
Jones, D.R.5
Frye, R.A.6
Mayo, M.W.7
-
61
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, Lu JC, Smith JJ, Jirousek MR, Olefsky JM. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol. 2009; 29:1363-74. doi: 10.1128/MCB.00705-08
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
Milne, J.C.2
Imamura, T.3
Schenk, S.4
Sonoda, N.5
Babendure, J.L.6
Lu, J.C.7
Smith, J.J.8
Jirousek, M.R.9
Olefsky, J.M.10
-
62
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity
-
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab. 2010; 298:E419-28. doi: 10.1152/ajpendo.00417.2009
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E419-E428
-
-
Yoshizaki, T.1
Schenk, S.2
Imamura, T.3
Babendure, J.L.4
Sonoda, N.5
Bae, E.J.6
Oh, D.Y.7
Lu, M.8
Milne, J.C.9
Westphal, C.10
Bandyopadhyay, G.11
Olefsky, J.M.12
-
63
-
-
42649146208
-
SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
-
Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008; 177:861-70. doi: 10.1164/rccm.200708-1269OC
-
(2008)
Am J Respir Crit Care Med
, vol.177
, pp. 861-870
-
-
Rajendrasozhan, S.1
Yang, S.R.2
Kinnula, V.L.3
Rahman, I.4
-
64
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, Purushotham A, Li X. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol. 2010; 30:4712-21 doi: 10.1128/MCB.00657-10
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
Peres-da-Silva, A.4
Draper, D.W.5
Fessler, M.B.6
Purushotham, A.7
Li, X.8
-
65
-
-
28844474597
-
SIRT1 protects against microgliadependent amyloid-beta toxicity through inhibiting NF-kappaB signaling
-
Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L. SIRT1 protects against microgliadependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005; 280:40364-74 doi: 10.1074/jbc. M509329200
-
(2005)
J Biol Chem
, vol.280
, pp. 40364-40374
-
-
Chen, J.1
Zhou, Y.2
Mueller-Steiner, S.3
Chen, L.F.4
Kwon, H.5
Yi, S.6
Mucke, L.7
Gan, L.8
-
66
-
-
77951174682
-
Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms
-
de Kreutzenberg SV, Ceolotto G, Papparella I, Bortoluzzi A, Semplicini A, Dalla Man C, Cobelli C, Fadini GP, Avogaro A. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes. 2010; 59:1006-15 doi: 10.2337/db09-1187
-
(2010)
Diabetes
, vol.59
, pp. 1006-1015
-
-
de Kreutzenberg, S.V.1
Ceolotto, G.2
Papparella, I.3
Bortoluzzi, A.4
Semplicini, A.5
Dalla Man, C.6
Cobelli, C.7
Fadini, G.P.8
Avogaro, A.9
-
67
-
-
84881116641
-
Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through antiaging effects, possibly including AMPK and SIRT1 activation
-
Kitada M, Kume S, Takeda-Watanabe A, Tsuda S, Kanasaki K, Koya D. Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through antiaging effects, possibly including AMPK and SIRT1 activation. Biochim Biophys Acta. 2013; 1830:4820-27 doi: 10.1016/j.bbagen.2013.06.014
-
(2013)
Biochim Biophys Acta
, vol.1830
, pp. 4820-4827
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
Tsuda, S.4
Kanasaki, K.5
Koya, D.6
-
68
-
-
84873809257
-
Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease
-
Breitenstein A, Wyss CA, Spescha RD, Franzeck FC, Hof D, Riwanto M, Hasun M, Akhmedov A, von Eckardstein A, Maier W, Landmesser U, Lüscher TF, Camici GG. Peripheral blood monocyte Sirt1 expression is reduced in patients with coronary artery disease. PLoS One. 2013; 8:e53106. doi:10.1371/journal.pone.0053106
-
(2013)
PLoS One
, vol.8
-
-
Breitenstein, A.1
Wyss, C.A.2
Spescha, R.D.3
Franzeck, F.C.4
Hof, D.5
Riwanto, M.6
Hasun, M.7
Akhmedov, A.8
von Eckardstein, A.9
Maier, W.10
Landmesser, U.11
Lüscher, T.F.12
Camici, G.G.13
-
69
-
-
84971422217
-
In Patients with Coronary Artery Disease and Type 2 Diabetes, SIRT1 Expression in Circulating Mononuclear Cells Is Associated with Levels of Inflammatory Cytokines but Not with Coronary Lesions
-
Li Y, Ni J, Guo R, Li W. In Patients with Coronary Artery Disease and Type 2 Diabetes, SIRT1 Expression in Circulating Mononuclear Cells Is Associated with Levels of Inflammatory Cytokines but Not with Coronary Lesions. BioMed Res Int. 2016; 2016:8734827. doi: 10.1155/2016/8734827
-
(2016)
BioMed Res Int
, vol.2016
-
-
Li, Y.1
Ni, J.2
Guo, R.3
Li, W.4
-
70
-
-
80052580047
-
Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction
-
Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, Zhang R, Cai H, Liu DP, Liang CC. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res. 2011; 109:639-48. doi: 10.1161/CIRCRESAHA.111.243592
-
(2011)
Circ Res
, vol.109
, pp. 639-648
-
-
Zhou, S.1
Chen, H.Z.2
Wan, Y.Z.3
Zhang, Q.J.4
Wei, Y.S.5
Huang, S.6
Liu, J.J.7
Lu, Y.B.8
Zhang, Z.Q.9
Yang, R.F.10
Zhang, R.11
Cai, H.12
Liu, D.P.13
Liang, C.C.14
-
71
-
-
84886243212
-
SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1a complex
-
Olmos Y, Sánchez-Gómez FJ, Wild B, García-Quintans N, Cabezudo S, Lamas S, Monsalve M. SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1a complex. Antioxid Redox Signal. 2013; 19:1507-21. doi: 10.1089/ars.2012.4713
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 1507-1521
-
-
Olmos, Y.1
Sánchez-Gómez, F.J.2
Wild, B.3
García-Quintans, N.4
Cabezudo, S.5
Lamas, S.6
Monsalve, M.7
-
72
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007; 100:1512-21. doi:10.1161/01.RES.0000267723.65696.4a
-
(2007)
Circ Res
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
73
-
-
3142742707
-
FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1)
-
van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004; 279:28873-79. doi: 10.1074/jbc. M401138200
-
(2004)
J Biol Chem
, vol.279
, pp. 28873-28879
-
-
van der Horst, A.1
Tertoolen, L.G.2
de Vries-Smits, L.M.3
Frye, R.A.4
Medema, R.H.5
Burgering, B.M.6
-
74
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011; 121:4477-90. doi: 10.1172/JCI46243
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
75
-
-
84872687705
-
Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis
-
Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, Bennett M. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation. 2013; 127:386-96. doi:10.1161/CIRCULATIONAHA.112.124404
-
(2013)
Circulation
, vol.127
, pp. 386-396
-
-
Gorenne, I.1
Kumar, S.2
Gray, K.3
Figg, N.4
Yu, H.5
Mercer, J.6
Bennett, M.7
-
76
-
-
77956901469
-
SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis
-
Stein S, Lohmann C, Schäfer N, Hofmann J, Rohrer L, Besler C, Rothgiesser KM, Becher B, Hottiger MO, Borén J, McBurney MW, Landmesser U, Lüscher TF, Matter CM. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J. 2010; 31:2301-09. doi: 10.1093/eurheartj/ehq107
-
(2010)
Eur Heart J
, vol.31
, pp. 2301-2309
-
-
Stein, S.1
Lohmann, C.2
Schäfer, N.3
Hofmann, J.4
Rohrer, L.5
Besler, C.6
Rothgiesser, K.M.7
Becher, B.8
Hottiger, M.O.9
Borén, J.10
McBurney, M.W.11
Landmesser, U.12
Lüscher, T.F.13
Matter, C.M.14
-
77
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007; 28:91-106. doi:10.1016/j.molcel.2007.07.032
-
(2007)
Mol Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
78
-
-
84878924817
-
SIRT1 prevents atherosclerosis via liver X receptor and NF κB signaling in a U937 cell model
-
Zeng HT, Fu YC, Yu W, Lin JM, Zhou L, Liu L, Wang W. SIRT1 prevents atherosclerosis via liver X receptor and NF κB signaling in a U937 cell model. Mol Med Rep. 2013; 8:23-28
-
(2013)
Mol Med Rep
, vol.8
, pp. 23-28
-
-
Zeng, H.T.1
Fu, Y.C.2
Yu, W.3
Lin, J.M.4
Zhou, L.5
Liu, L.6
Wang, W.7
-
79
-
-
39849109338
-
Autophagy fights disease through cellular selfdigestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular selfdigestion. Nature. 2008; 451:1069-75. doi: 10.1038/nature06639
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
80
-
-
84864120303
-
Translational evidence that impaired autophagy contributes to arterial ageing
-
LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR. Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol. 2012; 590:3305-16. doi: 10.1113/jphysiol.2012.229690
-
(2012)
J Physiol
, vol.590
, pp. 3305-3316
-
-
LaRocca, T.J.1
Henson, G.D.2
Thorburn, A.3
Sindler, A.L.4
Pierce, G.L.5
Seals, D.R.6
-
81
-
-
84955187776
-
Intact endothelial autophagy is required to maintain vascular lipid homeostasis
-
Torisu K, Singh KK, Torisu T, Lovren F, Liu J, Pan Y, Quan A, Ramadan A, Al-Omran M, Pankova N, Boyd SR, Verma S, Finkel T. Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell. 2016; 15:187-91. doi: 10.1111/acel.12423
-
(2016)
Aging Cell
, vol.15
, pp. 187-191
-
-
Torisu, K.1
Singh, K.K.2
Torisu, T.3
Lovren, F.4
Liu, J.5
Pan, Y.6
Quan, A.7
Ramadan, A.8
Al-Omran, M.9
Pankova, N.10
Boyd, S.R.11
Verma, S.12
Finkel, T.13
-
82
-
-
84862791715
-
Macrophage autophagy plays a protective role in advanced atherosclerosis
-
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012; 15:545-53 doi: 10.1016/j.cmet.2012.01.022
-
(2012)
Cell Metab
, vol.15
, pp. 545-553
-
-
Liao, X.1
Sluimer, J.C.2
Wang, Y.3
Subramanian, M.4
Brown, K.5
Pattison, J.S.6
Robbins, J.7
Martinez, J.8
Tabas, I.9
-
83
-
-
84859448447
-
Autophagy links inflammasomes to atherosclerotic progression
-
Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012; 15:534-44. doi: 10.1016/j.cmet.2012.02.011
-
(2012)
Cell Metab
, vol.15
, pp. 534-544
-
-
Razani, B.1
Feng, C.2
Coleman, T.3
Emanuel, R.4
Wen, H.5
Hwang, S.6
Ting, J.P.7
Virgin, H.W.8
Kastan, M.B.9
Semenkovich, C.F.10
-
84
-
-
79958030075
-
Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase
-
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011; 13:655-67. doi: 10.1016/j.cmet.2011.03.023
-
(2011)
Cell Metab
, vol.13
, pp. 655-667
-
-
Ouimet, M.1
Franklin, V.2
Mak, E.3
Liao, X.4
Tabas, I.5
Marcel, Y.L.6
-
85
-
-
84962858106
-
The roles of autophagy in vascular smooth muscle cells
-
Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL. The roles of autophagy in vascular smooth muscle cells. Int J Cardiol. 2016; 211:1-6. doi: 10.1016/j.ijcard.2016.02.128
-
(2016)
Int J Cardiol
, vol.211
, pp. 1-6
-
-
Tai, S.1
Hu, X.Q.2
Peng, D.Q.3
Zhou, S.H.4
Zheng, X.L.5
-
86
-
-
84962794916
-
Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis
-
Grootaert MO, da Costa Martins PA, Bitsch N, Pintelon I, De Meyer GR, Martinet W, Schrijvers DM. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015; 11:2014-32. doi: 10.1080/15548627.2015.1096485
-
(2015)
Autophagy
, vol.11
, pp. 2014-2032
-
-
Grootaert, M.O.1
da Costa Martins, P.A.2
Bitsch, N.3
Pintelon, I.4
De Meyer, G.R.5
Martinet, W.6
Schrijvers, D.M.7
-
87
-
-
61949233502
-
Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential
-
Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009; 104:304-17. doi: 10.1161/CIRCRESAHA.108.188318
-
(2009)
Circ Res
, vol.104
, pp. 304-317
-
-
Martinet, W.1
De Meyer, G.R.2
-
88
-
-
84930746380
-
Autophagy in atherosclerosis: a phenomenon found in human carotid atherosclerotic plaques
-
Liu H, Cao Y, Tong T, Shi J, Zhang Y, Yang Y, Liu C. Autophagy in atherosclerosis: a phenomenon found in human carotid atherosclerotic plaques. Chin Med J (Engl). 2015; 128:69-74. doi: 10.4103/0366-6999.147815
-
(2015)
Chin Med J (Engl)
, vol.128
, pp. 69-74
-
-
Liu, H.1
Cao, Y.2
Tong, T.3
Shi, J.4
Zhang, Y.5
Yang, Y.6
Liu, C.7
-
89
-
-
84872741363
-
Acute regulation of 5-AMP-activated protein kinase by long-chain fatty acid, glucose and insulin in rat primary adipocytes
-
Hebbachi A, Saggerson D. Acute regulation of 5-AMP-activated protein kinase by long-chain fatty acid, glucose and insulin in rat primary adipocytes. Biosci Rep. 2012; 33:71-82. doi: 10.1042/BSR20120031
-
(2012)
Biosci Rep
, vol.33
, pp. 71-82
-
-
Hebbachi, A.1
Saggerson, D.2
-
90
-
-
0033840188
-
Palmitatemediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes
-
Hickson-Bick DL, Buja LM, McMillin JB. Palmitatemediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol. 2000; 32:511-19. doi: 10.1006/jmcc.1999.1098
-
(2000)
J Mol Cell Cardiol
, vol.32
, pp. 511-519
-
-
Hickson-Bick, D.L.1
Buja, L.M.2
McMillin, J.B.3
-
91
-
-
34248199965
-
Activation of protein phosphatase 2A by palmitate inhibits AMPactivated protein kinase
-
Wu Y, Song P, Xu J, Zhang M, Zou MH. Activation of protein phosphatase 2A by palmitate inhibits AMPactivated protein kinase. J Biol Chem. 2007; 282:9777-88. doi: 10.1074/jbc. M608310200
-
(2007)
J Biol Chem
, vol.282
, pp. 9777-9788
-
-
Wu, Y.1
Song, P.2
Xu, J.3
Zhang, M.4
Zou, M.H.5
-
92
-
-
84891275812
-
Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1
-
Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol. 2014; 171:523-35. doi: 10.1111/bph.12496
-
(2014)
Br J Pharmacol
, vol.171
, pp. 523-535
-
-
Arunachalam, G.1
Samuel, S.M.2
Marei, I.3
Ding, H.4
Triggle, C.R.5
-
93
-
-
84863513522
-
A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells
-
Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol. 2012; 303:C4-13 doi: 10.1152/ajpcell.00296.2011
-
(2012)
Am J Physiol Cell Physiol
, vol.303
, pp. C4-C13
-
-
Nelson, L.E.1
Valentine, R.J.2
Cacicedo, J.M.3
Gauthier, M.S.4
Ido, Y.5
Ruderman, N.B.6
-
94
-
-
57849131142
-
Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells
-
Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gauthier MS, Saha AK, Ido Y, Puigserver P, Ruderman NB. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem Biophys Res Commun. 2009; 378:836-41. doi:10.1016/j.bbrc.2008.11.130
-
(2009)
Biochem Biophys Res Commun
, vol.378
, pp. 836-841
-
-
Suchankova, G.1
Nelson, L.E.2
Gerhart-Hines, Z.3
Kelly, M.4
Gauthier, M.S.5
Saha, A.K.6
Ido, Y.7
Puigserver, P.8
Ruderman, N.B.9
-
95
-
-
84922225068
-
Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells
-
Weikel KA, Cacicedo JM, Ruderman NB, Ido Y. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am J Physiol Cell Physiol. 2015; 308:C249-63. doi:10.1152/ajpcell.00265.2014
-
(2015)
Am J Physiol Cell Physiol
, vol.308
, pp. C249-C263
-
-
Weikel, K.A.1
Cacicedo, J.M.2
Ruderman, N.B.3
Ido, Y.4
-
96
-
-
78650691023
-
Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes
-
Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ Res. 2010; 107:1470-82. doi: 10.1161/CIRCRESAHA.110.227371
-
(2010)
Circ Res
, vol.107
, pp. 1470-1482
-
-
Hariharan, N.1
Maejima, Y.2
Nakae, J.3
Paik, J.4
Depinho, R.A.5
Sadoshima, J.6
-
97
-
-
84893823338
-
Regulation of autophagy by the Rab GTPase network
-
Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014; 21:348-58 doi: 10.1038/cdd.2013.187
-
(2014)
Cell Death Differ
, vol.21
, pp. 348-358
-
-
Ao, X.1
Zou, L.2
Wu, Y.3
-
98
-
-
70350500068
-
FoxO transcription factors promote autophagy in cardiomyocytes
-
Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009; 284:28319-31. doi: 10.1074/jbc. M109.024406
-
(2009)
J Biol Chem
, vol.284
, pp. 28319-28331
-
-
Sengupta, A.1
Molkentin, J.D.2
Yutzey, K.E.3
-
99
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010; 120:1043-55. doi: 10.1172/JCI41376
-
(2010)
J Clin Invest
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
Uzu, T.2
Horiike, K.3
Chin-Kanasaki, M.4
Isshiki, K.5
Araki, S.6
Sugimoto, T.7
Haneda, M.8
Kashiwagi, A.9
Koya, D.10
-
100
-
-
84893500894
-
Molecular mechanism of autophagic membranescaffold assembly and disassembly
-
Kaufmann A, Beier V, Franquelim HG, Wollert T. Molecular mechanism of autophagic membranescaffold assembly and disassembly. Cell. 2014; 156:469-81. doi: 10.1016/j.cell.2013.12.022
-
(2014)
Cell
, vol.156
, pp. 469-481
-
-
Kaufmann, A.1
Beier, V.2
Franquelim, H.G.3
Wollert, T.4
-
101
-
-
41549138483
-
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
-
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008; 105:3374-79. doi: 10.1073/pnas.0712145105
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 3374-3379
-
-
Lee, I.H.1
Cao, L.2
Mostoslavsky, R.3
Lombard, D.B.4
Liu, J.5
Bruns, N.E.6
Tsokos, M.7
Alt, F.W.8
Finkel, T.9
-
102
-
-
84924809439
-
Deacetylation of nuclear LC3 drives autophagy initiation under starvation
-
Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, Liu W. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015; 57:456-66 doi: 10.1016/j.molcel.2014.12.013
-
(2015)
Mol Cell
, vol.57
, pp. 456-466
-
-
Huang, R.1
Xu, Y.2
Wan, W.3
Shou, X.4
Qian, J.5
You, Z.6
Liu, B.7
Chang, C.8
Zhou, T.9
Lippincott-Schwartz, J.10
Liu, W.11
-
103
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458:1056-60. doi: 10.1038/nature07813
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
104
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008; 283:20015-26. doi: 10.1074/jbc. M802187200
-
(2008)
J Biol Chem
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
Ido, Y.6
Lan, F.7
Walsh, K.8
Wierzbicki, M.9
Verbeuren, T.J.10
Cohen, R.A.11
Zang, M.12
-
105
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008; 283:27628-35. doi: 10.1074/jbc. M805711200
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
106
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012; 15:675-90. doi:10.1016/j.cmet.2012.04.003
-
(2012)
Cell Metab
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
Duarte, F.V.4
Martin-Montalvo, A.5
North, B.J.6
Agarwal, B.7
Ye, L.8
Ramadori, G.9
Teodoro, J.S.10
Hubbard, B.P.11
Varela, A.T.12
Davis, J.G.13
-
107
-
-
77950127881
-
SIRT1 negatively regulates the mammalian target of rapamycin
-
Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010; 5:e9199. doi:10.1371/journal.pone.0009199
-
(2010)
PLoS One
, vol.5
-
-
Ghosh, H.S.1
McBurney, M.2
Robbins, P.D.3
-
108
-
-
84867627541
-
SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells
-
Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun. 2012; 427:191-96. doi: 10.1016/j.bbrc.2012.09.042
-
(2012)
Biochem Biophys Res Commun
, vol.427
, pp. 191-196
-
-
Takeda-Watanabe, A.1
Kitada, M.2
Kanasaki, K.3
Koya, D.4
|